BUG: json_normalize() upcasts column with missing values #37935
Labels
Dtype Conversions
Unexpected or buggy dtype conversions
IO JSON
read_json, to_json, json_normalize
Missing-data
np.nan, pd.NaT, pd.NA, dropna, isnull, interpolate
Usage Question
I have checked that this issue has not already been reported.
I have confirmed this bug exists on the latest version of pandas.
(optional) I have confirmed this bug exists on the master branch of pandas.
Note: Please read this guide detailing how to provide the necessary information for us to reproduce your bug.
Code Sample, a copy-pastable example
Problem description
When creating a dataframe via
pd.json_normalize()
integer columns are upcast to float if column values are missing for some records even when all other values are consistently integer.Output:
Expected Output
Output of
pd.show_versions()
INSTALLED VERSIONS
commit : 67a3d42
python : 3.8.5.final.0
python-bits : 64
OS : Linux
OS-release : 5.4.0-1019-gcp
Version : #19-Ubuntu SMP Tue Jun 23 15:46:40 UTC 2020
machine : x86_64
processor : x86_64
byteorder : little
LC_ALL : en_US.UTF-8
LANG : en_US.UTF-8
LOCALE : en_US.UTF-8
pandas : 1.1.4
numpy : 1.19.4
pytz : 2020.4
dateutil : 2.8.1
pip : 20.1.1
setuptools : 47.1.0
Cython : None
pytest : None
hypothesis : None
sphinx : None
blosc : None
feather : None
xlsxwriter : None
lxml.etree : None
html5lib : 1.1
pymysql : None
psycopg2 : None
jinja2 : 2.11.2
IPython : None
pandas_datareader: None
bs4 : None
bottleneck : None
fsspec : None
fastparquet : None
gcsfs : None
matplotlib : 3.3.1
numexpr : None
odfpy : None
openpyxl : None
pandas_gbq : None
pyarrow : None
pytables : None
pyxlsb : None
s3fs : None
scipy : 1.4.1
sqlalchemy : 1.3.19
tables : None
tabulate : None
xarray : None
xlrd : None
xlwt : None
numba : None
The text was updated successfully, but these errors were encountered: