-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathmodelnet_h5_dataset.py
128 lines (108 loc) · 4.47 KB
/
modelnet_h5_dataset.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
'''
ModelNet dataset. Support ModelNet40, XYZ channels. Up to 2048 points.
Faster IO than ModelNetDataset in the first epoch.
'''
import os
import sys
import numpy as np
import h5py
BASE_DIR = os.path.dirname(os.path.abspath(__file__))
sys.path.append(BASE_DIR)
ROOT_DIR = BASE_DIR
sys.path.append(os.path.join(ROOT_DIR, 'utils'))
import provider
# Download dataset for point cloud classification
DATA_DIR = os.path.join(ROOT_DIR, 'data')
if not os.path.exists(DATA_DIR):
os.mkdir(DATA_DIR)
if not os.path.exists(os.path.join(DATA_DIR, 'modelnet40_ply_hdf5_2048')):
www = 'https://shapenet.cs.stanford.edu/media/modelnet40_ply_hdf5_2048.zip'
zipfile = os.path.basename(www)
os.system('wget %s; unzip %s' % (www, zipfile))
os.system('mv %s %s' % (zipfile[:-4], DATA_DIR))
os.system('rm %s' % (zipfile))
def shuffle_data(data, labels):
""" Shuffle data and labels.
Input:
data: B,N,... numpy array
label: B,... numpy array
Return:
shuffled data, label and shuffle indices
"""
idx = np.arange(len(labels))
np.random.shuffle(idx)
return data[idx, ...], labels[idx], idx
def getDataFiles(list_filename):
return [line.rstrip() for line in open(list_filename)]
def load_h5(h5_filename):
f = h5py.File(h5_filename, 'r')
data = f['data'][:]
label = f['label'][:]
return (data, label)
def loadDataFile(filename):
return load_h5(filename)
class ModelNetH5Dataset(object):
def __init__(self, list_filename, batch_size = 32, npoints = 1024, shuffle=True, rotate=False):
self.list_filename = list_filename
self.batch_size = batch_size
self.npoints = npoints
self.shuffle = shuffle
self.h5_files = getDataFiles(self.list_filename)
self.rotate = rotate
self.reset()
def reset(self):
''' reset order of h5 files '''
self.file_idxs = np.arange(0, len(self.h5_files))
if self.shuffle: np.random.shuffle(self.file_idxs)
self.current_data = None
self.current_label = None
self.current_file_idx = 0
self.batch_idx = 0
def _augment_batch_data(self, batch_data):
if self.rotate:
batch_data = provider.rotate_point_cloud(batch_data)
rotated_data = provider.rotate_perturbation_point_cloud(batch_data)
jittered_data = provider.random_scale_point_cloud(rotated_data[:,:,0:3])
jittered_data = provider.shift_point_cloud(jittered_data)
jittered_data = provider.jitter_point_cloud(jittered_data)
rotated_data[:,:,0:3] = jittered_data
return provider.shuffle_points(rotated_data)
def _get_data_filename(self):
return self.h5_files[self.file_idxs[self.current_file_idx]]
def _load_data_file(self, filename):
self.current_data,self.current_label = load_h5(filename)
self.current_label = np.squeeze(self.current_label)
self.batch_idx = 0
if self.shuffle:
self.current_data, self.current_label, _ = shuffle_data(self.current_data,self.current_label)
def _has_next_batch_in_file(self):
return self.batch_idx*self.batch_size < self.current_data.shape[0]
def num_channel(self):
return 3
def has_next_batch(self):
# TODO: add backend thread to load data
if (self.current_data is None) or (not self._has_next_batch_in_file()):
if self.current_file_idx >= len(self.h5_files):
return False
self._load_data_file(self._get_data_filename())
self.batch_idx = 0
self.current_file_idx += 1
return self._has_next_batch_in_file()
def next_batch(self, augment=False):
''' returned dimension may be smaller than self.batch_size '''
start_idx = self.batch_idx * self.batch_size
end_idx = min((self.batch_idx+1) * self.batch_size, self.current_data.shape[0])
bsize = end_idx - start_idx
batch_label = np.zeros((bsize), dtype=np.int32)
data_batch = self.current_data[start_idx:end_idx, 0:self.npoints, :].copy()
label_batch = self.current_label[start_idx:end_idx].copy()
self.batch_idx += 1
if augment: data_batch = self._augment_batch_data(data_batch)
return data_batch, label_batch
if __name__=='__main__':
d = ModelNetH5Dataset('data/modelnet40_ply_hdf5_2048/train_files.txt')
print(d.shuffle)
print(d.has_next_batch())
ps_batch, cls_batch = d.next_batch(True)
print(ps_batch.shape)
print(cls_batch.shape)