This instruction provides a starting point for TensorFlow ROCm port (mostly via deb packages). Note: it is recommended to start with a clean Ubuntu 18.04 system
export ROCM_PATH=/opt/rocm
export DEBIAN_FRONTEND noninteractive
sudo apt update && sudo apt install -y wget software-properties-common
Add the ROCm repository:
wget -qO - http://repo.radeon.com/rocm/apt/debian/rocm.gpg.key | sudo apt-key add -
sudo sh -c 'echo deb [arch=amd64] http://repo.radeon.com/rocm/apt/debian/ xenial main > /etc/apt/sources.list.d/rocm.list'
Tensorflow CSB nigtly build requires ROCm2.8, use the follwoing ROCm repository instead:
wget -qO - http://repo.radeon.com/rocm/apt/debian/rocm.gpg.key | sudo apt-key add -
sudo sh -c 'echo deb [arch=amd64] http://repo.radeon.com/rocm/apt/2.8.0/ xenial main > /etc/apt/sources.list.d/rocm.list'
Install misc pkgs:
sudo apt-get update && sudo apt-get install -y \
build-essential \
clang \
clang-format \
clang-tidy \
cmake \
cmake-qt-gui \
ssh \
curl \
apt-utils \
pkg-config \
g++-multilib \
git \
libunwind-dev \
libfftw3-dev \
libelf-dev \
libncurses5-dev \
libpthread-stubs0-dev \
vim \
gfortran \
libboost-program-options-dev \
libssl-dev \
libboost-dev \
libboost-system-dev \
libboost-filesystem-dev \
rpm \
wget && \
sudo apt-get clean && \
sudo rm -rf /var/lib/apt/lists/*
Install ROCm pkgs:
sudo apt-get update && \
sudo apt-get install -y --allow-unauthenticated \
rocm-dkms rocm-dev rocm-libs hipcub rccl \
rocm-device-libs \
hsa-ext-rocr-dev hsakmt-roct-dev hsa-rocr-dev \
rocm-opencl rocm-opencl-dev \
rocm-utils \
miopen-hip miopengemm
Add username to 'video' group and reboot:
sudo adduser $LOGNAME video
sudo reboot
On Python 2-based systems:
sudo apt-get update && sudo apt-get install -y \
python-numpy \
python-dev \
python-wheel \
python-mock \
python-future \
python-pip \
python-yaml \
python-setuptools && \
sudo apt-get clean && \
sudo rm -rf /var/lib/apt/lists/*
On Python 3-based systems:
sudo apt-get update && sudo apt-get install -y \
python3-numpy \
python3-dev \
python3-wheel \
python3-mock \
python3-future \
python3-pip \
python3-yaml \
python3-setuptools && \
sudo apt-get clean && \
sudo rm -rf /var/lib/apt/lists/*
Link to the upstream Tensorflow CSB doc: https://github.com/tensorflow/tensorflow#community-supported-builds
We provide nightly tensorflow-rocm whl packages for Python 2.7, 3.5, 3.6 and 3.7 based systems. After downloading the compatible whl package, you can use pip/pip3 to install.
For example, the following commands can be used to download and install the tensorflow-rocm nightly CSB package on an Ubuntu 16.04 system previously configured with ROCm2.8 and Python3.5:
wget http://ml-ci.amd.com:21096/job/tensorflow-rocm-nightly/lastSuccessfulBuild/artifact/pip35_test/whl/tensorflow_rocm-2.0.0-cp35-cp35m-manylinux1_x86_64.whl
pip3 install --user tensorflow_rocm-2.0.0-cp35-cp35m-manylinux1_x86_64.whl
Uninstall any previously-installed tensorflow whl packages:
pip list | grep tensorflow && pip uninstall -y tensorflow
We maintain tensorflow-rocm
whl packages on PyPI here.
For Python 2-based systems:
# Pip install the whl package from PyPI
pip install --user tensorflow-rocm --upgrade
For Python 3-based systems:
# Pip3 install the whl package from PyPI
pip3 install --user tensorflow-rocm --upgrade