-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtrain_linux.py
457 lines (375 loc) · 15.8 KB
/
train_linux.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
import argparse
import random
import time
import ntpath
import os
import pdb
from collections import defaultdict
import warnings
warnings.simplefilter(action='ignore', category=FutureWarning)
from latency_predictor.utils import *
from latency_predictor.algs import *
from latency_predictor.linux_nn import LinuxNN
from latency_predictor.eval_fns import *
# from latency_predictor.featurizer import *
from latency_predictor.linux_featurizer import *
import wandb
import logging
import csv
import yaml
import multiprocessing as mp
logger = logging.getLogger("wandb")
logger.setLevel(logging.ERROR)
def split_workload(df, cfg):
split_kind = cfg.get("split_kind", "instance")
# inum = cfg.get("instance_num", 1)
inum = cfg["num_instances"]
if split_kind == "instances":
print("Random seed: ", cfg["seed"], " Num Instances: ", inum)
random.seed(cfg["seed"])
instances = list(set(df["lt_type"]))
instances.sort()
train_qinstances = random.sample(instances, inum)
test_qinstances = [q for q in instances if q not in
train_qinstances]
train_df = df[df["lt_type"].isin(train_qinstances)]
test_df = df[df["lt_type"].isin(test_qinstances)]
else:
random.seed(cfg["seed"])
qnames = list(set(df["qname"]))
# split into train / test data
test_qnames = random.sample(qnames, int(len(qnames)*args.test_size))
train_qnames = [q for q in qnames if q not in test_qnames]
train_df = df[df["qname"].isin(train_qnames)]
test_df = df[df["qname"].isin(test_qnames)]
return train_df,test_df
def parse_args_any(args):
pos = []
named = {}
key = None
for arg in args:
if key:
if arg.startswith('--'):
named[key] = True
key = arg[2:]
else:
named[key] = arg
key = None
elif arg.startswith('--'):
key = arg[2:]
else:
pos.append(arg)
if key:
named[key] = True
return (pos, named)
def get_alg(alg, cfg):
if alg == "avg":
return AvgPredictor()
elif alg == "nn":
return LinuxNN(
cfg = cfg,
arch = args.arch, hl1 = args.hl1,
subplan_ests = args.subplan_ests,
eval_fn_names = args.eval_fns,
num_conv_layers = args.num_conv_layers,
final_act = args.final_act,
use_wandb = args.use_wandb,
log_transform_y = args.log_transform_y,
# batch_size = args.batch_size,
global_feats = args.global_feats,
# tags = args.tags,
# seed = args.seed,
test_size = args.test_size,
# val_size = args.val_size,
eval_epoch = args.eval_epoch,
# logdir = args.logdir,
num_epochs = args.num_epochs,
lr = args.lr, weight_decay = args.weight_decay,
loss_fn_name = args.loss_fn_name)
else:
assert False
def eval_alg(alg, loss_funcs, df, sys_logs, samples_type):
'''
'''
np.set_printoptions(formatter={'float': lambda x: "{0:0.3f}".format(x)})
loss_start = time.time()
alg_name = alg.__str__()
exp_name = alg.get_exp_name()
start = time.time()
ests = alg.test(df, sys_logs)
# truey = [plan.graph["latency"] for plan in plans]
truey = df["runtime"].values
ests = np.array(ests)
eval_time = round(time.time() - start, 2)
print("evaluating alg {} took: {} seconds".format(alg_name, eval_time))
for loss_func in loss_funcs:
lossarr = loss_func.eval(ests, truey,
args=args, samples_type=samples_type,
)
worst_idx = np.argpartition(lossarr, -4)[-4:]
print("***Worst runtime preds for: {}***".format(str(loss_func)))
print("True: ", np.round(truey[worst_idx], 2))
print("Ests: ", np.round(ests[worst_idx], 2))
rdir = os.path.join(args.result_dir, exp_name)
make_dir(rdir)
resfn = os.path.join(rdir, loss_func.__str__() + ".csv")
loss_key = "Final-{}-{}-{}".format(str(loss_func),
samples_type,
"mean")
wandb.run.summary[loss_key] = np.mean(lossarr)
loss_median = "Final-{}-{}-{}".format(str(loss_func),
samples_type,
"median")
wandb.run.summary[loss_median] = np.median(lossarr)
loss_key2 = "Final-{}-{}-{}".format(str(loss_func),
samples_type,
"99p")
wandb.run.summary[loss_key2] = np.percentile(lossarr, 99)
print("tags: {}, samples_type: {}, alg: {}, samples: {}, {}: mean: {}, median: {}, 95p: {}, 99p: {}"\
.format(cfg["tags"],
samples_type, alg, len(lossarr),
loss_func.__str__(),
np.round(np.mean(lossarr),3),
np.round(np.median(lossarr),3),
np.round(np.percentile(lossarr,95),3),
np.round(np.percentile(lossarr,99),3)))
print("loss computations took: {} seconds".format(time.time()-loss_start))
def read_flags():
parser = argparse.ArgumentParser()
parser.add_argument("--config", type=str, required=False,
default="config.yaml", help="")
parser.add_argument("--factorized_net_embedding_size", "-es", type=int,
required=False,
default=None, help="")
parser.add_argument("--actual_feats", type=int, required=False,
default=0)
parser.add_argument("--table_feat", type=int, required=False,
default=0, help="1/0; add one-hot features for table in query.")
parser.add_argument("--col_feat", type=int, required=False,
default=0, help="1/0; add one-hot features for columns in query.")
parser.add_argument("--feat_subtree_summary", type=int, required=False,
default=0, help="")
parser.add_argument("--feat_undirected_edges", type=int, required=False,
default=0, help="gcn edges both ways / or directed")
parser.add_argument("--feat_noncumulative_costs", type=int, required=False,
default=0)
parser.add_argument("--subplan_ests", type=int, required=False,
default=0)
parser.add_argument("--y_normalizer", type=str, required=False,
default="none", help="none,std,min-max; normalization scheme for target values")
parser.add_argument("--normalizer", type=str, required=False,
default="std", help="none,std,min-max; normalization scheme for features.")
parser.add_argument("--feat_normalization_data", type=str, required=False,
default="all", help="train,all,wkey; what data to use for normalizing features")
parser.add_argument("--y_normalization_data", type=str, required=False,
default="train", help="train,all,wkey")
parser.add_argument("--final_act", type=str, required=False,
default="none", help="add a final activation in the models or not.")
parser.add_argument("--use_wandb", type=int, required=False,
default=1, help="")
parser.add_argument("--wandb_tags", type=str, required=False,
default=None, help="additional tags for wandb logs")
parser.add_argument("--log_transform_y", type=int, required=False,
default=0, help="predicting log(latency) instead of latency")
parser.add_argument("--result_dir", type=str, required=False,
default="results",
help="")
parser.add_argument("--seed", type=int, required=False,
default=None, help="seed for train/test split")
parser.add_argument("--num_instances", type=int, required=False,
default=None, help="seed for train/test split")
parser.add_argument("--test_size", type=float, required=False,
default=0.0)
## NN parameters
parser.add_argument("--lr", type=float, required=False,
default=0.00005)
parser.add_argument("--weight_decay", type=float, required=False,
default=0.0)
parser.add_argument("--hl1", type=int, required=False,
default=512)
parser.add_argument("--num_conv_layers", type=int, required=False,
default=4)
parser.add_argument("--eval_epoch", type=int, required=False,
default=2)
parser.add_argument("--num_epochs", type=int, required=False,
default=500)
parser.add_argument("--alg", type=str, required=False,
default="nn")
parser.add_argument("--eval_fns", type=str, required=False,
default="latency_qerr,latency_mse",
help="final evaluation functions used to evaluate training alg")
parser.add_argument("--loss_fn_name", type=str, required=False,
default="mse")
parser.add_argument("--arch", type=str, required=False,
default="factorized", help="tcnn/gcn; architecture of trained neural net.")
parser.add_argument("--global_feats", type=int, required=False,
default=0)
parser.add_argument("--skip_timeouts", type=int, required=False,
default=1)
return parser.parse_args()
def load_dfs_linux(dirs, tags):
tags = tags.split(",")
dirs = dirs.split(",")
all_dfs = []
sys_logs = {}
for curdir in dirs:
for tag in tags:
cdf,clogs = load_all_logs_linux(tag, curdir,
skip_timeouts=args.skip_timeouts)
if len(clogs) == 0:
continue
# TODO: do this in load_all_logs
# maxlogtime = max(clogs["timestamp"])
# try:
# cdf = cdf[cdf["start_time"] <= maxlogtime]
# except Exception as e:
# print(tag, e)
# continue
assert tag not in sys_logs
sys_logs[tag] = clogs
cdf["tag"] = tag
all_dfs.append(cdf)
if len(all_dfs) == 0:
return [],[]
return pd.concat(all_dfs), sys_logs
def main():
global args,cfg
with open(args.config) as f:
cfg = yaml.safe_load(f.read())
wandbcfg = {}
cargs = vars(args)
for k,v in cfg.items():
if isinstance(v, dict):
for k2,v2 in v.items():
newkey = k+"_"+k2
if newkey in cargs and cargs[newkey] is not None:
v[k2] = cargs[newkey]
v2 = cargs[newkey]
wandbcfg.update({newkey:v2})
else:
if k in cargs and cargs[k] is not None:
cfg[k] = cargs[k]
v = cargs[k]
wandbcfg.update({k:v})
wandb_tags = ["2a"]
if args.wandb_tags is not None:
wandb_tags += args.wandb_tags.split(",")
wandbcfg.update(vars(args))
if args.use_wandb:
wandb.init("learned-latency", config=wandbcfg,
tags=wandb_tags)
print(yaml.dump(cfg, default_flow_style=False))
print("Using tags: ", cfg["tags"].split(","))
df,sys_logs = load_dfs_linux(cfg["traindata_dir"], cfg["tags"])
tmp = df[df["status"] != 0]
tmp = tmp[tmp["status"] != 124]
df = df[df["status"].isin([0, 124])]
print(df.groupby("status")["status"].count())
df = df[df["runtime"] > 1.0]
pgs = df[df["qname"].str.contains("pgrestore")]
df = df[~df["qname"].str.contains("pgrestore")]
## avoid crashed runs
pgs = pgs[pgs["runtime"] > 150]
df = pd.concat([df, pgs])
#df["runtime"] = df.apply(lambda x: min(x["runtime"], 909.0) , axis=1)
print("Skipped {} failed jobs".format(len(set(tmp["jobhash"]))))
jobs = set(df["jobhash"])
flatdata = defaultdict(list)
for jh in jobs:
tmp = df[df["jobhash"] == jh]
added = False
added_stats = set()
for idx,row in tmp.iterrows():
# if str(row["stat_name"]) == "nan":
if pd.isnull(row["stat_name"]):
for k in flatdata:
if k in row.keys():
flatdata[k].append(row[k])
else:
flatdata[k].append(None)
break
if row["stat_name"] == "LLC-load-misses":
continue
if row["stat_name"] not in added_stats:
flatdata[row["stat_name"]].append(row["value"])
flatdata[row["stat_name"]+"#"].append(row["value2"])
added_stats.add(row["stat_name"])
if not added:
for k in row.keys():
if k not in ["value", "value2", "stat_name", "unit",
"util?", "unit2"]:
flatdata[k].append(row[k])
added = True
df = pd.DataFrame(flatdata)
train_df, test_df = split_workload(df, cfg)
print("Train instance types: ", set(train_df["lt_type"]))
print("Test instance types: ", set(test_df["lt_type"]))
train_qnames = set(train_df["qname"])
test_qnames = set(test_df["qname"])
if cfg["use_eval_tags"]:
assert False
## new envs
# df,sys_logs2 = load_dfs(cfg["eval_dirs"], cfg["eval_tags"])
# sys_logs.update(sys_logs2)
# seendf = df[df["qname"].isin(train_qnames)]
# unseendf = df[~df["qname"].isin(train_qnames)]
# new_env_seen_plans = get_plans(seendf)
# new_env_unseen_plans = get_plans(unseendf)
else:
new_env_seen_plans = []
new_env_unseen_plans = []
print("Training cmds: {}, Training execs: {},\
Test cmds: {}, Test execs: {}".format(
len(train_qnames), len(train_df), len(test_qnames),
len(test_df)))
# if args.feat_normalization_data == "train"
# feat_plans = train_plans
# elif args.feat_normalization_data == "all":
# feat_plans = train_plans + test_plans + new_env_seen_plans + new_env_unseen_plans
featurizer = LinuxFeaturizer(train_df,
sys_logs,
cfg,
actual_feats = args.actual_feats,
feat_undirected_edges = args.feat_undirected_edges,
feat_noncumulative_costs = args.feat_noncumulative_costs,
log_transform_y = args.log_transform_y,
global_feats=args.global_feats,
y_normalization_data=args.y_normalization_data,
feat_subtree_summary = args.feat_subtree_summary,
normalizer = args.normalizer,
y_normalizer = args.y_normalizer,
table_feat=args.table_feat,
col_feat = args.col_feat)
alg = get_alg(args.alg, cfg)
exp_name = alg.get_exp_name()
rdir = os.path.join(args.result_dir, exp_name)
make_dir(rdir)
args_fn = os.path.join(rdir, "args.csv")
args_dict = vars(args)
with open(args_fn, 'w') as f:
w = csv.DictWriter(f, args_dict.keys())
w.writeheader()
w.writerow(args_dict)
eval_fns = []
eval_fn_names = args.eval_fns.split(",")
for l in eval_fn_names:
eval_fns.append(get_eval_fn(l))
alg.train(train_df,
sys_logs,
featurizer,
test = test_df,
new_env_seen= [],
new_env_unseen = [],
)
eval_alg(alg, eval_fns, train_df, sys_logs, "train")
if len(test_df) > 0:
eval_alg(alg, eval_fns, test_df, sys_logs, "test")
# if len(new_env_seen_plans) > 0:
# eval_alg(alg, eval_fns, new_env_seen_plans, sys_logs, "new_env_seen")
# if len(new_env_unseen_plans) > 0:
# eval_alg(alg, eval_fns, new_env_unseen_plans, sys_logs, "new_env_unseen")
if __name__ == "__main__":
# mp.set_start_method('spawn')
cfg = {}
args = read_flags()
main()