-
Notifications
You must be signed in to change notification settings - Fork 707
/
Copy pathshort-interest-effect-long-short-version.py
176 lines (159 loc) · 4.71 KB
/
short-interest-effect-long-short-version.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
# https://quantpedia.com/strategies/short-interest-effect-long-short-version/
#
# All stocks from NYSE, AMEX, and NASDAQ are part of the investment universe. Stocks are then sorted each month into short-interest deciles based on
# the ratio of short interest to shares outstanding. The investor then goes long on the decile with the lowest short ratio and short on the decile
# with the highest short ratio. The portfolio is rebalanced monthly, and stocks in the portfolio are weighted equally.
from AlgorithmImports import *
class ShortInterestEffect(QCAlgorithm):
def Initialize(self):
self.SetStartDate(2010, 1, 1)
self.SetCash(100000)
# NOTE: We use only s&p 100 stocks so it's possible to fetch short interest data from quandl.
self.symbols = [
"AAPL",
"MSFT",
"AMZN",
"FB",
"GOOGL",
"GOOG",
"JPM",
"JNJ",
"V",
"PG",
"XOM",
"UNH",
"BAC",
"MA",
"T",
"DIS",
"INTC",
"HD",
"VZ",
"MRK",
"PFE",
"CVX",
"KO",
"CMCSA",
"CSCO",
"PEP",
"WFC",
"C",
"BA",
"ADBE",
"WMT",
"CRM",
"MCD",
"MDT",
"BMY",
"ABT",
"NVDA",
"NFLX",
"AMGN",
"PM",
"PYPL",
"TMO",
"COST",
"ABBV",
"ACN",
"HON",
"NKE",
"UNP",
"UTX",
"NEE",
"IBM",
"TXN",
"AVGO",
"LLY",
"ORCL",
"LIN",
"SBUX",
"AMT",
"LMT",
"GE",
"MMM",
"DHR",
"QCOM",
"CVS",
"MO",
"LOW",
"FIS",
"AXP",
"BKNG",
"UPS",
"GILD",
"CHTR",
"CAT",
"MDLZ",
"GS",
"USB",
"CI",
"ANTM",
"BDX",
"TJX",
"ADP",
"TFC",
"CME",
"SPGI",
"COP",
"INTU",
"ISRG",
"CB",
"SO",
"D",
"FISV",
"PNC",
"DUK",
"SYK",
"ZTS",
"MS",
"RTN",
"AGN",
"BLK",
]
for symbol in self.symbols:
data = self.AddEquity(symbol, Resolution.Daily)
data.SetFeeModel(CustomFeeModel())
data.SetLeverage(5)
self.AddData(
QuandlFINRA_ShortVolume, "FINRA/FNSQ_" + symbol, Resolution.Daily
)
self.recent_month = -1
def OnData(self, data):
if self.recent_month == self.Time.month:
return
self.recent_month = self.Time.month
short_interest = {}
for symbol in self.symbols:
sym = "FINRA/FNSQ_" + symbol
if sym in data and data[sym] and symbol in data and data[symbol]:
short_vol = data[sym].GetProperty("SHORTVOLUME")
total_vol = data[sym].GetProperty("TOTALVOLUME")
short_interest[symbol] = short_vol / total_vol
long = []
short = []
if len(short_interest) >= 10:
sorted_by_short_interest = sorted(
short_interest.items(), key=lambda x: x[1], reverse=True
)
decile = int(len(sorted_by_short_interest) / 10)
long = [x[0] for x in sorted_by_short_interest[-decile:]]
short = [x[0] for x in sorted_by_short_interest[:decile]]
# trade execution
stocks_invested = [x.Key.Value for x in self.Portfolio if x.Value.Invested]
for symbol in stocks_invested:
if symbol not in long + short:
self.Liquidate(symbol)
for symbol in long:
if symbol in data and data[symbol]:
self.SetHoldings(symbol, 1 / len(long))
for symbol in short:
if symbol in data and data[symbol]:
self.SetHoldings(symbol, -1 / len(short))
class QuandlFINRA_ShortVolume(PythonQuandl):
def __init__(self):
self.ValueColumnName = "SHORTVOLUME" # also 'TOTALVOLUME' is accesible
# Custom fee model.
class CustomFeeModel(FeeModel):
def GetOrderFee(self, parameters):
fee = parameters.Security.Price * parameters.Order.AbsoluteQuantity * 0.00005
return OrderFee(CashAmount(fee, "USD"))