-
Notifications
You must be signed in to change notification settings - Fork 32
/
deep_heatmaps_model_fusion_net.py
executable file
·872 lines (697 loc) · 47.8 KB
/
deep_heatmaps_model_fusion_net.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
import scipy.io
import scipy.misc
from glob import glob
import os
import numpy as np
from ops import *
import tensorflow as tf
from tensorflow import contrib
from menpo_functions import *
from logging_functions import *
from data_loading_functions import *
class DeepHeatmapsModel(object):
"""facial landmark localization Network"""
def __init__(self, mode='TRAIN', train_iter=100000, batch_size=10, learning_rate=1e-3, l_weight_primary=1.,
l_weight_fusion=1.,l_weight_upsample=3.,adam_optimizer=True,momentum=0.95,step=100000, gamma=0.1,reg=0,
weight_initializer='xavier', weight_initializer_std=0.01, bias_initializer=0.0, image_size=256,c_dim=3,
num_landmarks=68, sigma=1.5, scale=1, margin=0.25, bb_type='gt', win_mult=3.33335,
augment_basic=True,augment_texture=False, p_texture=0., augment_geom=False, p_geom=0.,
output_dir='output', save_model_path='model',
save_sample_path='sample', save_log_path='logs', test_model_path='model/deep_heatmaps-50000',
pre_train_path='model/deep_heatmaps-50000', load_pretrain=False, load_primary_only=False,
img_path='data', test_data='full', valid_data='full', valid_size=0, log_valid_every=5,
train_crop_dir='crop_gt_margin_0.25', img_dir_ns='crop_gt_margin_0.25_ns',
print_every=100, save_every=5000, sample_every=5000, sample_grid=9, sample_to_log=True,
debug_data_size=20, debug=False, epoch_data_dir='epoch_data', use_epoch_data=False, menpo_verbose=True):
# define some extra parameters
self.log_histograms = False # save weight + gradient histogram to log
self.save_valid_images = True # sample heat maps of validation images
self.sample_per_channel = False # sample heatmaps separately for each landmark
# for fine-tuning, choose reset_training_op==True. when resuming training, reset_training_op==False
self.reset_training_op = False
self.fast_img_gen = True
self.compute_nme = True # compute normalized mean error
self.config = tf.ConfigProto()
self.config.gpu_options.allow_growth = True
# sampling and logging parameters
self.print_every = print_every # print losses to screen + log
self.save_every = save_every # save model
self.sample_every = sample_every # save images of gen heat maps compared to GT
self.sample_grid = sample_grid # number of training images in sample
self.sample_to_log = sample_to_log # sample images to log instead of disk
self.log_valid_every = log_valid_every # log validation loss (in epochs)
self.debug = debug
self.debug_data_size = debug_data_size
self.use_epoch_data = use_epoch_data
self.epoch_data_dir = epoch_data_dir
self.load_pretrain = load_pretrain
self.load_primary_only = load_primary_only
self.pre_train_path = pre_train_path
self.mode = mode
self.train_iter = train_iter
self.learning_rate = learning_rate
self.image_size = image_size
self.c_dim = c_dim
self.batch_size = batch_size
self.num_landmarks = num_landmarks
self.save_log_path = save_log_path
self.save_sample_path = save_sample_path
self.save_model_path = save_model_path
self.test_model_path = test_model_path
self.img_path=img_path
self.momentum = momentum
self.step = step # for lr decay
self.gamma = gamma # for lr decay
self.reg = reg # weight decay scale
self.l_weight_primary = l_weight_primary # primary loss weight
self.l_weight_fusion = l_weight_fusion # fusion loss weight
self.l_weight_upsample = l_weight_upsample # upsample loss weight
self.weight_initializer = weight_initializer # random_normal or xavier
self.weight_initializer_std = weight_initializer_std
self.bias_initializer = bias_initializer
self.adam_optimizer = adam_optimizer
self.sigma = sigma # sigma for heatmap generation
self.scale = scale # scale for image normalization 255 / 1 / 0
self.win_mult = win_mult # gaussian filter size for cpu/gpu approximation: 2 * sigma * win_mult + 1
self.test_data = test_data # if mode is TEST, this choose the set to use full/common/challenging/test/art
self.train_crop_dir = train_crop_dir
self.img_dir_ns = os.path.join(img_path,img_dir_ns)
self.augment_basic = augment_basic # perform basic augmentation (rotation,flip,crop)
self.augment_texture = augment_texture # perform artistic texture augmentation (NS)
self.p_texture = p_texture # initial probability of artistic texture augmentation
self.augment_geom = augment_geom # perform artistic geometric augmentation
self.p_geom = p_geom # initial probability of artistic geometric augmentation
self.valid_size = valid_size
self.valid_data = valid_data
# load image, bb and landmark data using menpo
self.bb_dir = os.path.join(img_path, 'Bounding_Boxes')
self.bb_dictionary = load_bb_dictionary(self.bb_dir, mode, test_data=self.test_data)
# use pre-augmented data, to save time during training
if self.use_epoch_data:
epoch_0 = os.path.join(self.epoch_data_dir, '0')
self.img_menpo_list = load_menpo_image_list(
img_path, train_crop_dir=epoch_0, img_dir_ns=None, mode=mode, bb_dictionary=self.bb_dictionary,
image_size=self.image_size, test_data=self.test_data, augment_basic=False, augment_texture=False,
augment_geom=False, verbose=menpo_verbose)
else:
self.img_menpo_list = load_menpo_image_list(
img_path, train_crop_dir, self.img_dir_ns, mode, bb_dictionary=self.bb_dictionary,
image_size=self.image_size, margin=margin, bb_type=bb_type, test_data=self.test_data,
augment_basic=augment_basic, augment_texture=augment_texture, p_texture=p_texture,
augment_geom=augment_geom, p_geom=p_geom, verbose=menpo_verbose)
if mode == 'TRAIN':
train_params = locals()
print_training_params_to_file(train_params) # save init parameters
self.train_inds = np.arange(len(self.img_menpo_list))
if self.debug:
self.train_inds = self.train_inds[:self.debug_data_size]
self.img_menpo_list = self.img_menpo_list[self.train_inds]
if valid_size > 0:
self.valid_bb_dictionary = load_bb_dictionary(self.bb_dir, 'TEST', test_data=self.valid_data)
self.valid_img_menpo_list = load_menpo_image_list(
img_path, train_crop_dir, self.img_dir_ns, 'TEST', bb_dictionary=self.valid_bb_dictionary,
image_size=self.image_size, margin=margin, bb_type=bb_type, test_data=self.valid_data,
verbose=menpo_verbose)
np.random.seed(0)
self.val_inds = np.arange(len(self.valid_img_menpo_list))
np.random.shuffle(self.val_inds)
self.val_inds = self.val_inds[:self.valid_size]
self.valid_img_menpo_list = self.valid_img_menpo_list[self.val_inds]
self.valid_images_loaded =\
np.zeros([self.valid_size, self.image_size, self.image_size, self.c_dim]).astype('float32')
self.valid_gt_maps_small_loaded =\
np.zeros([self.valid_size, self.image_size / 4, self.image_size / 4,
self.num_landmarks]).astype('float32')
self.valid_gt_maps_loaded =\
np.zeros([self.valid_size, self.image_size, self.image_size, self.num_landmarks]
).astype('float32')
self.valid_landmarks_loaded = np.zeros([self.valid_size, num_landmarks, 2]).astype('float32')
self.valid_landmarks_pred = np.zeros([self.valid_size, self.num_landmarks, 2]).astype('float32')
load_images_landmarks_approx_maps_alloc_once(
self.valid_img_menpo_list, np.arange(self.valid_size), images=self.valid_images_loaded,
maps_small=self.valid_gt_maps_small_loaded, maps=self.valid_gt_maps_loaded,
landmarks=self.valid_landmarks_loaded, image_size=self.image_size,
num_landmarks=self.num_landmarks, scale=self.scale, win_mult=self.win_mult, sigma=self.sigma,
save_landmarks=self.compute_nme)
if self.valid_size > self.sample_grid:
self.valid_gt_maps_loaded = self.valid_gt_maps_loaded[:self.sample_grid]
self.valid_gt_maps_small_loaded = self.valid_gt_maps_small_loaded[:self.sample_grid]
else:
self.val_inds = None
self.epoch_inds_shuffle = train_val_shuffle_inds_per_epoch(
self.val_inds, self.train_inds, train_iter, batch_size, save_log_path)
def add_placeholders(self):
if self.mode == 'TEST':
self.images = tf.placeholder(
tf.float32, [None, self.image_size, self.image_size, self.c_dim], 'images')
self.heatmaps = tf.placeholder(
tf.float32, [None, self.image_size, self.image_size, self.num_landmarks], 'heatmaps')
self.heatmaps_small = tf.placeholder(
tf.float32, [None, int(self.image_size/4), int(self.image_size/4), self.num_landmarks], 'heatmaps_small')
self.lms = tf.placeholder(tf.float32, [None, self.num_landmarks, 2], 'lms')
self.pred_lms = tf.placeholder(tf.float32, [None, self.num_landmarks, 2], 'pred_lms')
elif self.mode == 'TRAIN':
self.images = tf.placeholder(
tf.float32, [None, self.image_size, self.image_size, self.c_dim], 'train_images')
self.heatmaps = tf.placeholder(
tf.float32, [None, self.image_size, self.image_size, self.num_landmarks], 'train_heatmaps')
self.heatmaps_small = tf.placeholder(
tf.float32, [None, int(self.image_size/4), int(self.image_size/4), self.num_landmarks], 'train_heatmaps_small')
self.train_lms = tf.placeholder(tf.float32, [None, self.num_landmarks, 2], 'train_lms')
self.train_pred_lms = tf.placeholder(tf.float32, [None, self.num_landmarks, 2], 'train_pred_lms')
self.valid_lms = tf.placeholder(tf.float32, [None, self.num_landmarks, 2], 'valid_lms')
self.valid_pred_lms = tf.placeholder(tf.float32, [None, self.num_landmarks, 2], 'valid_pred_lms')
# self.p_texture_log = tf.placeholder(tf.float32, [])
# self.p_geom_log = tf.placeholder(tf.float32, [])
# self.sparse_hm_small = tf.placeholder(tf.float32, [None, int(self.image_size/4), int(self.image_size/4), 1])
# self.sparse_hm = tf.placeholder(tf.float32, [None, self.image_size, self.image_size, 1])
if self.sample_to_log:
row = int(np.sqrt(self.sample_grid))
self.log_image_map_small = tf.placeholder(
tf.uint8, [None, row * int(self.image_size/4), 3 * row * int(self.image_size/4), self.c_dim],
'sample_img_map_small')
self.log_image_map = tf.placeholder(
tf.uint8, [None, row * self.image_size, 3 * row * self.image_size, self.c_dim],
'sample_img_map')
if self.sample_per_channel:
row = np.ceil(np.sqrt(self.num_landmarks)).astype(np.int64)
self.log_map_channels_small = tf.placeholder(
tf.uint8, [None, row * int(self.image_size/4), 2 * row * int(self.image_size/4), self.c_dim],
'sample_map_channels_small')
self.log_map_channels = tf.placeholder(
tf.uint8, [None, row * self.image_size, 2 * row * self.image_size, self.c_dim],
'sample_map_channels')
def heatmaps_network(self, input_images, reuse=None, name='pred_heatmaps'):
with tf.name_scope(name):
if self.weight_initializer == 'xavier':
weight_initializer = contrib.layers.xavier_initializer()
else:
weight_initializer = tf.random_normal_initializer(stddev=self.weight_initializer_std)
bias_init = tf.constant_initializer(self.bias_initializer)
with tf.variable_scope('heatmaps_network'):
with tf.name_scope('primary_net'):
l1 = conv_relu_pool(input_images, 5, 128, conv_ker_init=weight_initializer, conv_bias_init=bias_init,
reuse=reuse, var_scope='conv_1')
l2 = conv_relu_pool(l1, 5, 128, conv_ker_init=weight_initializer, conv_bias_init=bias_init,
reuse=reuse, var_scope='conv_2')
l3 = conv_relu(l2, 5, 128, conv_ker_init=weight_initializer, conv_bias_init=bias_init,
reuse=reuse, var_scope='conv_3')
l4_1 = conv_relu(l3, 3, 128, conv_dilation=1, conv_ker_init=weight_initializer,
conv_bias_init=bias_init, reuse=reuse, var_scope='conv_4_1')
l4_2 = conv_relu(l3, 3, 128, conv_dilation=2, conv_ker_init=weight_initializer,
conv_bias_init=bias_init, reuse=reuse, var_scope='conv_4_2')
l4_3 = conv_relu(l3, 3, 128, conv_dilation=3, conv_ker_init=weight_initializer,
conv_bias_init=bias_init, reuse=reuse, var_scope='conv_4_3')
l4_4 = conv_relu(l3, 3, 128, conv_dilation=4, conv_ker_init=weight_initializer,
conv_bias_init=bias_init, reuse=reuse, var_scope='conv_4_4')
l4 = tf.concat([l4_1, l4_2, l4_3, l4_4], 3, name='conv_4')
l5_1 = conv_relu(l4, 3, 256, conv_dilation=1, conv_ker_init=weight_initializer,
conv_bias_init=bias_init, reuse=reuse, var_scope='conv_5_1')
l5_2 = conv_relu(l4, 3, 256, conv_dilation=2, conv_ker_init=weight_initializer,
conv_bias_init=bias_init, reuse=reuse, var_scope='conv_5_2')
l5_3 = conv_relu(l4, 3, 256, conv_dilation=3, conv_ker_init=weight_initializer,
conv_bias_init=bias_init, reuse=reuse, var_scope='conv_5_3')
l5_4 = conv_relu(l4, 3, 256, conv_dilation=4, conv_ker_init=weight_initializer,
conv_bias_init=bias_init, reuse=reuse, var_scope='conv_5_4')
l5 = tf.concat([l5_1, l5_2, l5_3, l5_4], 3, name='conv_5')
l6 = conv_relu(l5, 1, 512, conv_ker_init=weight_initializer,
conv_bias_init=bias_init, reuse=reuse, var_scope='conv_6')
l7 = conv_relu(l6, 1, 256, conv_ker_init=weight_initializer,
conv_bias_init=bias_init, reuse=reuse, var_scope='conv_7')
primary_out = conv(l7, 1, self.num_landmarks, conv_ker_init=weight_initializer,
conv_bias_init=bias_init, reuse=reuse, var_scope='conv_8')
with tf.name_scope('fusion_net'):
l_fsn_0 = tf.concat([l3, l7], 3, name='conv_3_7_fsn')
l_fsn_1_1 = conv_relu(l_fsn_0, 3, 64, conv_dilation=1, conv_ker_init=weight_initializer,
conv_bias_init=bias_init, reuse=reuse, var_scope='conv_fsn_1_1')
l_fsn_1_2 = conv_relu(l_fsn_0, 3, 64, conv_dilation=2, conv_ker_init=weight_initializer,
conv_bias_init=bias_init, reuse=reuse, var_scope='conv_fsn_1_2')
l_fsn_1_3 = conv_relu(l_fsn_0, 3, 64, conv_dilation=3, conv_ker_init=weight_initializer,
conv_bias_init=bias_init, reuse=reuse, var_scope='conv_fsn_1_3')
l_fsn_1 = tf.concat([l_fsn_1_1, l_fsn_1_2, l_fsn_1_3], 3, name='conv_fsn_1')
l_fsn_2_1 = conv_relu(l_fsn_1, 3, 64, conv_dilation=1, conv_ker_init=weight_initializer,
conv_bias_init=bias_init, reuse=reuse, var_scope='conv_fsn_2_1')
l_fsn_2_2 = conv_relu(l_fsn_1, 3, 64, conv_dilation=2, conv_ker_init=weight_initializer,
conv_bias_init=bias_init, reuse=reuse, var_scope='conv_fsn_2_2')
l_fsn_2_3 = conv_relu(l_fsn_1, 3, 64, conv_dilation=4, conv_ker_init=weight_initializer,
conv_bias_init=bias_init, reuse=reuse, var_scope='conv_fsn_2_3')
l_fsn_2_4 = conv_relu(l_fsn_1, 5, 64, conv_dilation=3, conv_ker_init=weight_initializer,
conv_bias_init=bias_init, reuse=reuse, var_scope='conv_fsn_2_4')
l_fsn_2 = tf.concat([l_fsn_2_1, l_fsn_2_2, l_fsn_2_3, l_fsn_2_4], 3, name='conv_fsn_2')
l_fsn_3_1 = conv_relu(l_fsn_2, 3, 128, conv_dilation=1, conv_ker_init=weight_initializer,
conv_bias_init=bias_init, reuse=reuse, var_scope='conv_fsn_3_1')
l_fsn_3_2 = conv_relu(l_fsn_2, 3, 128, conv_dilation=2, conv_ker_init=weight_initializer,
conv_bias_init=bias_init, reuse=reuse, var_scope='conv_fsn_3_2')
l_fsn_3_3 = conv_relu(l_fsn_2, 3, 128, conv_dilation=4, conv_ker_init=weight_initializer,
conv_bias_init=bias_init, reuse=reuse, var_scope='conv_fsn_3_3')
l_fsn_3_4 = conv_relu(l_fsn_2, 5, 128, conv_dilation=3, conv_ker_init=weight_initializer,
conv_bias_init=bias_init, reuse=reuse, var_scope='conv_fsn_3_4')
l_fsn_3 = tf.concat([l_fsn_3_1, l_fsn_3_2, l_fsn_3_3, l_fsn_3_4], 3, name='conv_fsn_3')
l_fsn_4 = conv_relu(l_fsn_3, 1, 256, conv_ker_init=weight_initializer,
conv_bias_init=bias_init, reuse=reuse, var_scope='conv_fsn_4')
fusion_out = conv(l_fsn_4, 1, self.num_landmarks, conv_ker_init=weight_initializer,
conv_bias_init=bias_init, reuse=reuse, var_scope='conv_fsn_5')
with tf.name_scope('upsample_net'):
out = deconv(fusion_out, 8, self.num_landmarks, conv_stride=4,
conv_ker_init=deconv2d_bilinear_upsampling_initializer(
[8, 8, self.num_landmarks, self.num_landmarks]), conv_bias_init=bias_init,
reuse=reuse, var_scope='deconv_1')
self.all_layers = [l1, l2, l3, l4, l5, l6, l7, primary_out, l_fsn_1, l_fsn_2, l_fsn_3, l_fsn_4,
fusion_out, out]
return primary_out, fusion_out, out
def build_model(self):
self.pred_hm_p, self.pred_hm_f, self.pred_hm_u = self.heatmaps_network(self.images,name='heatmaps_prediction')
def create_loss_ops(self):
def nme_norm_eyes(pred_landmarks, real_landmarks, normalize=True, name='NME'):
"""calculate normalized mean error on landmarks - normalize with inter pupil distance"""
with tf.name_scope(name):
with tf.name_scope('real_pred_landmarks_rmse'):
# calculate RMS ERROR between GT and predicted lms
landmarks_rms_err = tf.reduce_mean(
tf.sqrt(tf.reduce_sum(tf.square(pred_landmarks - real_landmarks), axis=2)), axis=1)
if normalize:
# normalize RMS ERROR with inter-pupil distance of GT lms
with tf.name_scope('inter_pupil_dist'):
with tf.name_scope('left_eye_center'):
p1 = tf.reduce_mean(tf.slice(real_landmarks, [0, 42, 0], [-1, 6, 2]), axis=1)
with tf.name_scope('right_eye_center'):
p2 = tf.reduce_mean(tf.slice(real_landmarks, [0, 36, 0], [-1, 6, 2]), axis=1)
eye_dist = tf.sqrt(tf.reduce_sum(tf.square(p1 - p2), axis=1))
return landmarks_rms_err / eye_dist
else:
return landmarks_rms_err
if self.mode is 'TRAIN':
# calculate L2 loss between ideal and predicted heatmaps
primary_maps_diff = self.pred_hm_p - self.heatmaps_small
fusion_maps_diff = self.pred_hm_f - self.heatmaps_small
upsample_maps_diff = self.pred_hm_u - self.heatmaps
self.l2_primary = tf.reduce_mean(tf.square(primary_maps_diff))
self.l2_fusion = tf.reduce_mean(tf.square(fusion_maps_diff))
self.l2_upsample = tf.reduce_mean(tf.square(upsample_maps_diff))
self.total_loss = 1000.*(self.l_weight_primary * self.l2_primary + self.l_weight_fusion * self.l2_fusion +
self.l_weight_upsample * self.l2_upsample)
# add weight decay
self.total_loss += self.reg * tf.add_n(
[tf.nn.l2_loss(v) for v in tf.trainable_variables() if 'bias' not in v.name])
# compute normalized mean error on gt vs. predicted landmarks (for validation)
if self.compute_nme:
self.nme_loss = tf.reduce_mean(nme_norm_eyes(self.train_pred_lms, self.train_lms))
if self.valid_size > 0 and self.compute_nme:
self.valid_nme_loss = tf.reduce_mean(nme_norm_eyes(self.valid_pred_lms, self.valid_lms))
elif self.mode == 'TEST' and self.compute_nme:
self.nme_per_image = nme_norm_eyes(self.pred_lms, self.lms)
self.nme_loss = tf.reduce_mean(self.nme_per_image)
def predict_valid_landmarks_in_batches(self, images, session):
num_images=int(images.shape[0])
num_batches = int(1.*num_images/self.batch_size)
if num_batches == 0:
batch_size = num_images
num_batches = 1
else:
batch_size = self.batch_size
for j in range(num_batches):
batch_images = images[j * batch_size:(j + 1) * batch_size,:,:,:]
batch_maps_pred = session.run(self.pred_hm_u, {self.images: batch_images})
batch_heat_maps_to_landmarks_alloc_once(
batch_maps=batch_maps_pred, batch_landmarks=self.valid_landmarks_pred[j * batch_size:(j + 1) * batch_size, :, :],
batch_size=batch_size,image_size=self.image_size,num_landmarks=self.num_landmarks)
reminder = num_images-num_batches*batch_size
if reminder > 0:
batch_images = images[-reminder:, :, :, :]
batch_maps_pred = session.run(self.pred_hm_u, {self.images: batch_images})
batch_heat_maps_to_landmarks_alloc_once(
batch_maps=batch_maps_pred,
batch_landmarks=self.valid_landmarks_pred[-reminder:, :, :],
batch_size=reminder, image_size=self.image_size, num_landmarks=self.num_landmarks)
def create_summary_ops(self):
"""create summary ops for logging"""
# loss summary
l2_primary = tf.summary.scalar('l2_primary', self.l2_primary)
l2_fusion = tf.summary.scalar('l2_fusion', self.l2_fusion)
l2_upsample = tf.summary.scalar('l2_upsample', self.l2_upsample)
l_total = tf.summary.scalar('l_total', self.total_loss)
self.batch_summary_op = tf.summary.merge([l2_primary,l2_fusion,l2_upsample,l_total])
if self.compute_nme:
nme = tf.summary.scalar('nme', self.nme_loss)
self.batch_summary_op = tf.summary.merge([self.batch_summary_op, nme])
if self.log_histograms:
var_summary = [tf.summary.histogram(var.name,var) for var in tf.trainable_variables()]
grads = tf.gradients(self.total_loss, tf.trainable_variables())
grads = list(zip(grads, tf.trainable_variables()))
grad_summary = [tf.summary.histogram(var.name+'/grads',grad) for grad,var in grads]
activ_summary = [tf.summary.histogram(layer.name, layer) for layer in self.all_layers]
self.batch_summary_op = tf.summary.merge([self.batch_summary_op, var_summary, grad_summary, activ_summary])
if self.valid_size > 0 and self.compute_nme:
self.valid_summary = tf.summary.scalar('valid_nme', self.valid_nme_loss)
if self.sample_to_log:
img_map_summary_small = tf.summary.image('compare_map_to_gt_small', self.log_image_map_small)
img_map_summary = tf.summary.image('compare_map_to_gt', self.log_image_map)
if self.sample_per_channel:
map_channels_summary = tf.summary.image('compare_map_channels_to_gt', self.log_map_channels)
map_channels_summary_small = tf.summary.image('compare_map_channels_to_gt_small',
self.log_map_channels_small)
self.img_summary = tf.summary.merge(
[img_map_summary, img_map_summary_small,map_channels_summary,map_channels_summary_small])
else:
self.img_summary = tf.summary.merge([img_map_summary, img_map_summary_small])
if self.valid_size >= self.sample_grid:
img_map_summary_valid_small = tf.summary.image('compare_map_to_gt_small_valid', self.log_image_map_small)
img_map_summary_valid = tf.summary.image('compare_map_to_gt_valid', self.log_image_map)
if self.sample_per_channel:
map_channels_summary_valid_small = tf.summary.image('compare_map_channels_to_gt_small_valid',
self.log_map_channels_small)
map_channels_summary_valid = tf.summary.image('compare_map_channels_to_gt_valid',
self.log_map_channels)
self.img_summary_valid = tf.summary.merge(
[img_map_summary_valid,img_map_summary_valid_small,map_channels_summary_valid,
map_channels_summary_valid_small])
else:
self.img_summary_valid = tf.summary.merge([img_map_summary_valid, img_map_summary_valid_small])
def train(self):
# set random seed
tf.set_random_seed(1234)
np.random.seed(1234)
# build a graph
# add placeholders
self.add_placeholders()
# build model
self.build_model()
# create loss ops
self.create_loss_ops()
# create summary ops
self.create_summary_ops()
# create optimizer and training op
global_step = tf.Variable(0, trainable=False)
lr = tf.train.exponential_decay(self.learning_rate,global_step, self.step, self.gamma, staircase=True)
if self.adam_optimizer:
optimizer = tf.train.AdamOptimizer(lr)
else:
optimizer = tf.train.MomentumOptimizer(lr, self.momentum)
train_op = optimizer.minimize(self.total_loss,global_step=global_step)
with tf.Session(config=self.config) as sess:
tf.global_variables_initializer().run()
# load pre trained weights if load_pretrain==True
if self.load_pretrain:
print
print('*** loading pre-trained weights from: '+self.pre_train_path+' ***')
if self.load_primary_only:
print('*** loading primary-net only ***')
primary_var = [v for v in tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES) if
('deconv_' not in v.name) and ('_fsn_' not in v.name)]
loader = tf.train.Saver(var_list=primary_var)
else:
loader = tf.train.Saver()
loader.restore(sess, self.pre_train_path)
print("*** Model restore finished, current global step: %d" % global_step.eval())
# for fine-tuning, choose reset_training_op==True. when resuming training, reset_training_op==False
if self.reset_training_op:
print ("resetting optimizer and global step")
opt_var_list = [optimizer.get_slot(var, name) for name in optimizer.get_slot_names()
for var in tf.global_variables() if optimizer.get_slot(var, name) is not None]
opt_var_list_init = tf.variables_initializer(opt_var_list)
opt_var_list_init.run()
sess.run(global_step.initializer)
# create model saver and file writer
summary_writer = tf.summary.FileWriter(logdir=self.save_log_path, graph=tf.get_default_graph())
saver = tf.train.Saver()
print('\n*** Start Training ***')
# initialize some variables before training loop
resume_step = global_step.eval()
num_train_images = len(self.img_menpo_list)
batches_in_epoch = int(float(num_train_images) / float(self.batch_size))
epoch = int(resume_step / batches_in_epoch)
img_inds = self.epoch_inds_shuffle[epoch, :]
log_valid = True
log_valid_images = True
# allocate space for batch images, maps and landmarks
batch_images = np.zeros([self.batch_size, self.image_size, self.image_size, self.c_dim]).astype(
'float32')
batch_lms = np.zeros([self.batch_size, self.num_landmarks, 2]).astype('float32')
batch_lms_pred = np.zeros([self.batch_size, self.num_landmarks, 2]).astype('float32')
batch_maps_small = np.zeros((self.batch_size, int(self.image_size/4),
int(self.image_size/4), self.num_landmarks)).astype('float32')
batch_maps = np.zeros((self.batch_size, self.image_size, self.image_size,
self.num_landmarks)).astype('float32')
# create gaussians for heatmap generation
gaussian_filt_large = create_gaussian_filter(sigma=self.sigma, win_mult=self.win_mult)
gaussian_filt_small = create_gaussian_filter(sigma=1.*self.sigma/4, win_mult=self.win_mult)
# training loop
for step in range(resume_step, self.train_iter):
j = step % batches_in_epoch # j==0 if we finished an epoch
# if we finished an epoch and this isn't the first step
if step > resume_step and j == 0:
epoch += 1
img_inds = self.epoch_inds_shuffle[epoch, :] # get next shuffled image inds
log_valid = True
log_valid_images = True
if self.use_epoch_data: # if using pre-augmented data, load epoch directory
epoch_dir = os.path.join(self.epoch_data_dir, str(epoch))
self.img_menpo_list = load_menpo_image_list(
self.img_path, train_crop_dir=epoch_dir, img_dir_ns=None, mode=self.mode,
bb_dictionary=self.bb_dictionary, image_size=self.image_size, test_data=self.test_data,
augment_basic=False, augment_texture=False, augment_geom=False)
# get batch indices
batch_inds = img_inds[j * self.batch_size:(j + 1) * self.batch_size]
# load batch images, gt maps and landmarks
load_images_landmarks_approx_maps_alloc_once(
self.img_menpo_list, batch_inds, images=batch_images, maps_small=batch_maps_small,
maps=batch_maps, landmarks=batch_lms, image_size=self.image_size,
num_landmarks=self.num_landmarks, scale=self.scale, gauss_filt_large=gaussian_filt_large,
gauss_filt_small=gaussian_filt_small, win_mult=self.win_mult, sigma=self.sigma,
save_landmarks=self.compute_nme)
feed_dict_train = {self.images: batch_images, self.heatmaps: batch_maps,
self.heatmaps_small: batch_maps_small}
# train on batch
sess.run(train_op, feed_dict_train)
# save to log and print status
if step == resume_step or (step + 1) % self.print_every == 0:
# train data log
if self.compute_nme:
batch_maps_pred = sess.run(self.pred_hm_u, {self.images: batch_images})
batch_heat_maps_to_landmarks_alloc_once(
batch_maps=batch_maps_pred,batch_landmarks=batch_lms_pred,
batch_size=self.batch_size, image_size=self.image_size,
num_landmarks=self.num_landmarks)
train_feed_dict_log = {
self.images: batch_images, self.heatmaps: batch_maps,
self.heatmaps_small: batch_maps_small, self.train_lms: batch_lms,
self.train_pred_lms: batch_lms_pred}
summary, l_p, l_f, l_t, nme = sess.run(
[self.batch_summary_op, self.l2_primary, self.l2_fusion, self.total_loss,
self.nme_loss],
train_feed_dict_log)
print (
'epoch: [%d] step: [%d/%d] primary loss: [%.6f] fusion loss: [%.6f]'
' total loss: [%.6f] NME: [%.6f]' % (
epoch, step + 1, self.train_iter, l_p, l_f, l_t, nme))
else:
train_feed_dict_log = {self.images: batch_images, self.heatmaps: batch_maps,
self.heatmaps_small: batch_maps_small}
summary, l_p, l_f, l_t = sess.run(
[self.batch_summary_op, self.l2_primary, self.l2_fusion, self.total_loss],
train_feed_dict_log)
print (
'epoch: [%d] step: [%d/%d] primary loss: [%.6f] fusion loss: [%.6f] total loss: [%.6f]'
% (epoch, step + 1, self.train_iter, l_p, l_f, l_t))
summary_writer.add_summary(summary, step)
# valid data log
if self.valid_size > 0 and (log_valid and epoch % self.log_valid_every == 0) \
and self.compute_nme:
log_valid = False
self.predict_valid_landmarks_in_batches(self.valid_images_loaded, sess)
valid_feed_dict_log = {
self.valid_lms: self.valid_landmarks_loaded,
self.valid_pred_lms: self.valid_landmarks_pred}
v_summary, v_nme = sess.run([self.valid_summary, self.valid_nme_loss],
valid_feed_dict_log)
summary_writer.add_summary(v_summary, step)
print (
'epoch: [%d] step: [%d/%d] valid NME: [%.6f]' % (
epoch, step + 1, self.train_iter, v_nme))
# save model
if (step + 1) % self.save_every == 0:
saver.save(sess, os.path.join(self.save_model_path, 'deep_heatmaps'), global_step=step + 1)
print ('model/deep-heatmaps-%d saved' % (step + 1))
# save images
if step == resume_step or (step + 1) % self.sample_every == 0:
batch_maps_small_pred = sess.run(self.pred_hm_p, {self.images: batch_images})
if not self.compute_nme:
batch_maps_pred = sess.run(self.pred_hm_u, {self.images: batch_images})
batch_lms_pred = None
merged_img = merge_images_landmarks_maps_gt(
batch_images.copy(), batch_maps_pred, batch_maps, landmarks=batch_lms_pred,
image_size=self.image_size, num_landmarks=self.num_landmarks, num_samples=self.sample_grid,
scale=self.scale, circle_size=2, fast=self.fast_img_gen)
merged_img_small = merge_images_landmarks_maps_gt(
batch_images.copy(), batch_maps_small_pred, batch_maps_small,
image_size=self.image_size,
num_landmarks=self.num_landmarks, num_samples=self.sample_grid, scale=self.scale,
circle_size=0, fast=self.fast_img_gen)
if self.sample_per_channel:
map_per_channel = map_comapre_channels(
batch_images.copy(), batch_maps_pred, batch_maps, image_size=self.image_size,
num_landmarks=self.num_landmarks, scale=self.scale)
map_per_channel_small = map_comapre_channels(
batch_images.copy(), batch_maps_small_pred, batch_maps_small, image_size=int(self.image_size/4),
num_landmarks=self.num_landmarks, scale=self.scale)
if self.sample_to_log: # save heatmap images to log
if self.sample_per_channel:
summary_img = sess.run(
self.img_summary, {self.log_image_map: np.expand_dims(merged_img, 0),
self.log_map_channels: np.expand_dims(map_per_channel, 0),
self.log_image_map_small: np.expand_dims(merged_img_small, 0),
self.log_map_channels_small: np.expand_dims(map_per_channel_small, 0)})
else:
summary_img = sess.run(
self.img_summary, {self.log_image_map: np.expand_dims(merged_img, 0),
self.log_image_map_small: np.expand_dims(merged_img_small, 0)})
summary_writer.add_summary(summary_img, step)
if (self.valid_size >= self.sample_grid) and self.save_valid_images and\
(log_valid_images and epoch % self.log_valid_every == 0):
log_valid_images = False
batch_maps_small_pred_val,batch_maps_pred_val =\
sess.run([self.pred_hm_p,self.pred_hm_u],
{self.images: self.valid_images_loaded[:self.sample_grid]})
merged_img_small = merge_images_landmarks_maps_gt(
self.valid_images_loaded[:self.sample_grid].copy(), batch_maps_small_pred_val,
self.valid_gt_maps_small_loaded, image_size=self.image_size,
num_landmarks=self.num_landmarks, num_samples=self.sample_grid,
scale=self.scale, circle_size=0, fast=self.fast_img_gen)
merged_img = merge_images_landmarks_maps_gt(
self.valid_images_loaded[:self.sample_grid].copy(), batch_maps_pred_val,
self.valid_gt_maps_loaded, image_size=self.image_size,
num_landmarks=self.num_landmarks, num_samples=self.sample_grid,
scale=self.scale, circle_size=2, fast=self.fast_img_gen)
if self.sample_per_channel:
map_per_channel_small = map_comapre_channels(
self.valid_images_loaded[:self.sample_grid].copy(), batch_maps_small_pred_val,
self.valid_gt_maps_small_loaded, image_size=int(self.image_size / 4),
num_landmarks=self.num_landmarks, scale=self.scale)
map_per_channel = map_comapre_channels(
self.valid_images_loaded[:self.sample_grid].copy(), batch_maps_pred,
self.valid_gt_maps_loaded, image_size=self.image_size,
num_landmarks=self.num_landmarks, scale=self.scale)
summary_img = sess.run(
self.img_summary_valid,
{self.log_image_map: np.expand_dims(merged_img, 0),
self.log_map_channels: np.expand_dims(map_per_channel, 0),
self.log_image_map_small: np.expand_dims(merged_img_small, 0),
self.log_map_channels_small: np.expand_dims(map_per_channel_small, 0)})
else:
summary_img = sess.run(
self.img_summary_valid,
{self.log_image_map: np.expand_dims(merged_img, 0),
self.log_image_map_small: np.expand_dims(merged_img_small, 0)})
summary_writer.add_summary(summary_img, step)
else: # save heatmap images to directory
sample_path_imgs = os.path.join(
self.save_sample_path, 'epoch-%d-train-iter-%d-1.png' % (epoch, step + 1))
sample_path_imgs_small = os.path.join(
self.save_sample_path, 'epoch-%d-train-iter-%d-1-s.png' % (epoch, step + 1))
scipy.misc.imsave(sample_path_imgs, merged_img)
scipy.misc.imsave(sample_path_imgs_small, merged_img_small)
if self.sample_per_channel:
sample_path_ch_maps = os.path.join(
self.save_sample_path, 'epoch-%d-train-iter-%d-3.png' % (epoch, step + 1))
sample_path_ch_maps_small = os.path.join(
self.save_sample_path, 'epoch-%d-train-iter-%d-3-s.png' % (epoch, step + 1))
scipy.misc.imsave(sample_path_ch_maps, map_per_channel)
scipy.misc.imsave(sample_path_ch_maps_small, map_per_channel_small)
print('*** Finished Training ***')
def get_image_maps(self, test_image, reuse=None, norm=False):
""" returns heatmaps of input image (menpo image object)"""
self.add_placeholders()
# build model
pred_hm_p, pred_hm_f, pred_hm_u = self.heatmaps_network(self.images, reuse=reuse)
with tf.Session(config=self.config) as sess:
# load trained parameters
saver = tf.train.Saver()
saver.restore(sess, self.test_model_path)
_, model_name = os.path.split(self.test_model_path)
test_image = test_image.pixels_with_channels_at_back().astype('float32')
if norm:
if self.scale is '255':
test_image *= 255
elif self.scale is '0':
test_image = 2 * test_image - 1
map_primary, map_fusion, map_upsample = sess.run(
[pred_hm_p, pred_hm_f, pred_hm_u], {self.images: np.expand_dims(test_image, 0)})
return map_primary, map_fusion, map_upsample
def get_landmark_predictions(self, img_list, pdm_models_dir, clm_model_path, reuse=None, map_to_input_size=False):
"""returns dictionary with landmark predictions of each step of the ECpTp algorithm and ECT"""
from pdm_clm_functions import feature_based_pdm_corr, clm_correct
jaw_line_inds = np.arange(0, 17)
left_brow_inds = np.arange(17, 22)
right_brow_inds = np.arange(22, 27)
self.add_placeholders()
# build model
_, _, pred_hm_u = self.heatmaps_network(self.images, reuse=reuse)
with tf.Session(config=self.config) as sess:
# load trained parameters
saver = tf.train.Saver()
saver.restore(sess, self.test_model_path)
_, model_name = os.path.split(self.test_model_path)
e_list = []
ect_list = []
ecp_list = []
ecpt_list = []
ecptp_jaw_list = []
ecptp_out_list = []
for test_image in img_list:
if map_to_input_size:
test_image_transform = test_image[1]
test_image=test_image[0]
# get landmarks for estimation stage
if test_image.n_channels < 3:
test_image_map = sess.run(
pred_hm_u, {self.images: np.expand_dims(
gray2rgb(test_image.pixels_with_channels_at_back()).astype('float32'), 0)})
else:
test_image_map = sess.run(
pred_hm_u, {self.images: np.expand_dims(
test_image.pixels_with_channels_at_back().astype('float32'), 0)})
init_lms = heat_maps_to_landmarks(np.squeeze(test_image_map))
# get landmarks for part-based correction stage
p_pdm_lms = feature_based_pdm_corr(lms_init=init_lms, models_dir=pdm_models_dir, train_type='basic')
# get landmarks for part-based tuning stage
try: # clm may not converge
pdm_clm_lms = clm_correct(
clm_model_path=clm_model_path, image=test_image, map=test_image_map, lms_init=p_pdm_lms)
except:
pdm_clm_lms = p_pdm_lms.copy()
# get landmarks ECT
try: # clm may not converge
ect_lms = clm_correct(
clm_model_path=clm_model_path, image=test_image, map=test_image_map, lms_init=init_lms)
except:
ect_lms = p_pdm_lms.copy()
# get landmarks for ECpTp_out (tune jaw and eyebrows)
ecptp_out = p_pdm_lms.copy()
ecptp_out[left_brow_inds] = pdm_clm_lms[left_brow_inds]
ecptp_out[right_brow_inds] = pdm_clm_lms[right_brow_inds]
ecptp_out[jaw_line_inds] = pdm_clm_lms[jaw_line_inds]
# get landmarks for ECpTp_jaw (tune jaw)
ecptp_jaw = p_pdm_lms.copy()
ecptp_jaw[jaw_line_inds] = pdm_clm_lms[jaw_line_inds]
if map_to_input_size:
ecptp_jaw = test_image_transform.apply(ecptp_jaw)
ecptp_out = test_image_transform.apply(ecptp_out)
ect_lms = test_image_transform.apply(ect_lms)
init_lms = test_image_transform.apply(init_lms)
p_pdm_lms = test_image_transform.apply(p_pdm_lms)
pdm_clm_lms = test_image_transform.apply(pdm_clm_lms)
ecptp_jaw_list.append(ecptp_jaw) # E + p-correction + p-tuning (ECpTp_jaw)
ecptp_out_list.append(ecptp_out) # E + p-correction + p-tuning (ECpTp_out)
ect_list.append(ect_lms) # ECT prediction
e_list.append(init_lms) # init prediction from heatmap network (E)
ecp_list.append(p_pdm_lms) # init prediction + part pdm correction (ECp)
ecpt_list.append(pdm_clm_lms) # init prediction + part pdm correction + global tuning (ECpT)
pred_dict = {
'E': e_list,
'ECp': ecp_list,
'ECpT': ecpt_list,
'ECT': ect_list,
'ECpTp_jaw': ecptp_jaw_list,
'ECpTp_out': ecptp_out_list
}
return pred_dict