Skip to content

Latest commit

 

History

History
769 lines (726 loc) · 42 KB

README.md

File metadata and controls

769 lines (726 loc) · 42 KB

<img src="inst/stationaRy_2x.png", width = 100%>

Travis-CI Build Status codecov.io

Get hourly meteorological data from global met stations.

Examples

Get data from a station in Norway (with a USAF code of 13860, and a WBAN code of 99999). Specify the station_id as a string in the format [USAF]-[WBAN], and, provide beginning and ending years for data collection to startyear and endyear, respectively.

library(stationaRy)

met_data <- 
  get_isd_station_data(
    station_id = "13860-99999",
    startyear = 2010,
    endyear = 2011)
    
# Display part of the meteorological dataset
met_data
#> # A tibble: 16,474 × 18
#>      usaf  wban  year month   day  hour minute   lat   lon  elev    wd    ws
#>     <chr> <chr> <dbl> <dbl> <dbl> <dbl>  <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
#> 1  013860 99999  2010     1     1     0      0  60.8  11.1   132    NA    NA
#> 2  013860 99999  2010     1     1     1      0  60.8  11.1   132    NA    NA
#> 3  013860 99999  2010     1    21    15      0  60.8  11.1   132    NA    NA
#> 4  013860 99999  2010     1    21    16      0  60.8  11.1   132    NA    NA
#> 5  013860 99999  2010     1    21    17      0  60.8  11.1   132    NA    NA
#> 6  013860 99999  2010     1    21    18      0  60.8  11.1   132    NA    NA
#> 7  013860 99999  2010     1    21    19      0  60.8  11.1   132    NA    NA
#> 8  013860 99999  2010     1    21    20      0  60.8  11.1   132    NA    NA
#> 9  013860 99999  2010     1    21    21      0  60.8  11.1   132    NA    NA
#> 10 013860 99999  2010     1    21    22      0  60.8  11.1   132    NA    NA
#> # ... with 16,464 more rows, and 6 more variables: ceil_hgt <dbl>, temp <dbl>,
#> #   dew_point <dbl>, atmos_pres <dbl>, rh <dbl>, time <dttm>

This is useful if you know the USAF and WBAN numbers for a particular met station. Most of the time, however, you won't readily have this information. However, you can examine station metadata using the get_isd_stations() function (which has those ID values). Without providing any arguments, it provides a tibble for all available stations (with many variables to filter on). All stations in Norway, for example, can be isolated easily by using the filter() function from the dplyr package after the pipe (%>%).

library(stationaRy)
library(dplyr)

# Get a tibble with all stations in Norway
stations_norway <- 
  get_isd_stations() %>% 
  filter(country == "NO")
  
# Preview the dataset
stations_norway
#> # A tibble: 398 × 16
#>     usaf  wban                name country state    lat    lon  elev begin   end
#>    <dbl> <dbl>               <chr>   <chr> <chr>  <dbl>  <dbl> <dbl> <dbl> <dbl>
#> 1  10010 99999 JAN MAYEN(NOR-NAVY)      NO       70.933 -8.667   9.0  1931  2015
#> 2  10014 99999          SORSTOKKEN      NO       59.792  5.341  48.8  1986  2015
#> 3  10015 99999          BRINGELAND      NO       61.383  5.867 327.0  1987  2011
#> 4  10016 99999         RORVIK/RYUM      NO       64.850 11.233  14.0  1987  1991
#> 5  10017 99999               FRIGG      NO       59.980  2.250  48.0  1988  2005
#> 6  10020 99999       VERLEGENHUKEN      NO       80.050 16.250   8.0  1986  2015
#> 7  10030 99999            HORNSUND      NO       77.000 15.500  12.0  1985  2015
#> 8  10040 99999       NY-ALESUND II      NO       78.917 11.933   8.0  1973  2014
#> 9  10060 99999             EDGEOYA      NO       78.250 22.817  14.0  1973  2015
#> 10 10100 99999              ANDOYA      NO       69.293 16.144  13.1  1931  2015
#> # ... with 388 more rows, and 6 more variables: gmt_offset <dbl>, time_zone_id <chr>,
#> #   country_name <chr>, country_code <chr>, iso3166_2_subd <chr>, fips10_4_subd <chr>

This table can be greatly reduced to isolate the stations of interest. For example, another use of filter() could be used to get only high-altitude stations (above 1000 meters).

library(stationaRy)
library(dplyr)

# Filter the table with met stations
# in Norway to only those with elevation
# greater than 1000 m
norway_high_elev <-
  stations_norway %>% 
  filter(elev > 1000)

# Preview the dataset
norway_high_elev
#> # A tibble: 13 × 16
#>      usaf  wban               name country state     lat    lon   elev begin   end
#>     <dbl> <dbl>              <chr>   <chr> <chr>   <dbl>  <dbl>  <dbl> <dbl> <dbl>
#> 1   12200 99999             MANNEN      NO        62.450  7.767 1294.0  2010  2015
#> 2   12390 99999        HJERKINN II      NO        62.217  9.550 1012.0  2010  2015
#> 3   13460 99999          MIDTSTOVA      NO        60.650  7.267 1162.0  2011  2015
#> 4   13500 99999          FINSEVATN      NO        60.600  7.533 1208.0  2003  2015
#> 5   13510 99999          FINSE III      NO        60.600  7.500 1224.0  1973  2001
#> 6   13520 99999           SANDHAUG      NO        60.183  7.483 1250.0  2004  2015
#> 7   13620 99999         JUVVASSHOE      NO        61.667  8.367 1894.0  2009  2015
#> 8   13660 99999         SOGNEFJELL      NO        61.567  8.000 1413.0  1979  2015
#> 9   13750 99999          KVITFJELL      NO        61.467 10.133 1028.0  1973  2015
#> 10  14330 99999         MIDTLAEGER      NO        59.833  6.983 1081.0  1973  2015
#> 11  14400 99999             BLASJO      NO        59.333  6.867 1104.6  1973  2015
#> 12  14611 99999       GAUSTATOPPEN      NO        59.850  8.650 1803.7  2014  2015
#> 13 895040 99999 TROLL IN ANTARKTIS      NO       -72.017  2.383 1270.0  1994  2015
#> # ... with 6 more variables: gmt_offset <dbl>, time_zone_id <chr>, country_name <chr>,
#> #   country_code <chr>, iso3166_2_subd <chr>, fips10_4_subd <chr>

The station IDs from the tibble can be transformed into a vector with the get_station_ids() function.

library(stationaRy)
library(dplyr)

# With the filtered table of high-elevation
# sites in Norway, create a vector of
# station ID values
norway_high_elev_ids <-
  norway_high_elev %>% 
  get_station_ids

# Display the vector of station ID values
norway_high_elev_ids
#>  [1] "12200-99999"  "12390-99999"  "13460-99999"  "13500-99999"  "13510-99999" 
#>  [6] "13520-99999"  "13620-99999"  "13660-99999"  "13750-99999"  "14330-99999" 
#> [11] "14400-99999"  "14611-99999"  "895040-99999"

Suppose you'd like to collect several years of met data from a particular station and get only a listing of parameters that meet some criterion. Here's an example of obtaining temperatures above 37 degrees Celsius from the Bergen Point station:

library(stationaRy)
library(dplyr)

# Get high temperatures from 2006 to the end of 2015
# recorded at the Bergen Point met station
high_temps_at_bergen_point_stn <- 
  get_isd_stations() %>%
  filter(name == "BERGEN POINT") %>%
  get_station_ids %>%
  get_isd_station_data(startyear = 2006, endyear = 2015) %>%
  select(time, wd, ws, temp) %>% 
  filter(temp > 37) %>%
  mutate(temp_f = (temp * (9/5)) + 32)

# Preview the dataset
high_temps_at_bergen_point_stn
#> # A tibble: 3 × 5
#>                  time    wd    ws  temp temp_f
#>                <dttm> <dbl> <dbl> <dbl>  <dbl>
#> 1 2012-07-18 12:00:00   230   1.5  37.2  98.96
#> 2 2012-07-18 13:00:00   220   2.6  37.8 100.04
#> 3 2012-07-18 14:00:00   230   4.1  37.9 100.22

There can actually be a lot of additional met data beyond wind speed, temperatures, etc. It can vary greatly depending on the selected station. These additional categories are denoted 'two-letter + digit' identifiers (e.g., AA1, GA1, etc.). Within each category are numerous variables (coded as [identifer]_[index]). Here is the complete list of the different parameters:

Category Identifier Column Name
AA1 aa1_1 aa1_liq_precip_period_quantity
AA1 aa1_2 aa1_liq_precip_depth_dimension
AA1 aa1_3 aa1_liq_precip_condition_code
AB1 ab1_1 aa1_liq_precip_quality_code
AB1 ab1_2 ab1_liq_precip_monthly_depth_dimension
AB1 ab1_3 ab1_liq_precip_monthly_condition_code
AB1 ab1_4 ab1_liq_precip_monthly_quality_code
AC1 ac1_1 ac1_precip_obs_history_duration_code
AC1 ac1_2 ac1_precip_obs_history_characteristic_code
AC1 ac1_3 ac1_precip_obs_history_quality_code
AD1 ad1_1 ad1_liq_precip_greatest_amt_24h_month_depth_dimension
AD1 ad1_2 ad1_liq_precip_greatest_amt_24h_month_condition_code
AD1 ad1_3 ad1_liq_precip_greatest_amt_24h_month_dates
AD1 ad1_4 ad1_liq_precip_greatest_amt_24h_month_quality_code
AE1 ae1_1 ae1_liq_precip_number_days_amt_month__01inch
AE1 ae1_2 ae1_liq_precip_number_days_amt_month__01inch_quality_code
AE1 ae1_3 ae1_liq_precip_number_days_amt_month__10inch
AE1 ae1_4 ae1_liq_precip_number_days_amt_month__10inch_quality_code
AE1 ae1_5 ae1_liq_precip_number_days_amt_month__50inch
AE1 ae1_6 ae1_liq_precip_number_days_amt_month__50inch_quality_code
AE1 ae1_7 ae1_liq_precip_number_days_amt_month_1_00inch
AE1 ae1_8 ae1_liq_precip_number_days_amt_month_1_00inch_quality_code
AG1 ag1_1 ag1_precip_est_obs_discrepancy_code
AG1 ag1_2 ag1_precip_est_obs_est_water_depth_dimension
AH1 ah1_3 ah1_liq_precip_max_short_dur_month_period_quantity
AH1 ah1_4 ah1_liq_precip_max_short_dur_month_depth_dimension
AH1 ah1_5 ah1_liq_precip_max_short_dur_month_condition_code
AH1 ah1_6 ah1_liq_precip_max_short_dur_month_end_date_time
AH1 ah1_7 ah1_liq_precip_max_short_dur_month_quality_code
AI1 ai1_1 ai1_liq_precip_max_short_dur_month_period_quantity
AI1 ai1_2 ai1_liq_precip_max_short_dur_month_depth_dimension
AI1 ai1_3 ai1_liq_precip_max_short_dur_month_condition_code
AI1 ai1_4 ai1_liq_precip_max_short_dur_month_end_date_time
AI1 ai1_5 ai1_liq_precip_max_short_dur_month_quality_code
AJ1 aj1_6 aj1_snow_depth_dimension
AJ1 aj1_7 aj1_snow_depth_condition_code
AJ1 aj1_8 aj1_snow_depth_quality_code
AJ1 aj1_9 aj1_snow_depth_equiv_water_depth_dimension
AJ1 aj1_10 aj1_snow_depth_equiv_water_condition_code
AJ1 aj1_11 aj1_snow_depth_equiv_water_quality_code
AK1 ad1_1 ak1_snow_depth_greatest_depth_month_depth_dimension
AK1 ad1_2 ak1_snow_depth_greatest_depth_month_condition_code
AK1 ak1_3 ak1_snow_depth_greatest_depth_month_dates_occurrence
AK1 ak1_4 ak1_snow_depth_greatest_depth_month_quality_code
AL1 al1_1 al1_snow_accumulation_period_quantity
AL1 al1_2 al1_snow_accumulation_depth_dimension
AL1 al1_3 al1_snow_accumulation_condition_code
AL1 al1_4 al1_snow_accumulation_quality_code
AM1 am1_1 am1_snow_accumulation_greatest_amt_24h_month_depth_dimension
AM1 am1_2 am1_snow_accumulation_greatest_amt_24h_month_condition_code
AM1 am1_3 am1_snow_accumulation_greatest_amt_24h_month_dates_occurrence_1
AM1 am1_4 am1_snow_accumulation_greatest_amt_24h_month_dates_occurrence_2
AM1 am1_5 am1_snow_accumulation_greatest_amt_24h_month_dates_occurrence_3
AM1 am1_6 am1_snow_accumulation_greatest_amt_24h_month_quality_code
AN1 an1_1 an1_snow_accumulation_month_period_quantity
AN1 an1_2 an1_snow_accumulation_month_depth_dimension
AN1 an1_3 an1_snow_accumulation_month_condition_code
AN1 an1_4 an1_snow_accumulation_month_quality_code
AO1 ao1_1 ao1_liq_precip_period_quantity_minutes
AO1 ao1_2 ao1_liq_precip_depth_dimension
AO1 ao1_3 ao1_liq_precip_condition_code
AO1 ao1_4 ao1_liq_precip_quality_code
AP1 ap1_1 ap1_15_min_liq_precip_hpd_gauge_value_45_min_prior
AP1 ap1_2 ap1_15_min_liq_precip_hpd_gauge_value_30_min_prior
AP1 ap1_3 ap1_15_min_liq_precip_hpd_gauge_value_15_min_prior
AP1 ap1_4 ap1_15_min_liq_precip_hpd_gauge_value_at_obs_time
AU1 au1_1 au1_present_weather_obs_intensity_code
AU1 au1_2 au1_present_weather_obs_descriptor_code
AU1 au1_3 au1_present_weather_obs_precipitation_code
AU1 au1_4 au1_present_weather_obs_obscuration_code
AU1 au1_5 au1_present_weather_obs_other_weather_phenomena_code
AU1 au1_6 au1_present_weather_obs_combination_indicator_code
AU1 au1_7 au1_present_weather_obs_quality_code
AW1 aw1_1 aw1_present_weather_obs_aut_weather_report_1
AW1 aw1_2 aw1_present_weather_obs_aut_weather_report_2
AW1 aw1_3 aw1_present_weather_obs_aut_weather_report_3
AW1 aw1_4 aw1_present_weather_obs_aut_weather_report_4
AX1 ax1_1 ax1_past_weather_obs_atmos_condition_code
AX1 ax1_2 ax1_past_weather_obs_quality_manual_atmos_condition_code
AX1 ax1_3 ax1_past_weather_obs_period_quantity
AX1 ax1_4 ax1_past_weather_obs_period_quality_code
AY1 ay1_1 ay1_past_weather_obs_manual_occurrence_identifier
AY1 ay1_2 ay1_past_weather_obs_quality_manual_atmos_condition_code
AY1 ay1_3 ay1_past_weather_obs_period_quantity
AY1 ay1_4 ay1_past_weather_obs_period_quality_code
AZ1 az1_1 az1_past_weather_obs_aut_occurrence_identifier
AZ1 az1_2 az1_past_weather_obs_quality_aut_atmos_condition_code
AZ1 az1_3 az1_past_weather_obs_period_quantity
AZ1 az1_4 az1_past_weather_obs_period_quality_code
CB1 cb1_1 cb1_subhrly_obs_liq_precip_2_sensor_period_quantity
CB1 cb1_2 cb1_subhrly_obs_liq_precip_2_sensor_precip_liq_depth
CB1 cb1_3 cb1_subhrly_obs_liq_precip_2_sensor_qc_quality_code
CB1 cb1_4 cb1_subhrly_obs_liq_precip_2_sensor_flag_quality_code
CF1 cf1_1 cf1_hrly_fan_speed_rate
CF1 cf1_2 cf1_hrly_fan_qc_quality_code
CF1 cf1_3 cf1_hrly_fan_flag_quality_code
CG1 cg1_1 cg1_subhrly_obs_liq_precip_1_sensor_precip_liq_depth
CG1 cg1_2 cg1_subhrly_obs_liq_precip_1_sensor_qc_quality_code
CG1 cg1_3 cg1_subhrly_obs_liq_precip_1_sensor_flag_quality_code
CH1 ch1_1 ch1_hrly_subhrly_rh_temp_period_quantity
CH1 ch1_2 ch1_hrly_subhrly_temp_avg_air_temp
CH1 ch1_3 ch1_hrly_subhrly_temp_qc_quality_code
CH1 ch1_4 ch1_hrly_subhrly_temp_flag_quality_code
CH1 ch1_5 ch1_hrly_subhrly_rh_avg_rh
CH1 ch1_6 ch1_hrly_subhrly_rh_qc_quality_code
CH1 ch1_7 ch1_hrly_subhrly_rh_flag_quality_code
CI1 ci1_1 ci1_hrly_rh_temp_min_hrly_temp
CI1 ci1_2 ci1_hrly_rh_temp_min_hrly_temp_qc_quality_code
CI1 ci1_3 ci1_hrly_rh_temp_min_hrly_temp_flag_quality_code
CI1 ci1_4 ci1_hrly_rh_temp_max_hrly_temp
CI1 ci1_5 ci1_hrly_rh_temp_max_hrly_temp_qc_quality_code
CI1 ci1_6 ci1_hrly_rh_temp_max_hrly_temp_flag_quality_code
CI1 ci1_7 ci1_hrly_rh_temp_std_dev_hrly_temp
CI1 ci1_8 ci1_hrly_rh_temp_std_dev_hrly_temp_qc_quality_code
CI1 ci1_9 ci1_hrly_rh_temp_std_dev_hrly_temp_flag_quality_code
CI1 ci1_10 ci1_hrly_rh_temp_std_dev_hrly_rh
CI1 ci1_11 ci1_hrly_rh_temp_std_dev_hrly_rh_qc_quality_code
CI1 ci1_12 ci1_hrly_rh_temp_std_dev_hrly_rh_flag_quality_code
CN1 cn1_1 cn1_hrly_batvol_sensors_transm_avg_voltage
CN1 cn1_2 cn1_hrly_batvol_sensors_transm_avg_voltage_qc_quality_code
CN1 cn1_3 cn1_hrly_batvol_sensors_transm_avg_voltage_flag_quality_code
CN1 cn1_4 cn1_hrly_batvol_full_load_avg_voltage
CN1 cn1_5 cn1_hrly_batvol_full_load_avg_voltage_qc_quality_code
CN1 cn1_6 cn1_hrly_batvol_full_load_avg_voltage_flag_quality_code
CN1 cn1_7 cn1_hrly_batvol_datalogger_avg_voltage
CN1 cn1_8 cn1_hrly_batvol_datalogger_avg_voltage_qc_quality_code
CN1 cn1_9 cn1_hrly_batvol_datalogger_avg_voltage_flag_quality_code
CN2 cn2_1 cn2_hrly_diagnostic_equipment_temp
CN2 cn2_2 cn2_hrly_diagnostic_equipment_temp_qc_quality_code
CN2 cn2_3 cn2_hrly_diagnostic_equipment_temp_flag_quality_code
CN2 cn2_4 cn2_hrly_diagnostic_geonor_inlet_temp
CN2 cn2_5 cn2_hrly_diagnostic_geonor_inlet_temp_qc_quality_code
CN2 cn2_6 cn2_hrly_diagnostic_geonor_inlet_temp_flag_quality_code
CN2 cn2_7 cn2_hrly_diagnostic_datalogger_opendoor_time
CN2 cn2_8 cn2_hrly_diagnostic_datalogger_opendoor_time_qc_quality_code
CN2 cn2_9 cn2_hrly_diagnostic_datalogger_opendoor_time_flag_quality_code
CN3 cn3_1 cn3_hrly_diagnostic_reference_resistor_avg_resistance
CN3 cn3_2 cn3_hrly_diagnostic_reference_resistor_avg_resistance_qc_quality_code
CN3 cn3_3 cn3_hrly_diagnostic_reference_resistor_avg_resistance_flag_quality_code
CN3 cn3_4 cn3_hrly_diagnostic_datalogger_signature_id
CN3 cn3_5 cn3_hrly_diagnostic_datalogger_signature_id_qc_quality_code
CN3 cn3_6 cn3_hrly_diagnostic_datalogger_signature_id_flag_quality_code
CN4 cn4_1 cn4_hrly_diagnostic_liq_precip_gauge_flag_bit
CN4 cn4_2 cn4_hrly_diagnostic_liq_precip_gauge_flag_bit_qc_quality_code
CN4 cn4_3 cn4_hrly_diagnostic_liq_precip_gauge_flag_bit_flag_quality_code
CN4 cn4_4 cn4_hrly_diagnostic_doorflag_field
CN4 cn4_5 cn4_hrly_diagnostic_doorflag_field_qc_quality_code
CN4 cn4_6 cn4_hrly_diagnostic_doorflag_field_flag_quality_code
CN4 cn4_7 cn4_hrly_diagnostic_forward_transmitter_rf_power
CN4 cn4_8 cn4_hrly_diagnostic_forward_transmitter_rf_power_qc_quality_code
CN4 cn4_9 cn4_hrly_diagnostic_forward_transmitter_rf_power_flag_quality_code
CN4 cn4_10 cn4_hrly_diagnostic_reflected_transmitter_rf_power
CN4 cn4_11 cn4_hrly_diagnostic_reflected_transmitter_rf_power_qc_quality_code
CN4 cn4_12 cn4_hrly_diagnostic_reflected_transmitter_rf_power_flag_quality_code
CR1 cr1_1 cr1_control_section_datalogger_version_number
CR1 cr1_2 cr1_control_section_datalogger_version_number_qc_quality_code
CR1 cr1_3 cr1_control_section_datalogger_version_number_flag_quality_code
CT1 ct1_1 ct1_subhrly_temp_avg_air_temp
CT1 ct1_2 ct1_subhrly_temp_avg_air_temp_qc_quality_code
CT1 ct1_3 ct1_subhrly_temp_avg_air_temp_flag_quality_code
CU1 cu1_1 cu1_hrly_temp_avg_air_temp
CU1 cu1_2 cu1_hrly_temp_avg_air_temp_qc_quality_code
CU1 cu1_3 cu1_hrly_temp_avg_air_temp_flag_quality_code
CU1 cu1_4 cu1_hrly_temp_avg_air_temp_st_dev
CU1 cu1_5 cu1_hrly_temp_avg_air_temp_st_dev_qc_quality_code
CU1 cu1_6 cu1_hrly_temp_avg_air_temp_st_dev_flag_quality_code
CV1 cv1_1 cv1_hrly_temp_min_air_temp
CV1 cv1_2 cv1_hrly_temp_min_air_temp_qc_quality_code
CV1 cv1_3 cv1_hrly_temp_min_air_temp_flag_quality_code
CV1 cv1_4 cv1_hrly_temp_min_air_temp_time
CV1 cv1_5 cv1_hrly_temp_min_air_temp_time_qc_quality_code
CV1 cv1_6 cv1_hrly_temp_min_air_temp_time_flag_quality_code
CV1 cv1_7 cv1_hrly_temp_max_air_temp
CV1 cv1_8 cv1_hrly_temp_max_air_temp_qc_quality_code
CV1 cv1_9 cv1_hrly_temp_max_air_temp_flag_quality_code
CV1 cv1_10 cv1_hrly_temp_max_air_temp_time
CV1 cv1_11 cv1_hrly_temp_max_air_temp_time_qc_quality_code
CV1 cv1_12 cv1_hrly_temp_max_air_temp_time_flag_quality_code
CW1 cw1_1 cw1_subhrly_wetness_wet1_indicator
CW1 cw1_2 cw1_subhrly_wetness_wet1_indicator_qc_quality_code
CW1 cw1_3 cw1_subhrly_wetness_wet1_indicator_flag_quality_code
CW1 cw1_4 cw1_subhrly_wetness_wet2_indicator
CW1 cw1_5 cw1_subhrly_wetness_wet2_indicator_qc_quality_code
CW1 cw1_6 cw1_subhrly_wetness_wet2_indicator_flag_quality_code
CX1 cx1_1 cx1_hourly_geonor_vib_wire_total_precip
CX1 cx1_2 cx1_hourly_geonor_vib_wire_total_precip_qc_quality_code
CX1 cx1_3 cx1_hourly_geonor_vib_wire_total_precip_flag_quality_code
CX1 cx1_4 cx1_hourly_geonor_vib_wire_freq_avg_precip
CX1 cx1_5 cx1_hourly_geonor_vib_wire_freq_avg_precip_qc_quality_code
CX1 cx1_6 cx1_hourly_geonor_vib_wire_freq_avg_precip_flag_quality_code
CX1 cx1_7 cx1_hourly_geonor_vib_wire_freq_min_precip
CX1 cx1_8 cx1_hourly_geonor_vib_wire_freq_min_precip_qc_quality_code
CX1 cx1_9 cx1_hourly_geonor_vib_wire_freq_min_precip_flag_quality_code
CX1 cx1_10 cx1_hourly_geonor_vib_wire_freq_max_precip
CX1 cx1_11 cx1_hourly_geonor_vib_wire_freq_max_precip_qc_quality_code
CX1 cx1_12 cx1_hourly_geonor_vib_wire_freq_max_precip_flag_quality_code
CO1 co1_1 co1_network_metadata_climate_division_number
CO1 co1_2 co1_network_metadata_utc_lst_time_conversion
CO1 co1_3 co2_us_network_cooperative_element_id
CO1 co1_4 co2_us_network_cooperative_time_offset
ED1 ed1_1 ed1_runway_vis_range_obs_direction_angle
ED1 ed1_2 ed1_runway_vis_range_obs_runway_designator_code
ED1 ed1_3 ed1_runway_vis_range_obs_vis_dimension
ED1 ed1_4 ed1_runway_vis_range_obs_quality_code
GA1 ga1_1 ga1_sky_cover_layer_coverage_code
GA1 ga1_2 ga1_sky_cover_layer_coverage_quality_code
GA1 ga1_3 ga1_sky_cover_layer_base_height
GA1 ga1_4 ga1_sky_cover_layer_base_height_quality_code
GA1 ga1_5 ga1_sky_cover_layer_cloud_type
GA1 ga1_6 ga1_sky_cover_layer_cloud_type_quality_code
GD1 gd1_1 gd1_sky_cover_summation_state_coverage_1
GD1 gd1_2 gd1_sky_cover_summation_state_coverage_2
GD1 gd1_3 gd1_sky_cover_summation_state_coverage_quality_code
GD1 gd1_4 gd1_sky_cover_summation_state_height
GD1 gd1_5 gd1_sky_cover_summation_state_height_quality_code
GD1 gd1_6 gd1_sky_cover_summation_state_characteristic_code
GF1 gf1_1 gf1_sky_condition_obs_total_coverage
GF1 gf1_2 gf1_sky_condition_obs_total_opaque_coverage
GF1 gf1_3 gf1_sky_condition_obs_total_coverage_quality_code
GF1 gf1_4 gf1_sky_condition_obs_total_lowest_cloud_cover
GF1 gf1_5 gf1_sky_condition_obs_total_lowest_cloud_cover_quality_code
GF1 gf1_6 gf1_sky_condition_obs_low_cloud_genus
GF1 gf1_7 gf1_sky_condition_obs_low_cloud_genus_quality_code
GF1 gf1_8 gf1_sky_condition_obs_lowest_cloud_base_height
GF1 gf1_9 gf1_sky_condition_obs_lowest_cloud_base_height_quality_code
GF1 gf1_10 gf1_sky_condition_obs_mid_cloud_genus
GF1 gf1_11 gf1_sky_condition_obs_mid_cloud_genus_quality_code
GF1 gf1_12 gf1_sky_condition_obs_high_cloud_genus
GF1 gf1_13 gf1_sky_condition_obs_high_cloud_genus_quality_code
GG1 gg1_1 gg1_below_stn_cloud_layer_coverage
GG1 gg1_2 gg1_below_stn_cloud_layer_coverage_quality_code
GG1 gg1_3 gg1_below_stn_cloud_layer_top_height
GG1 gg1_4 gg1_below_stn_cloud_layer_top_height_quality_code
GG1 gg1_5 gg1_below_stn_cloud_layer_type
GG1 gg1_6 gg1_below_stn_cloud_layer_type_quality_code
GG1 gg1_7 gg1_below_stn_cloud_layer_top
GG1 gg1_8 gg1_below_stn_cloud_layer_top_quality_code
GH1 gh1_1 gh1_hrly_solar_rad_hrly_avg_solarad
GH1 gh1_2 gh1_hrly_solar_rad_hrly_avg_solarad_qc_quality_code
GH1 gh1_3 gh1_hrly_solar_rad_hrly_avg_solarad_flag_quality_code
GH1 gh1_4 gh1_hrly_solar_rad_min_solarad
GH1 gh1_5 gh1_hrly_solar_rad_min_solarad_qc_quality_code
GH1 gh1_6 gh1_hrly_solar_rad_min_solarad_flag_quality_code
GH1 gh1_7 gh1_hrly_solar_rad_max_solarad
GH1 gh1_8 gh1_hrly_solar_rad_max_solarad_qc_quality_code
GH1 gh1_9 gh1_hrly_solar_rad_max_solarad_flag_quality_code
GH1 gh1_10 gh1_hrly_solar_rad_std_dev_solarad
GH1 gh1_11 gh1_hrly_solar_rad_std_dev_solarad_qc_quality_code
GH1 gh1_12 gh1_hrly_solar_rad_std_dev_solarad_flag_quality_code
GJ1 gj1_1 gj1_sunshine_obs_duration
GJ1 gj1_2 gj1_sunshine_obs_duration_quality_code
GK1 gk1_1 gk1_sunshine_obs_pct_possible_sunshine
GK1 gk1_2 gk1_sunshine_obs_pct_possible_quality_code
GL1 gl1_1 gl1_sunshine_obs_duration
GL1 gl1_2 gl1_sunshine_obs_duration_quality_code
GM1 gm1_1 gm1_solar_irradiance_time_period
GM1 gm1_2 gm1_solar_irradiance_global_irradiance
GM1 gm1_3 gm1_solar_irradiance_global_irradiance_data_flag
GM1 gm1_4 gm1_solar_irradiance_global_irradiance_quality_code
GM1 gm1_5 gm1_solar_irradiance_direct_beam_irradiance
GM1 gm1_6 gm1_solar_irradiance_direct_beam_irradiance_data_flag
GM1 gm1_7 gm1_solar_irradiance_direct_beam_irradiance_quality_code
GM1 gm1_8 gm1_solar_irradiance_diffuse_irradiance
GM1 gm1_9 gm1_solar_irradiance_diffuse_irradiance_data_flag
GM1 gm1_10 gm1_solar_irradiance_diffuse_irradiance_quality_code
GM1 gm1_11 gm1_solar_irradiance_uvb_global_irradiance
GM1 gm1_12 gm1_solar_irradiance_uvb_global_irradiance_data_flag
GM1 gm1_13 gm1_solar_irradiance_uvb_global_irradiance_quality_code
GN1 gn1_1 gn1_solar_rad_time_period
GN1 gn1_2 gn1_solar_rad_upwelling_global_solar_rad
GN1 gn1_3 gn1_solar_rad_upwelling_global_solar_rad_quality_code
GN1 gn1_4 gn1_solar_rad_downwelling_thermal_ir_rad
GN1 gn1_5 gn1_solar_rad_downwelling_thermal_ir_rad_quality_code
GN1 gn1_6 gn1_solar_rad_upwelling_thermal_ir_rad
GN1 gn1_7 gn1_solar_rad_upwelling_thermal_ir_rad_quality_code
GN1 gn1_8 gn1_solar_rad_par
GN1 gn1_9 gn1_solar_rad_par_quality_code
GN1 gn1_10 gn1_solar_rad_solar_zenith_angle
GN1 gn1_11 gn1_solar_rad_solar_zenith_angle_quality_code
GO1 go1_1 go1_net_solar_rad_time_period
GO1 go1_2 go1_net_solar_rad_net_solar_radiation
GO1 go1_3 go1_net_solar_rad_net_solar_radiation_quality_code
GO1 go1_4 go1_net_solar_rad_net_ir_radiation
GO1 go1_5 go1_net_solar_rad_net_ir_radiation_quality_code
GO1 go1_6 go1_net_solar_rad_net_radiation
GO1 go1_7 go1_net_solar_rad_net_radiation_quality_code
GP1 gp1_1 gp1_modeled_solar_irradiance_data_time_period
GP1 gp1_2 gp1_modeled_solar_irradiance_global_horizontal
GP1 gp1_3 gp1_modeled_solar_irradiance_global_horizontal_src_flag
GP1 gp1_4 gp1_modeled_solar_irradiance_global_horizontal_uncertainty
GP1 gp1_5 gp1_modeled_solar_irradiance_direct_normal
GP1 gp1_6 gp1_modeled_solar_irradiance_direct_normal_src_flag
GP1 gp1_7 gp1_modeled_solar_irradiance_direct_normal_uncertainty
GP1 gp1_8 gp1_modeled_solar_irradiance_diffuse_normal
GP1 gp1_9 gp1_modeled_solar_irradiance_diffuse_normal_src_flag
GP1 gp1_10 gp1_modeled_solar_irradiance_diffuse_normal_uncertainty
GP1 gp1_11 gp1_modeled_solar_irradiance_diffuse_horizontal
GP1 gp1_12 gp1_modeled_solar_irradiance_diffuse_horizontal_src_flag
GP1 gp1_13 gp1_modeled_solar_irradiance_diffuse_horizontal_uncertainty
GQ1 gq1_1 gq1_hrly_solar_angle_time_period
GQ1 gq1_2 gq1_hrly_solar_angle_mean_zenith_angle
GQ1 gq1_3 gq1_hrly_solar_angle_mean_zenith_angle_quality_code
GQ1 gq1_4 gq1_hrly_solar_angle_mean_azimuth_angle
GQ1 gq1_5 gq1_hrly_solar_angle_mean_azimuth_angle_quality_code
GR1 gr1_1 gr1_hrly_extraterrestrial_rad_time_period
GR1 gr1_2 gr1_hrly_extraterrestrial_rad_horizontal
GR1 gr1_3 gr1_hrly_extraterrestrial_rad_horizontal_quality_code
GR1 gr1_4 gr1_hrly_extraterrestrial_rad_normal
GR1 gr1_5 gr1_hrly_extraterrestrial_rad_normal_quality_code
HL1 hl1_1 hl1_hail_size
HL1 hl1_2 hl1_hail_size_quality_code
IA1 ia1_1 ia1_ground_surface_obs_code
IA1 ia1_2 ia1_ground_surface_obs_code_quality_code
IA2 ia1_3 ia2_ground_surface_obs_min_temp_time_period
IA2 ia1_4 ia2_ground_surface_obs_min_temp
IA2 ia1_5 ia2_ground_surface_obs_min_temp_quality_code
IB1 ib1_1 ib1_hrly_surface_temp
IB1 ib1_2 ib1_hrly_surface_temp_qc_quality_code
IB1 ib1_3 ib1_hrly_surface_temp_flag_quality_code
IB1 ib1_4 ib1_hrly_surface_min_temp
IB1 ib1_5 ib1_hrly_surface_min_temp_qc_quality_code
IB1 ib1_6 ib1_hrly_surface_min_temp_flag_quality_code
IB1 ib1_7 ib1_hrly_surface_max_temp
IB1 ib1_8 ib1_hrly_surface_max_temp_qc_quality_code
IB1 ib1_9 ib1_hrly_surface_max_temp_flag_quality_code
IB1 ib1_10 ib1_hrly_surface_std_temp
IB1 ib1_11 ib1_hrly_surface_std_temp_qc_quality_code
IB1 ib1_12 ib1_hrly_surface_std_temp_flag_quality_code
IB2 ib2_1 ib2_hrly_surface_temp_sb
IB2 ib2_2 ib2_hrly_surface_temp_sb_qc_quality_code
IB2 ib2_3 ib2_hrly_surface_temp_sb_flag_quality_code
IB2 ib2_4 ib2_hrly_surface_temp_sb_std
IB2 ib2_5 ib2_hrly_surface_temp_sb_std_qc_quality_code
IB2 ib2_6 ib2_hrly_surface_temp_sb_std_flag_quality_code
IC1 ic1_1 ic1_grnd_surface_obs_pan_evap_time_period
IC1 ic1_2 ic1_grnd_surface_obs_pan_evap_wind
IC1 ic1_3 ic1_grnd_surface_obs_pan_evap_wind_condition_code
IC1 ic1_4 ic1_grnd_surface_obs_pan_evap_wind_quality_code
IC1 ic1_5 ic1_grnd_surface_obs_pan_evap_data
IC1 ic1_6 ic1_grnd_surface_obs_pan_evap_data_condition_code
IC1 ic1_7 ic1_grnd_surface_obs_pan_evap_data_quality_code
IC1 ic1_8 ic1_grnd_surface_obs_pan_max_water_data
IC1 ic1_9 ic1_grnd_surface_obs_pan_max_water_data_condition_code
IC1 ic1_10 ic1_grnd_surface_obs_pan_max_water_data_quality_code
IC1 ic1_11 ic1_grnd_surface_obs_pan_min_water_data
IC1 ic1_12 ic1_grnd_surface_obs_pan_min_water_data_condition_code
IC1 ic1_13 ic1_grnd_surface_obs_pan_min_water_data_quality_code
KA1 ka1_1 ka1_extreme_air_temp_time_period
KA1 ka1_2 ka1_extreme_air_temp_code
KA1 ka1_3 ka1_extreme_air_temp_high_or_low
KA1 ka1_4 ka1_extreme_air_temp_high_or_low_quality_code
KB1 kb1_1 kb1_avg_air_temp_time_period
KB1 kb1_2 kb1_avg_air_temp_code
KB1 kb1_3 kb1_avg_air_temp_air_temp
KB1 kb1_4 kb1_avg_air_temp_air_temp_quality_code
KC1 kc1_1 kc1_extreme_air_temp_monthly_code
KC1 kc1_2 kc1_extreme_air_temp_monthly_condition_code
KC1 kc1_3 kc1_extreme_air_temp_monthly_temp
KC1 kc1_4 kc1_extreme_air_temp_monthly_date
KC1 kc1_5 kc1_extreme_air_temp_monthly_temp_quality_code
KD1 kd1_1 kd1_heat_cool_deg_days_time_period
KD1 kd1_2 kd1_heat_cool_deg_days_code
KD1 kd1_3 kd1_heat_cool_deg_days_value
KD1 kd1_4 kd1_heat_cool_deg_days_quality_code
KE1 ke1_1 ke1_extreme_temp_number_days_max_32f_or_lower
KE1 ke1_2 ke1_extreme_temp_number_days_max_32f_or_lower_quality_code
KE1 ke1_3 ke1_extreme_temp_number_days_max_90f_or_higher
KE1 ke1_4 ke1_extreme_temp_number_days_max_90f_or_higher_quality_code
KE1 ke1_5 ke1_extreme_temp_number_days_min_32f_or_lower
KE1 ke1_6 ke1_extreme_temp_number_days_min_32f_or_lower_quality_code
KE1 ke1_7 ke1_extreme_temp_number_days_min_0f_or_lower
KE1 ke1_8 ke1_extreme_temp_number_days_min_0f_or_lower_quality_code
KF1 kf1_1 kf1_hrly_calc_temp
KF1 kf1_2 kf1_hrly_calc_temp_quality_code
KG1 kg1_1 kg1_avg_dp_wb_temp_time_period
KG1 kg1_2 kg1_avg_dp_wb_temp_code
KG1 kg1_3 kg1_avg_dp_wb_temp
KG1 kg1_4 kg1_avg_dp_wb_temp_derived_code
KG1 kg1_5 kg1_avg_dp_wb_temp_quality_code
MA1 ma1_1 ma1_atmos_p_obs_altimeter_setting_rate
MA1 ma1_2 ma1_atmos_p_obs_altimeter_quality_code
MA1 ma1_3 ma1_atmos_p_obs_stn_pressure_rate
MA1 ma1_4 ma1_atmos_p_obs_stn_pressure_rate_quality_code
MD1 md1_1 md1_atmos_p_change_tendency_code
MD1 md1_2 md1_atmos_p_change_tendency_code_quality_code
MD1 md1_3 md1_atmos_p_change_3_hr_quantity
MD1 md1_4 md1_atmos_p_change_3_hr_quantity_quality_code
MD1 md1_5 md1_atmos_p_change_24_hr_quantity
MD1 md1_6 md1_atmos_p_change_24_hr_quantity_quality_code
ME1 me1_1 me1_geopotential_hgt_isobaric_lvl_code
ME1 me1_2 me1_geopotential_hgt_isobaric_lvl_height
ME1 me1_3 me1_geopotential_hgt_isobaric_lvl_height_quality_code
MF1 mf1_1 mf1_atmos_p_obs_stp_avg_stn_pressure_day
MF1 mf1_2 mf1_atmos_p_obs_stp_avg_stn_pressure_day_quality_code
MF1 mf1_3 mf1_atmos_p_obs_stp_avg_sea_lvl_pressure_day
MF1 mf1_4 mf1_atmos_p_obs_stp_avg_sea_lvl_pressure_day_quality_code
MG1 mg1_1 mg1_atmos_p_obs_avg_stn_pressure_day
MG1 mg1_2 mg1_atmos_p_obs_avg_stn_pressure_day_quality_code
MG1 mg1_3 mg1_atmos_p_obs_avg_sea_lvl_pressure_day
MG1 mg1_4 mg1_atmos_p_obs_avg_sea_lvl_pressure_day_quality_code
MH1 mh1_1 mh1_atmos_p_obs_avg_stn_pressure_month
MH1 mh1_2 mh1_atmos_p_obs_avg_stn_pressure_month_quality_code
MH1 mh1_3 mh1_atmos_p_obs_avg_sea_lvl_pressure_month
MH1 mh1_4 mh1_atmos_p_obs_avg_sea_lvl_pressure_month_quality_code
MK1 mk1_1 mk1_atmos_p_obs_max_sea_lvl_pressure_month
MK1 mk1_2 mk1_atmos_p_obs_max_sea_lvl_pressure_date_time
MK1 mk1_3 mk1_atmos_p_obs_max_sea_lvl_pressure_quality_code
MK1 mk1_4 mk1_atmos_p_obs_min_sea_lvl_pressure_month
MK1 mk1_5 mk1_atmos_p_obs_min_sea_lvl_pressure_date_time
MK1 mk1_6 mk1_atmos_p_obs_min_sea_lvl_pressure_quality_code
MV1 mv1_1 mv1_present_weather_obs_condition_code
MV1 mv1_2 mv1_present_weather_obs_condition_code_quality_code
MW1 mw1_1 mw1_present_weather_obs_manual_occurrence_condition_code
MW1 mw1_2 mw1_present_weather_obs_manual_occurrence_condition_code_quality_code
OA1 oa1_1 oa1_suppl_wind_obs_type
OA1 oa1_2 oa1_suppl_wind_obs_time_period
OA1 oa1_3 oa1_suppl_wind_obs_speed_rate
OA1 oa1_4 oa1_suppl_wind_obs_speed_rate_quality_code
OB1 ob1_1 ob1_hly_subhrly_wind_avg_time_period
OB1 ob1_2 ob1_hly_subhrly_wind_max_gust
OB1 ob1_3 ob1_hly_subhrly_wind_max_gust_quality_code
OB1 ob1_4 ob1_hly_subhrly_wind_max_gust_flag
OB1 ob1_5 ob1_hly_subhrly_wind_max_dir
OB1 ob1_6 ob1_hly_subhrly_wind_max_dir_quality_code
OB1 ob1_7 ob1_hly_subhrly_wind_max_dir_flag
OB1 ob1_8 ob1_hly_subhrly_wind_max_stdev
OB1 ob1_9 ob1_hly_subhrly_wind_max_stdev_quality_code
OB1 ob1_10 ob1_hly_subhrly_wind_max_stdev_flag
OB1 ob1_11 ob1_hly_subhrly_wind_max_dir_stdev
OB1 ob1_12 ob1_hly_subhrly_wind_max_dir_stdev_quality_code
OB1 ob1_13 ob1_hly_subhrly_wind_max_dir_stdev_flag
OC1 oc1_1 oc1_wind_gust_obs_speed_rate
OC1 oc1_2 oc1_wind_gust_obs_speed_rate_quality_code
OE1 oe1_1 oe1_summary_of_day_wind_obs_type
OE1 oe1_2 oe1_summary_of_day_wind_obs_time_period
OE1 oe1_3 oe1_summary_of_day_wind_obs_speed_rate
OE1 oe1_4 oe1_summary_of_day_wind_obs_dir
OE1 oe1_5 oe1_summary_of_day_wind_obs_time_occurrence
OE1 oe1_6 oe1_summary_of_day_wind_obs_quality_code
RH1 rh1_1 rh1_relative_humidity_time_period
RH1 rh1_2 rh1_relative_humidity_code
RH1 rh1_3 rh1_relative_humidity_percentage
RH1 rh1_4 rh1_relative_humidity_derived_code
RH1 rh1_5 rh1_relative_humidity_quality_code
SA1 sa1_1 sa1_sea_surf_temp
SA1 sa1_2 sa1_sea_surf_temp_quality_code
ST1 st1_1 st1_soil_temp_type
ST1 st1_2 st1_soil_temp_soil_temp
ST1 st1_3 st1_soil_temp_soil_temp_quality_code
ST1 st1_4 st1_soil_temp_depth
ST1 st1_5 st1_soil_temp_depth_quality_code
ST1 st1_6 st1_soil_temp_soil_cover
ST1 st1_7 st1_soil_temp_soil_cover_quality_code
ST1 st1_8 st1_soil_temp_sub_plot
ST1 st1_9 st1_soil_temp_sub_plot_quality_code
UA1 ua1_1 ua1_wave_meas_method_code
UA1 ua1_2 ua1_wave_meas_wave_period_quantity
UA1 ua1_3 ua1_wave_meas_wave_height_dimension
UA1 ua1_4 ua1_wave_meas_quality_code
UA1 ua1_5 ua1_wave_meas_sea_state_code
UA1 ua1_6 ua1_wave_meas_sea_state_code_quality_code
UG1 ug1_1 ug1_wave_meas_primary_swell_time_period
UG1 ug1_2 ug1_wave_meas_primary_swell_height_dimension
UG1 ug1_3 ug1_wave_meas_primary_swell_dir_angle
UG1 ug1_4 ug1_wave_meas_primary_swell_quality_code
UG2 ug2_1 ug2_wave_meas_secondary_swell_time_period
UG2 ug2_2 ug2_wave_meas_secondary_swell_height_dimension
UG2 ug2_3 ug2_wave_meas_secondary_swell_dir_angle
UG2 ug2_4 ug2_wave_meas_secondary_swell_quality_code
WA1 wa1_1 wa1_platform_ice_accr_source_code
WA1 wa1_2 wa1_platform_ice_accr_thickness_dimension
WA1 wa1_3 wa1_platform_ice_accr_tendency_code
WA1 wa1_4 wa1_platform_ice_accr_quality_code
WD1 wd1_1 wd1_water_surf_ice_obs_edge_bearing_code
WD1 wd1_2 wd1_water_surf_ice_obs_uniform_conc_rate
WD1 wd1_3 wd1_water_surf_ice_obs_non_uniform_conc_rate
WD1 wd1_4 wd1_water_surf_ice_obs_ship_rel_pos_code
WD1 wd1_5 wd1_water_surf_ice_obs_ship_penetrability_code
WD1 wd1_6 wd1_water_surf_ice_obs_ice_trend_code
WD1 wd1_7 wd1_water_surf_ice_obs_development_code
WD1 wd1_8 wd1_water_surf_ice_obs_growler_bergy_bit_pres_code
WD1 wd1_10 wd1_water_surf_ice_obs_growler_bergy_bit_quantity
WD1 wd1_11 wd1_water_surf_ice_obs_iceberg_quantity
WD1 wd1_12 wd1_water_surf_ice_obs_quality_code
WG1 wg1_1 wg1_water_surf_ice_hist_obs_edge_distance
WG1 wg1_2 wg1_water_surf_ice_hist_obs_edge_orient_code
WG1 wg1_3 wg1_water_surf_ice_hist_obs_form_type_code
WG1 wg1_4 wg1_water_surf_ice_hist_obs_nav_effect_code
WG1 wg1_5 wg1_water_surf_ice_hist_obs_quality_code

More information about these variables can be found in this PDF document.

To find out which categories are available for a station, set the add_data_report argument of the get_isd_station_data() function to TRUE. This will provide a tibble with the available additional categories with their counts in the dataset.

library(stationaRy)
library(dplyr)

# Get information on which additional met data
# is available at the Bergen Point station
bergen_pt_add_data <-
  get_isd_stations() %>%
  filter(name == "BERGEN POINT") %>%
  get_station_ids %>%
  get_isd_station_data(
    startyear = 2015,
    endyear = 2015,
    add_data_report = TRUE)

# Preview the dataset
bergen_pt_add_data
#>   category total_count
#> 1      MD1       13170
#> 2      SA1       14479

The MD1 category deals with atmospheric pressure change and the SA1 category provides sea surface temperature. For SA1, the sa1_1 and sa1_2 variables represent the sea surface temperature and it's quality code (where 1 is the ideal quality code value). Using functions from dplyr (select(), filter(), group_by(), and summarize()) one can create a table of the mean ambient and sea-surface temperatures by month from the met data table. The additional data is included in the met data table by using the select_additional_data argument and specifying the SA1 category (multiple categories can be included).

library(stationaRy)
library(dplyr)

# Get the average ambient temperature and the
# average sea-surface temperatures (sst) from
# the Bergen Point station for every month
# during 2015
bergen_point_temps <- 
  get_isd_stations() %>%
  filter(name == "BERGEN POINT") %>%
  get_station_ids %>%
  get_isd_station_data(
    startyear = 2015,
    endyear = 2015,
    select_additional_data = "SA1") %>%
  select(month, temp, sa1_1, sa1_2) %>%
  filter(sa1_2 == 1) %>%
  group_by(month) %>%
  summarize(avg_temp = mean(temp, na.rm = TRUE),
            avg_sst = mean(sa1_1, na.rm = TRUE))

# Preview the dataset
bergen_point_temps
#> # A tibble: 12 × 3
#>    month    avg_temp   avg_sst
#>    <dbl>       <dbl>     <dbl>
#> 1      1 -0.05040928  4.192490
#> 2      2 -0.33406940  2.091724
#> 3      3  5.64884726  4.855947
#> 4      4 11.48056976  9.221271
#> 5      5 17.74683453 14.573022
#> 6      6 21.57782041 19.815111
#> 7      7 25.48305209 23.666417
#> 8      8 25.68534610 25.087288
#> 9      9 22.35404858 23.689652
#> 10    10 13.83142077 17.038115
#> 11    11 10.65389507 13.158805
#> 12    12 10.03515850 10.445389

Here's an example where rainfall amounts (over 6 hour periods) are summed by month for the year of 2015. The aa1_1 column is the duration in hours when the liquid precipitation was observed, and, the aa1_2 column is quantity of rain. With group_by() and summarize(), we can get the monthly total precipitation amounts in mm units.

library(stationaRy)
library(dplyr)

# Get the total monthly rainfall amounts
# by month for the Abbotsford station
# during 2015
monthly_rainfall <- 
  get_isd_stations() %>%
  filter(name == "ABBOTSFORD") %>%
  get_station_ids %>%
  get_isd_station_data(
    startyear = 2015,
    endyear = 2015,
    select_additional_data = "AA1") %>%
  filter(aa1_1 == 6, aa1_2 < 800) %>% 
  select(month, aa1_2) %>%
  group_by(month) %>%
  summarize(mm_per_month = sum(aa1_2))

# Preview the dataset
monthly_rainfall
#> # A tibble: 12 × 2
#>    month mm_per_month
#>    <dbl>        <dbl>
#> 1      1        317.8
#> 2      2        239.1
#> 3      3        304.5
#> 4      4         98.6
#> 5      5         41.9
#> 6      6         35.2
#> 7      7         56.9
#> 8      8         52.3
#> 9      9        115.4
#> 10    10         88.9
#> 11    11        175.7
#> 12    12        194.0

Installation

To install the development R package, use the following:

devtools::install_github("rich-iannone/stationaRy")

The package is also available in CRAN:

install.packages("stationaRy")