-
Notifications
You must be signed in to change notification settings - Fork 10
/
Copy pathpygeonet_nonlinear_filter.py
159 lines (145 loc) · 6.27 KB
/
pygeonet_nonlinear_filter.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
from __future__ import division
import numpy as np
import scipy.signal as conv2
from time import perf_counter
from scipy.stats.mstats import mquantiles
from pygeonet_rasterio import *
from pygeonet_plot import *
# Gaussian Filter
def simple_gaussian_smoothing(inputDemArray, kernelWidth,
diffusionSigmaSquared):
"""
smoothing input array with gaussian filter
Code is vectorized for efficiency Harish Sangireddy
"""
[Ny, Nx] = inputDemArray.shape
halfKernelWidth = int((kernelWidth-1)/2)
# Make a ramp array with 5 rows each containing [-2, -1, 0, 1, 2]
x = np.linspace(-halfKernelWidth, halfKernelWidth, kernelWidth)
y = x
xv, yv = np.meshgrid(x, y)
gaussianFilter = np.exp(-(
xv**2+yv**2)/(2*diffusionSigmaSquared)) # 2D Gaussian
gaussianFilter = gaussianFilter/np.sum(gaussianFilter[:]) # Normalize
print(inputDemArray[0, 0:halfKernelWidth])
xL = np.nanmean(inputDemArray[:, 0:halfKernelWidth], axis=1)
print(f'xL: {xL}')
xR = np.nanmean(inputDemArray[:, Nx-halfKernelWidth:Nx], axis=1)
print(f'xR: {xR}')
part1T = np.vstack((xL, xL))
part1 = part1T.T
part2T = np.vstack((xR, xR))
part2 = part2T.T
eI = np.hstack((part1, inputDemArray, part2))
xU = np.nanmean(eI[0:halfKernelWidth, :], axis=0)
xD = np.nanmean(eI[Ny-halfKernelWidth:Ny, :], axis=0)
part3 = np.vstack((xU, xU))
part4 = np.vstack((xD, xD))
# Generate the expanded DTM array, 4 pixels wider in both x,y directions
eI = np.vstack((part3, eI, part4))
# The 'valid' option forces the 2d convolution to clip 2 pixels off
# the edges NaNs spread from one pixel to a 5x5 set centered on
# the NaN
fillvalue = np.nanmean(inputDemArray[:])
smoothedDemArray = conv2.convolve2d(eI, gaussianFilter, 'valid')
del inputDemArray, eI
return smoothedDemArray
def anisodiff(img, niter, kappa, gamma, step=(1., 1.), option=2):
# initialize output array
img = img.astype('float32')
imgout = img.copy()
# initialize some internal variables
deltaS = np.zeros_like(imgout)
deltaE = deltaS.copy()
NS = deltaS.copy()
EW = deltaS.copy()
gS = np.ones_like(imgout)
gE = gS.copy()
step1 = step[0]
step2 = step[1]
for ii in range(niter):
# calculate the diffs
deltaS[:-1, :] = np.diff(imgout, axis=0)
deltaE[:, :-1] = np.diff(imgout, axis=1)
if option == 2:
#gS = gs_diff(deltaS,kappa,step1)
#gE = ge_diff(deltaE,kappa,step2)
gS = 1./(1.+(deltaS/kappa)**2.)/step[0]
gE = 1./(1.+(deltaE/kappa)**2.)/step[1]
elif option == 1:
gS = np.exp(-(deltaS/kappa)**2.)/step[0]
gE = np.exp(-(deltaE/kappa)**2.)/step[1]
# update matrices
E = gE*deltaE
S = gS*deltaS
# subtract a copy that has been shifted 'North/West' by one
# pixel. don't ask questions. just do it. trust me.
NS[:] = S
EW[:] = E
NS[1:, :] -= S[:-1, :]
EW[:, 1:] -= E[:, :-1]
# update the image
mNS = np.isnan(NS)
mEW = np.isnan(EW)
NS[mNS] = 0
EW[mEW] = 0
NS += EW
mNS &= mEW
NS[mNS] = np.nan
imgout += gamma*NS
return imgout
def lambda_nonlinear_filter(nanDemArray):
print ('Computing slope of raw DTM')
slopeXArray, slopeYArray = np.gradient(nanDemArray,
Parameters.demPixelScale)
print(Parameters.demPixelScale)
slopeMagnitudeDemArray = np.sqrt(slopeXArray**2 + slopeYArray**2)
print(('DEM slope array shape:'), slopeMagnitudeDemArray.shape)
# plot the slope DEM array
#if defaults.doPlot == 1:
# raster_plot(slopeMagnitudeDemArray, 'Slope of unfiltered DEM')
# Computation of the threshold lambda used in Perona-Malik nonlinear
# filtering. The value of lambda (=edgeThresholdValue) is given by the 90th
# quantile of the absolute value of the gradient.
print ('Computing lambda = q-q-based nonlinear filtering threshold')
slopeMagnitudeDemArray = slopeMagnitudeDemArray.flatten()
slopeMagnitudeDemArray = slopeMagnitudeDemArray[~np.isnan(
slopeMagnitudeDemArray)]
print(('dem smoothing Quantile', defaults.demSmoothingQuantile))
edgeThresholdValue = (mquantiles(
np.absolute(slopeMagnitudeDemArray),
defaults.demSmoothingQuantile)).item()
print(('edgeThresholdValue:', edgeThresholdValue))
return edgeThresholdValue
def main():
nanDemArray = read_dem_from_geotiff(Parameters.demFileName,
Parameters.demDataFilePath)
nanDemArray[nanDemArray < defaults.demNanFlag] = np.nan
if defaults.diffusionMethod == 'PeronaMalik2':
edgeThresholdValue = lambda_nonlinear_filter(nanDemArray)
filteredDemArray = anisodiff(nanDemArray, defaults.nFilterIterations,
edgeThresholdValue,
defaults.diffusionTimeIncrement,
(Parameters.demPixelScale,
Parameters.demPixelScale), 2)
elif defaults.diffusionMethod == 'PeronaMalik1':
edgeThresholdValue = lambda_nonlinear_filter(nanDemArray)
filteredDemArray = anisodiff(nanDemArray, defaults.nFilterIterations,
edgeThresholdValue,
defaults.diffusionTimeIncrement,
(Parameters.demPixelScale,
Parameters.demPixelScale), 1)
else:
print((defaults.diffusionMethod+" filter is not available in the"))
"current version GeoNet"
# plot the filtered DEM
#if defaults.doPlot == 1:
# raster_plot(filteredDemArray, 'Filtered DEM')
# Writing the filtered DEM as a tif
write_geotif_filteredDEM(filteredDemArray, Parameters.demDataFilePath,
Parameters.demFileName)
if __name__ == '__main__':
t0 = perf_counter()
main()
t1 = perf_counter()
print(("time taken to complete nonlinear filtering:", t1-t0, " seconds"))