-
Notifications
You must be signed in to change notification settings - Fork 707
/
Copy pathsector-momentum-rotational-system.py
84 lines (67 loc) · 2.79 KB
/
sector-momentum-rotational-system.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
# region imports
from AlgorithmImports import *
# endregion
# https://quantpedia.com/strategies/sector-momentum-rotational-system/
#
# Use ten sector ETFs. Pick 3 ETFs with the strongest 12-month momentum into your portfolio and weight them equally. Hold them for one month and then rebalance.
class SectorMomentumAlgorithm(QCAlgorithm):
def Initialize(self):
self.SetStartDate(2000, 1, 1)
self.SetCash(100000)
# Daily ROC data.
self.data = {}
self.period = 12 * 21
self.SetWarmUp(self.period)
self.symbols = [
"VNQ", # Vanguard Real Estate Index Fund
"XLK", # Technology Select Sector SPDR Fund
"XLE", # Energy Select Sector SPDR Fund
"XLV", # Health Care Select Sector SPDR Fund
"XLF", # Financial Select Sector SPDR Fund
"XLI", # Industrials Select Sector SPDR Fund
"XLB", # Materials Select Sector SPDR Fund
"XLY", # Consumer Discretionary Select Sector SPDR Fund
"XLP", # Consumer Staples Select Sector SPDR Fund
"XLU", # Utilities Select Sector SPDR Fund
]
for symbol in self.symbols:
data = self.AddEquity(symbol, Resolution.Daily)
data.SetFeeModel(CustomFeeModel())
data.SetLeverage(5)
self.data[symbol] = self.ROC(symbol, self.period, Resolution.Daily)
self.data[self.symbols[0]].Updated += self.OnROCUpdated
self.recent_month = -1
self.rebalance_flag = False
def OnROCUpdated(self, sender, updated):
# set rebalance flag
if self.recent_month != self.Time.month:
self.recent_month = self.Time.month
self.rebalance_flag = True
def OnData(self, data):
if self.IsWarmingUp:
return
# rebalance once a month
if self.rebalance_flag:
self.rebalance_flag = False
sorted_by_momentum = sorted(
[
x
for x in self.data.items()
if x[1].IsReady and x[0] in data and data[x[0]]
],
key=lambda x: x[1].Current.Value,
reverse=True,
)
long = [x[0] for x in sorted_by_momentum[:3]]
# Trade execution.
invested = [x.Key for x in self.Portfolio if x.Value.Invested]
for symbol in invested:
if symbol not in long:
self.Liquidate(symbol)
for symbol in long:
self.SetHoldings(symbol, 1 / len(long))
# Custom fee model
class CustomFeeModel(FeeModel):
def GetOrderFee(self, parameters):
fee = parameters.Security.Price * parameters.Order.AbsoluteQuantity * 0.00005
return OrderFee(CashAmount(fee, "USD"))