From df38f66b417b754afdd2b0e17282255bbf2c769e Mon Sep 17 00:00:00 2001 From: Tom Augspurger Date: Tue, 13 Feb 2018 08:50:54 -0600 Subject: [PATCH] REF: Internal / External values (#19558) * REF/Clean: Internal / External values * Move to index base * Cleanup unique handling * Simplify object concat * Use values for intersection I think eventually we'll want to ndarray_values for this, but it'll require a bit more work to support. Currently, using ndarary_values causes occasional failures on categorical. * hmm * Additional testing * More tests * ndarray_values * API: Default ExtensionArray.astype (cherry picked from commit 943a915562b72bed147c857de927afa0daf31c1a) (cherry picked from commit fbf0a0672380e210d3cb3c527fa8045a204d81be) * Simplify concat_as_object * Py2 compat (cherry picked from commit b20e12cae68dd86ff51597464045656763d369f7) * Set-ops ugliness * better docstrings * tolist * linting * Moved dtypes (cherry picked from commit d1362271bca8a7b183f3241e5c2f040c422118b8) * clean * cleanup * NumPy compat * Use base _values for CategoricalIndex * Update dev docs * cleanup * Linting * Precision in tests * Push _ndarray_values to ExtensionArray Now IndexOpsMixin._ndarray_values will dispatch all the way down to the EA. Subclasses like Categorical can override it as they see fit. * Clean up tolist * Move test locations * Fixed test * REF: Update per comments * lint * REF: Use _values for size and shape * PERF: Implement size, shape for IntervalIndex * PERF: Avoid materializing values for PeriodIndex shape, size * Cleanup * Override nbytes --- doc/source/internals.rst | 19 +++ pandas/core/arrays/base.py | 12 ++ pandas/core/arrays/categorical.py | 4 + pandas/core/base.py | 21 +++- pandas/core/dtypes/cast.py | 2 +- pandas/core/dtypes/common.py | 2 +- pandas/core/dtypes/concat.py | 6 +- pandas/core/indexes/base.py | 108 ++++++++++++++---- pandas/core/indexes/category.py | 9 +- pandas/core/indexes/datetimelike.py | 2 +- pandas/core/indexes/datetimes.py | 43 +++++++ pandas/core/indexes/interval.py | 10 ++ pandas/core/indexes/multi.py | 34 +++--- pandas/core/indexes/numeric.py | 2 +- pandas/core/indexes/period.py | 49 +++++--- pandas/io/pytables.py | 2 +- pandas/plotting/_converter.py | 6 +- pandas/tests/indexes/common.py | 6 +- .../tests/indexes/datetimes/test_datetime.py | 9 ++ .../tests/indexes/period/test_construction.py | 4 +- pandas/tests/indexes/period/test_period.py | 6 +- pandas/tests/indexes/period/test_tools.py | 2 +- pandas/tests/indexes/test_category.py | 8 ++ pandas/tests/indexes/test_multi.py | 47 ++++++++ pandas/tests/test_base.py | 58 +++++++++- 25 files changed, 386 insertions(+), 85 deletions(-) diff --git a/doc/source/internals.rst b/doc/source/internals.rst index ee4df879d9478..957f82fd9eba7 100644 --- a/doc/source/internals.rst +++ b/doc/source/internals.rst @@ -89,6 +89,25 @@ not check (or care) whether the levels themselves are sorted. Fortunately, the constructors ``from_tuples`` and ``from_arrays`` ensure that this is true, but if you compute the levels and labels yourself, please be careful. +Values +~~~~~~ + +Pandas extends NumPy's type system with custom types, like ``Categorical`` or +datetimes with a timezone, so we have multiple notions of "values". For 1-D +containers (``Index`` classes and ``Series``) we have the following convention: + +* ``cls._ndarray_values`` is *always* a NumPy ``ndarray``. Ideally, + ``_ndarray_values`` is cheap to compute. For example, for a ``Categorical``, + this returns the codes, not the array of objects. +* ``cls._values`` refers is the "best possible" array. This could be an + ``ndarray``, ``ExtensionArray``, or in ``Index`` subclass (note: we're in the + process of removing the index subclasses here so that it's always an + ``ndarray`` or ``ExtensionArray``). + +So, for example, ``Series[category]._values`` is a ``Categorical``, while +``Series[category]._ndarray_values`` is the underlying codes. + + .. _ref-subclassing-pandas: Subclassing pandas Data Structures diff --git a/pandas/core/arrays/base.py b/pandas/core/arrays/base.py index 553e1e0ac2066..e618dc6b69b2d 100644 --- a/pandas/core/arrays/base.py +++ b/pandas/core/arrays/base.py @@ -266,3 +266,15 @@ def _can_hold_na(self): Setting this to false will optimize some operations like fillna. """ return True + + @property + def _ndarray_values(self): + # type: () -> np.ndarray + """Internal pandas method for lossy conversion to a NumPy ndarray. + + This method is not part of the pandas interface. + + The expectation is that this is cheap to compute, and is primarily + used for interacting with our indexers. + """ + return np.array(self) diff --git a/pandas/core/arrays/categorical.py b/pandas/core/arrays/categorical.py index 93250bdbb5054..bcf9cb7646704 100644 --- a/pandas/core/arrays/categorical.py +++ b/pandas/core/arrays/categorical.py @@ -410,6 +410,10 @@ def dtype(self): """The :class:`~pandas.api.types.CategoricalDtype` for this instance""" return self._dtype + @property + def _ndarray_values(self): + return self.codes + @property def _constructor(self): return Categorical diff --git a/pandas/core/base.py b/pandas/core/base.py index 3d8f5f265e3db..0ca029ffd4c25 100644 --- a/pandas/core/base.py +++ b/pandas/core/base.py @@ -13,7 +13,8 @@ is_list_like, is_scalar, is_datetimelike, - is_extension_type) + is_extension_type, + is_extension_array_dtype) from pandas.util._validators import validate_bool_kwarg @@ -738,7 +739,7 @@ def data(self): @property def itemsize(self): """ return the size of the dtype of the item of the underlying data """ - return self._values.itemsize + return self._ndarray_values.itemsize @property def nbytes(self): @@ -748,7 +749,7 @@ def nbytes(self): @property def strides(self): """ return the strides of the underlying data """ - return self._values.strides + return self._ndarray_values.strides @property def size(self): @@ -768,8 +769,17 @@ def base(self): return self.values.base @property - def _values(self): - """ the internal implementation """ + def _ndarray_values(self): + """The data as an ndarray, possibly losing information. + + The expectation is that this is cheap to compute, and is primarily + used for interacting with our indexers. + + - categorical -> codes + """ + # type: () -> np.ndarray + if is_extension_array_dtype(self): + return self.values._ndarray_values return self.values @property @@ -979,6 +989,7 @@ def unique(self): values = self._values if hasattr(values, 'unique'): + result = values.unique() else: from pandas.core.algorithms import unique1d diff --git a/pandas/core/dtypes/cast.py b/pandas/core/dtypes/cast.py index b2816343fc8eb..55919fb2bea0d 100644 --- a/pandas/core/dtypes/cast.py +++ b/pandas/core/dtypes/cast.py @@ -927,7 +927,7 @@ def try_timedelta(v): # will try first with a string & object conversion from pandas import to_timedelta try: - return to_timedelta(v)._values.reshape(shape) + return to_timedelta(v)._ndarray_values.reshape(shape) except Exception: return v.reshape(shape) diff --git a/pandas/core/dtypes/common.py b/pandas/core/dtypes/common.py index c66e7fcfc6978..c2b71bc316fe8 100644 --- a/pandas/core/dtypes/common.py +++ b/pandas/core/dtypes/common.py @@ -1709,7 +1709,7 @@ def is_extension_array_dtype(arr_or_dtype): from pandas.core.arrays import ExtensionArray # we want to unpack series, anything else? - if isinstance(arr_or_dtype, ABCSeries): + if isinstance(arr_or_dtype, (ABCIndexClass, ABCSeries)): arr_or_dtype = arr_or_dtype._values return isinstance(arr_or_dtype, (ExtensionDtype, ExtensionArray)) diff --git a/pandas/core/dtypes/concat.py b/pandas/core/dtypes/concat.py index ddecbe85087d8..d306d0d78f1f4 100644 --- a/pandas/core/dtypes/concat.py +++ b/pandas/core/dtypes/concat.py @@ -488,12 +488,14 @@ def _concat_index_asobject(to_concat, name=None): concat all inputs as object. DatetimeIndex, TimedeltaIndex and PeriodIndex are converted to object dtype before concatenation """ + from pandas import Index + from pandas.core.arrays import ExtensionArray - klasses = ABCDatetimeIndex, ABCTimedeltaIndex, ABCPeriodIndex + klasses = (ABCDatetimeIndex, ABCTimedeltaIndex, ABCPeriodIndex, + ExtensionArray) to_concat = [x.astype(object) if isinstance(x, klasses) else x for x in to_concat] - from pandas import Index self = to_concat[0] attribs = self._get_attributes_dict() attribs['name'] = name diff --git a/pandas/core/indexes/base.py b/pandas/core/indexes/base.py index 15df77bf772dc..be7c1624936bf 100644 --- a/pandas/core/indexes/base.py +++ b/pandas/core/indexes/base.py @@ -31,12 +31,14 @@ is_object_dtype, is_categorical_dtype, is_interval_dtype, + is_period_dtype, is_bool, is_bool_dtype, is_signed_integer_dtype, is_unsigned_integer_dtype, is_integer_dtype, is_float_dtype, is_datetime64_any_dtype, + is_datetime64tz_dtype, is_timedelta64_dtype, needs_i8_conversion, is_iterator, is_list_like, @@ -412,7 +414,7 @@ def _simple_new(cls, values, name=None, dtype=None, **kwargs): values = np.array(values, copy=False) if is_object_dtype(values): values = cls(values, name=name, dtype=dtype, - **kwargs)._values + **kwargs)._ndarray_values result = object.__new__(cls) result._data = values @@ -594,6 +596,40 @@ def values(self): """ return the underlying data as an ndarray """ return self._data.view(np.ndarray) + @property + def _values(self): + # type: () -> Union[ExtensionArray, Index] + # TODO(EA): remove index types as they become extension arrays + """The best array representation. + + This is an ndarray, ExtensionArray, or Index subclass. This differs + from ``_ndarray_values``, which always returns an ndarray. + + Both ``_values`` and ``_ndarray_values`` are consistent between + ``Series`` and ``Index``. + + It may differ from the public '.values' method. + + index | values | _values | _ndarray_values | + ----------------- | -------------- -| ----------- | --------------- | + CategoricalIndex | Categorical | Categorical | codes | + DatetimeIndex[tz] | ndarray[M8ns] | DTI[tz] | ndarray[M8ns] | + + For the following, the ``._values`` is currently ``ndarray[object]``, + but will soon be an ``ExtensionArray`` + + index | values | _values | _ndarray_values | + ----------------- | --------------- | ------------ | --------------- | + PeriodIndex | ndarray[object] | ndarray[obj] | ndarray[int] | + IntervalIndex | ndarray[object] | ndarray[obj] | ndarray[object] | + + See Also + -------- + values + _ndarray_values + """ + return self.values + def get_values(self): """ return the underlying data as an ndarray """ return self.values @@ -664,7 +700,7 @@ def ravel(self, order='C'): -------- numpy.ndarray.ravel """ - return self._values.ravel(order=order) + return self._ndarray_values.ravel(order=order) # construction helpers @classmethod @@ -1597,7 +1633,7 @@ def _constructor(self): @cache_readonly def _engine(self): # property, for now, slow to look up - return self._engine_type(lambda: self._values, len(self)) + return self._engine_type(lambda: self._ndarray_values, len(self)) def _validate_index_level(self, level): """ @@ -2228,27 +2264,37 @@ def union(self, other): other = other.astype('O') return this.union(other) + # TODO(EA): setops-refactor, clean all this up + if is_period_dtype(self) or is_datetime64tz_dtype(self): + lvals = self._ndarray_values + else: + lvals = self._values + if is_period_dtype(other) or is_datetime64tz_dtype(other): + rvals = other._ndarray_values + else: + rvals = other._values + if self.is_monotonic and other.is_monotonic: try: - result = self._outer_indexer(self._values, other._values)[0] + result = self._outer_indexer(lvals, rvals)[0] except TypeError: # incomparable objects - result = list(self._values) + result = list(lvals) # worth making this faster? a very unusual case - value_set = set(self._values) - result.extend([x for x in other._values if x not in value_set]) + value_set = set(lvals) + result.extend([x for x in rvals if x not in value_set]) else: indexer = self.get_indexer(other) indexer, = (indexer == -1).nonzero() if len(indexer) > 0: - other_diff = algos.take_nd(other._values, indexer, + other_diff = algos.take_nd(rvals, indexer, allow_fill=False) - result = _concat._concat_compat((self._values, other_diff)) + result = _concat._concat_compat((lvals, other_diff)) try: - self._values[0] < other_diff[0] + lvals[0] < other_diff[0] except TypeError as e: warnings.warn("%s, sort order is undefined for " "incomparable objects" % e, RuntimeWarning, @@ -2260,7 +2306,7 @@ def union(self, other): result.sort() else: - result = self._values + result = lvals try: result = np.sort(result) @@ -2311,20 +2357,30 @@ def intersection(self, other): other = other.astype('O') return this.intersection(other) + # TODO(EA): setops-refactor, clean all this up + if is_period_dtype(self): + lvals = self._ndarray_values + else: + lvals = self._values + if is_period_dtype(other): + rvals = other._ndarray_values + else: + rvals = other._values + if self.is_monotonic and other.is_monotonic: try: - result = self._inner_indexer(self._values, other._values)[0] + result = self._inner_indexer(lvals, rvals)[0] return self._wrap_union_result(other, result) except TypeError: pass try: - indexer = Index(other._values).get_indexer(self._values) + indexer = Index(rvals).get_indexer(lvals) indexer = indexer.take((indexer != -1).nonzero()[0]) except Exception: # duplicates indexer = algos.unique1d( - Index(other._values).get_indexer_non_unique(self._values)[0]) + Index(rvals).get_indexer_non_unique(lvals)[0]) indexer = indexer[indexer != -1] taken = other.take(indexer) @@ -2700,7 +2756,7 @@ def get_indexer(self, target, method=None, limit=None, tolerance=None): raise ValueError('limit argument only valid if doing pad, ' 'backfill or nearest reindexing') - indexer = self._engine.get_indexer(target._values) + indexer = self._engine.get_indexer(target._ndarray_values) return _ensure_platform_int(indexer) @@ -2716,12 +2772,13 @@ def _get_fill_indexer(self, target, method, limit=None, tolerance=None): if self.is_monotonic_increasing and target.is_monotonic_increasing: method = (self._engine.get_pad_indexer if method == 'pad' else self._engine.get_backfill_indexer) - indexer = method(target._values, limit) + indexer = method(target._ndarray_values, limit) else: indexer = self._get_fill_indexer_searchsorted(target, method, limit) if tolerance is not None: - indexer = self._filter_indexer_tolerance(target._values, indexer, + indexer = self._filter_indexer_tolerance(target._ndarray_values, + indexer, tolerance) return indexer @@ -2812,7 +2869,7 @@ def get_indexer_non_unique(self, target): self = Index(self.asi8) tgt_values = target.asi8 else: - tgt_values = target._values + tgt_values = target._ndarray_values indexer, missing = self._engine.get_indexer_non_unique(tgt_values) return _ensure_platform_int(indexer), missing @@ -3247,16 +3304,17 @@ def _join_multi(self, other, how, return_indexers=True): def _join_non_unique(self, other, how='left', return_indexers=False): from pandas.core.reshape.merge import _get_join_indexers - left_idx, right_idx = _get_join_indexers([self._values], - [other._values], how=how, + left_idx, right_idx = _get_join_indexers([self._ndarray_values], + [other._ndarray_values], + how=how, sort=True) left_idx = _ensure_platform_int(left_idx) right_idx = _ensure_platform_int(right_idx) - join_index = np.asarray(self._values.take(left_idx)) + join_index = np.asarray(self._ndarray_values.take(left_idx)) mask = left_idx == -1 - np.putmask(join_index, mask, other._values.take(right_idx)) + np.putmask(join_index, mask, other._ndarray_values.take(right_idx)) join_index = self._wrap_joined_index(join_index, other) @@ -3403,8 +3461,8 @@ def _join_monotonic(self, other, how='left', return_indexers=False): else: return ret_index - sv = self._values - ov = other._values + sv = self._ndarray_values + ov = other._ndarray_values if self.is_unique and other.is_unique: # We can perform much better than the general case @@ -3756,7 +3814,7 @@ def insert(self, loc, item): item = self._na_value _self = np.asarray(self) - item = self._coerce_scalar_to_index(item)._values + item = self._coerce_scalar_to_index(item)._ndarray_values idx = np.concatenate((_self[:loc], item, _self[loc:])) return self._shallow_copy_with_infer(idx) diff --git a/pandas/core/indexes/category.py b/pandas/core/indexes/category.py index 60f5552576ea1..a4d0f787cc6ec 100644 --- a/pandas/core/indexes/category.py +++ b/pandas/core/indexes/category.py @@ -293,6 +293,11 @@ def values(self): """ return the underlying data, which is a Categorical """ return self._data + @property + def itemsize(self): + # Size of the items in categories, not codes. + return self.values.itemsize + def get_values(self): """ return the underlying data as an ndarray """ return self._data.get_values() @@ -386,8 +391,8 @@ def is_monotonic_decreasing(self): def unique(self, level=None): if level is not None: self._validate_index_level(level) - result = base.IndexOpsMixin.unique(self) - # CategoricalIndex._shallow_copy uses keeps original categories + result = self.values.unique() + # CategoricalIndex._shallow_copy keeps original categories # and ordered if not otherwise specified return self._shallow_copy(result, categories=result.categories, ordered=result.ordered) diff --git a/pandas/core/indexes/datetimelike.py b/pandas/core/indexes/datetimelike.py index 4a526955d9bf4..c98f8ceea0ffa 100644 --- a/pandas/core/indexes/datetimelike.py +++ b/pandas/core/indexes/datetimelike.py @@ -376,7 +376,7 @@ def sort_values(self, return_indexer=False, ascending=True): sorted_index = self.take(_as) return sorted_index, _as else: - sorted_values = np.sort(self._values) + sorted_values = np.sort(self._ndarray_values) attribs = self._get_attributes_dict() freq = attribs['freq'] diff --git a/pandas/core/indexes/datetimes.py b/pandas/core/indexes/datetimes.py index 61c941c3d2333..cc9ce1f3fd5eb 100644 --- a/pandas/core/indexes/datetimes.py +++ b/pandas/core/indexes/datetimes.py @@ -678,6 +678,15 @@ def _assert_tzawareness_compat(self, other): raise TypeError('Cannot compare tz-naive and tz-aware ' 'datetime-like objects') + @property + def _values(self): + # tz-naive -> ndarray + # tz-aware -> DatetimeIndex + if self.tz is not None: + return self + else: + return self.values + @property def tzinfo(self): """ @@ -685,6 +694,27 @@ def tzinfo(self): """ return self.tz + @property + def size(self): + # TODO: Remove this when we have a DatetimeTZArray + # Necessary to avoid recursion error since DTI._values is a DTI + # for TZ-aware + return self._ndarray_values.size + + @property + def shape(self): + # TODO: Remove this when we have a DatetimeTZArray + # Necessary to avoid recursion error since DTI._values is a DTI + # for TZ-aware + return self._ndarray_values.shape + + @property + def nbytes(self): + # TODO: Remove this when we have a DatetimeTZArray + # Necessary to avoid recursion error since DTI._values is a DTI + # for TZ-aware + return self._ndarray_values.nbytes + @cache_readonly def _timezone(self): """ Comparable timezone both for pytz / dateutil""" @@ -1086,6 +1116,19 @@ def snap(self, freq='S'): # we know it conforms; skip check return DatetimeIndex(snapped, freq=freq, verify_integrity=False) + def unique(self, level=None): + # Override here since IndexOpsMixin.unique uses self._values.unique + # For DatetimeIndex with TZ, that's a DatetimeIndex -> recursion error + # So we extract the tz-naive DatetimeIndex, unique that, and wrap the + # result with out TZ. + if self.tz is not None: + naive = type(self)(self._ndarray_values, copy=False) + else: + naive = self + result = super(DatetimeIndex, naive).unique(level=level) + return self._simple_new(result, name=self.name, tz=self.tz, + freq=self.freq) + def union(self, other): """ Specialized union for DatetimeIndex objects. If combine diff --git a/pandas/core/indexes/interval.py b/pandas/core/indexes/interval.py index 3bf783b5a2faa..d431ea1e51e31 100644 --- a/pandas/core/indexes/interval.py +++ b/pandas/core/indexes/interval.py @@ -680,6 +680,16 @@ def length(self): 'e.g. Intervals with string endpoints') raise TypeError(msg) + @property + def size(self): + # Avoid materializing self.values + return self.left.size + + @property + def shape(self): + # Avoid materializing self.values + return self.left.shape + def __len__(self): return len(self.left) diff --git a/pandas/core/indexes/multi.py b/pandas/core/indexes/multi.py index 510f7245cebd8..94dbd8b884e47 100644 --- a/pandas/core/indexes/multi.py +++ b/pandas/core/indexes/multi.py @@ -799,9 +799,11 @@ def values(self): box = hasattr(lev, '_box_values') # Try to minimize boxing. if box and len(lev) > len(lab): - taken = lev._box_values(algos.take_1d(lev._values, lab)) + taken = lev._box_values(algos.take_1d(lev._ndarray_values, + lab)) elif box: - taken = algos.take_1d(lev._box_values(lev._values), lab, + taken = algos.take_1d(lev._box_values(lev._ndarray_values), + lab, fill_value=_get_na_value(lev.dtype.type)) else: taken = algos.take_1d(np.asarray(lev._values), lab) @@ -2410,7 +2412,7 @@ def convert_indexer(start, stop, step, indexer=indexer, labels=labels): mapper = Series(indexer) indexer = labels.take(_ensure_platform_int(indexer)) result = Series(Index(indexer).isin(r).nonzero()[0]) - m = result.map(mapper)._values + m = result.map(mapper)._ndarray_values else: m = np.zeros(len(labels), dtype=bool) @@ -2505,6 +2507,7 @@ def get_locs(self, seq): MultiIndex.slice_locs : Get slice location given start label(s) and end label(s). """ + from .numeric import Int64Index # must be lexsorted to at least as many levels true_slices = [i for (i, s) in enumerate(com.is_true_slices(seq)) if s] @@ -2530,7 +2533,6 @@ def _convert_to_indexer(r): "that is not the same length as the " "index") r = r.nonzero()[0] - from .numeric import Int64Index return Int64Index(r) def _update_indexer(idxr, indexer=indexer): @@ -2567,9 +2569,8 @@ def _update_indexer(idxr, indexer=indexer): if indexers is not None: indexer = _update_indexer(indexers, indexer=indexer) else: - from .numeric import Int64Index # no matches we are done - return Int64Index([])._values + return Int64Index([])._ndarray_values elif com.is_null_slice(k): # empty slice @@ -2589,8 +2590,8 @@ def _update_indexer(idxr, indexer=indexer): # empty indexer if indexer is None: - return Int64Index([])._values - return indexer._values + return Int64Index([])._ndarray_values + return indexer._ndarray_values def truncate(self, before=None, after=None): """ @@ -2639,7 +2640,7 @@ def equals(self, other): if not isinstance(other, MultiIndex): other_vals = com._values_from_object(_ensure_index(other)) - return array_equivalent(self._values, other_vals) + return array_equivalent(self._ndarray_values, other_vals) if self.nlevels != other.nlevels: return False @@ -2655,8 +2656,9 @@ def equals(self, other): olabels = other.labels[i] olabels = olabels[olabels != -1] - ovalues = algos.take_nd(np.asarray(other.levels[i]._values), - olabels, allow_fill=False) + ovalues = algos.take_nd( + np.asarray(other.levels[i]._values), + olabels, allow_fill=False) # since we use NaT both datetime64 and timedelta64 # we can have a situation where a level is typed say @@ -2704,7 +2706,8 @@ def union(self, other): if len(other) == 0 or self.equals(other): return self - uniq_tuples = lib.fast_unique_multiple([self._values, other._values]) + uniq_tuples = lib.fast_unique_multiple([self._ndarray_values, + other._ndarray_values]) return MultiIndex.from_arrays(lzip(*uniq_tuples), sortorder=0, names=result_names) @@ -2726,8 +2729,8 @@ def intersection(self, other): if self.equals(other): return self - self_tuples = self._values - other_tuples = other._values + self_tuples = self._ndarray_values + other_tuples = other._ndarray_values uniq_tuples = sorted(set(self_tuples) & set(other_tuples)) if len(uniq_tuples) == 0: return MultiIndex(levels=[[]] * self.nlevels, @@ -2756,7 +2759,8 @@ def difference(self, other): labels=[[]] * self.nlevels, names=result_names, verify_integrity=False) - difference = sorted(set(self._values) - set(other._values)) + difference = sorted(set(self._ndarray_values) - + set(other._ndarray_values)) if len(difference) == 0: return MultiIndex(levels=[[]] * self.nlevels, diff --git a/pandas/core/indexes/numeric.py b/pandas/core/indexes/numeric.py index b02aee0495d8c..a4558116bfa63 100644 --- a/pandas/core/indexes/numeric.py +++ b/pandas/core/indexes/numeric.py @@ -378,7 +378,7 @@ def equals(self, other): if (not is_dtype_equal(self.dtype, other.dtype) or self.shape != other.shape): return False - left, right = self._values, other._values + left, right = self._ndarray_values, other._ndarray_values return ((left == right) | (self._isnan & other._isnan)).all() except (TypeError, ValueError): return False diff --git a/pandas/core/indexes/period.py b/pandas/core/indexes/period.py index 1f8542ed5ee60..8f2d7d382a16e 100644 --- a/pandas/core/indexes/period.py +++ b/pandas/core/indexes/period.py @@ -54,7 +54,7 @@ def _field_accessor(name, alias, docstring=None): def f(self): base, mult = _gfc(self.freq) - result = get_period_field_arr(alias, self._values, base) + result = get_period_field_arr(alias, self._ndarray_values, base) return Index(result, name=self.name) f.__name__ = name f.__doc__ = docstring @@ -82,7 +82,7 @@ def _period_index_cmp(opname, cls, nat_result=False): def wrapper(self, other): if isinstance(other, Period): - func = getattr(self._values, opname) + func = getattr(self._ndarray_values, opname) other_base, _ = _gfc(other.freq) if other.freq != self.freq: msg = _DIFFERENT_FREQ_INDEX.format(self.freqstr, other.freqstr) @@ -94,7 +94,8 @@ def wrapper(self, other): msg = _DIFFERENT_FREQ_INDEX.format(self.freqstr, other.freqstr) raise IncompatibleFrequency(msg) - result = getattr(self._values, opname)(other._values) + op = getattr(self._ndarray_values, opname) + result = op(other._ndarray_values) mask = self._isnan | other._isnan if mask.any(): @@ -102,11 +103,11 @@ def wrapper(self, other): return result elif other is tslib.NaT: - result = np.empty(len(self._values), dtype=bool) + result = np.empty(len(self._ndarray_values), dtype=bool) result.fill(nat_result) else: other = Period(other, freq=self.freq) - func = getattr(self._values, opname) + func = getattr(self._ndarray_values, opname) result = func(other.ordinal) if self.hasnans: @@ -275,11 +276,11 @@ def __new__(cls, data=None, ordinal=None, freq=None, start=None, end=None, if isinstance(data, PeriodIndex): if freq is None or freq == data.freq: # no freq change freq = data.freq - data = data._values + data = data._ndarray_values else: base1, _ = _gfc(data.freq) base2, _ = _gfc(freq) - data = period.period_asfreq_arr(data._values, + data = period.period_asfreq_arr(data._ndarray_values, base1, base2, 1) return cls._simple_new(data, name=name, freq=freq) @@ -374,7 +375,7 @@ def _shallow_copy(self, values=None, freq=None, **kwargs): if freq is None: freq = self.freq if values is None: - values = self._values + values = self._ndarray_values return super(PeriodIndex, self)._shallow_copy(values=values, freq=freq, **kwargs) @@ -407,7 +408,7 @@ def __contains__(self, key): @property def asi8(self): - return self._values.view('i8') + return self._ndarray_values.view('i8') @cache_readonly def _int64index(self): @@ -418,7 +419,8 @@ def values(self): return self.astype(object).values @property - def _values(self): + def _ndarray_values(self): + # Ordinals return self._data def __array__(self, dtype=None): @@ -475,6 +477,16 @@ def _to_embed(self, keep_tz=False, dtype=None): return self.astype(object).values + @property + def size(self): + # Avoid materializing self._values + return self._ndarray_values.size + + @property + def shape(self): + # Avoid materializing self._values + return self._ndarray_values.shape + @property def _formatter_func(self): return lambda x: "'%s'" % x @@ -489,13 +501,15 @@ def asof_locs(self, where, mask): if isinstance(where_idx, DatetimeIndex): where_idx = PeriodIndex(where_idx.values, freq=self.freq) - locs = self._values[mask].searchsorted(where_idx._values, side='right') + locs = self._ndarray_values[mask].searchsorted( + where_idx._ndarray_values, side='right') locs = np.where(locs > 0, locs - 1, 0) result = np.arange(len(self))[mask].take(locs) first = mask.argmax() - result[(locs == 0) & (where_idx._values < self._values[first])] = -1 + result[(locs == 0) & (where_idx._ndarray_values < + self._ndarray_values[first])] = -1 return result @@ -523,7 +537,8 @@ def searchsorted(self, value, side='left', sorter=None): elif isinstance(value, compat.string_types): value = Period(value, freq=self.freq).ordinal - return self._values.searchsorted(value, side=side, sorter=sorter) + return self._ndarray_values.searchsorted(value, side=side, + sorter=sorter) @property def is_all_dates(self): @@ -664,7 +679,7 @@ def to_timestamp(self, freq=None, how='start'): base, mult = _gfc(freq) new_data = self.asfreq(freq, how) - new_data = period.periodarr_to_dt64arr(new_data._values, base) + new_data = period.periodarr_to_dt64arr(new_data._ndarray_values, base) return DatetimeIndex(new_data, freq='infer', name=self.name) def _maybe_convert_timedelta(self, other): @@ -744,7 +759,7 @@ def shift(self, n): ------- shifted : PeriodIndex """ - values = self._values + n * self.freq.n + values = self._ndarray_values + n * self.freq.n if self.hasnans: values[self._isnan] = tslib.iNaT return self._shallow_copy(values=values) @@ -775,7 +790,7 @@ def get_value(self, series, key): grp = resolution.Resolution.get_freq_group(reso) freqn = resolution.get_freq_group(self.freq) - vals = self._values + vals = self._ndarray_values # if our data is higher resolution than requested key, slice if grp < freqn: @@ -786,7 +801,7 @@ def get_value(self, series, key): if ord2 < vals[0] or ord1 > vals[-1]: raise KeyError(key) - pos = np.searchsorted(self._values, [ord1, ord2]) + pos = np.searchsorted(self._ndarray_values, [ord1, ord2]) key = slice(pos[0], pos[1] + 1) return series[key] elif grp == freqn: diff --git a/pandas/io/pytables.py b/pandas/io/pytables.py index 0d833807602e1..2437b7d396e84 100644 --- a/pandas/io/pytables.py +++ b/pandas/io/pytables.py @@ -4430,7 +4430,7 @@ def _convert_index(index, encoding=None, format_type=None): elif isinstance(index, (Int64Index, PeriodIndex)): atom = _tables().Int64Col() # avoid to store ndarray of Period objects - return IndexCol(index._values, 'integer', atom, + return IndexCol(index._ndarray_values, 'integer', atom, freq=getattr(index, 'freq', None), index_name=index_name) diff --git a/pandas/plotting/_converter.py b/pandas/plotting/_converter.py index 07163615c6ba4..9ca06475290e4 100644 --- a/pandas/plotting/_converter.py +++ b/pandas/plotting/_converter.py @@ -249,11 +249,11 @@ def _convert_1d(values, units, axis): is_float(values)): return get_datevalue(values, axis.freq) if isinstance(values, PeriodIndex): - return values.asfreq(axis.freq)._values + return values.asfreq(axis.freq)._ndarray_values if isinstance(values, Index): return values.map(lambda x: get_datevalue(x, axis.freq)) if is_period_arraylike(values): - return PeriodIndex(values, freq=axis.freq)._values + return PeriodIndex(values, freq=axis.freq)._ndarray_values if isinstance(values, (list, tuple, np.ndarray, Index)): return [get_datevalue(x, axis.freq) for x in values] return values @@ -642,7 +642,7 @@ def _daily_finder(vmin, vmax, freq): info = np.zeros(span, dtype=[('val', np.int64), ('maj', bool), ('min', bool), ('fmt', '|S20')]) - info['val'][:] = dates_._values + info['val'][:] = dates_._ndarray_values info['fmt'][:] = '' info['maj'][[0, -1]] = True # .. and set some shortcuts diff --git a/pandas/tests/indexes/common.py b/pandas/tests/indexes/common.py index 8948c5f79900d..2d8d70aa2ac84 100644 --- a/pandas/tests/indexes/common.py +++ b/pandas/tests/indexes/common.py @@ -314,7 +314,8 @@ def test_ensure_copied_data(self): # .values an object array of Period, thus copied result = index_type(ordinal=index.asi8, copy=False, **init_kwargs) - tm.assert_numpy_array_equal(index._values, result._values, + tm.assert_numpy_array_equal(index._ndarray_values, + result._ndarray_values, check_same='same') elif isinstance(index, IntervalIndex): # checked in test_interval.py @@ -323,7 +324,8 @@ def test_ensure_copied_data(self): result = index_type(index.values, copy=False, **init_kwargs) tm.assert_numpy_array_equal(index.values, result.values, check_same='same') - tm.assert_numpy_array_equal(index._values, result._values, + tm.assert_numpy_array_equal(index._ndarray_values, + result._ndarray_values, check_same='same') def test_copy_and_deepcopy(self, indices): diff --git a/pandas/tests/indexes/datetimes/test_datetime.py b/pandas/tests/indexes/datetimes/test_datetime.py index a75ace2933b71..05678b0c8dd45 100644 --- a/pandas/tests/indexes/datetimes/test_datetime.py +++ b/pandas/tests/indexes/datetimes/test_datetime.py @@ -469,3 +469,12 @@ def test_factorize_dst(self): arr, res = obj.factorize() tm.assert_numpy_array_equal(arr, np.arange(12, dtype=np.intp)) tm.assert_index_equal(res, idx) + + @pytest.mark.parametrize('arr, expected', [ + (pd.DatetimeIndex(['2017', '2017']), pd.DatetimeIndex(['2017'])), + (pd.DatetimeIndex(['2017', '2017'], tz='US/Eastern'), + pd.DatetimeIndex(['2017'], tz='US/Eastern')), + ]) + def test_unique(self, arr, expected): + result = arr.unique() + tm.assert_index_equal(result, expected) diff --git a/pandas/tests/indexes/period/test_construction.py b/pandas/tests/indexes/period/test_construction.py index 639a9272c3808..eca80d17b1dc3 100644 --- a/pandas/tests/indexes/period/test_construction.py +++ b/pandas/tests/indexes/period/test_construction.py @@ -119,8 +119,8 @@ def test_constructor_fromarraylike(self): tm.assert_index_equal(PeriodIndex(idx.values), idx) tm.assert_index_equal(PeriodIndex(list(idx.values)), idx) - pytest.raises(ValueError, PeriodIndex, idx._values) - pytest.raises(ValueError, PeriodIndex, list(idx._values)) + pytest.raises(ValueError, PeriodIndex, idx._ndarray_values) + pytest.raises(ValueError, PeriodIndex, list(idx._ndarray_values)) pytest.raises(TypeError, PeriodIndex, data=Period('2007', freq='A')) diff --git a/pandas/tests/indexes/period/test_period.py b/pandas/tests/indexes/period/test_period.py index f3469b829f8a3..b3f059018493c 100644 --- a/pandas/tests/indexes/period/test_period.py +++ b/pandas/tests/indexes/period/test_period.py @@ -205,7 +205,7 @@ def test_values(self): tm.assert_numpy_array_equal(idx.values, exp) tm.assert_numpy_array_equal(idx.get_values(), exp) exp = np.array([], dtype=np.int64) - tm.assert_numpy_array_equal(idx._values, exp) + tm.assert_numpy_array_equal(idx._ndarray_values, exp) idx = pd.PeriodIndex(['2011-01', pd.NaT], freq='M') @@ -213,7 +213,7 @@ def test_values(self): tm.assert_numpy_array_equal(idx.values, exp) tm.assert_numpy_array_equal(idx.get_values(), exp) exp = np.array([492, -9223372036854775808], dtype=np.int64) - tm.assert_numpy_array_equal(idx._values, exp) + tm.assert_numpy_array_equal(idx._ndarray_values, exp) idx = pd.PeriodIndex(['2011-01-01', pd.NaT], freq='D') @@ -222,7 +222,7 @@ def test_values(self): tm.assert_numpy_array_equal(idx.values, exp) tm.assert_numpy_array_equal(idx.get_values(), exp) exp = np.array([14975, -9223372036854775808], dtype=np.int64) - tm.assert_numpy_array_equal(idx._values, exp) + tm.assert_numpy_array_equal(idx._ndarray_values, exp) def test_period_index_length(self): pi = PeriodIndex(freq='A', start='1/1/2001', end='12/1/2009') diff --git a/pandas/tests/indexes/period/test_tools.py b/pandas/tests/indexes/period/test_tools.py index f5e7c8269dc4f..97500f2f5ed95 100644 --- a/pandas/tests/indexes/period/test_tools.py +++ b/pandas/tests/indexes/period/test_tools.py @@ -20,7 +20,7 @@ class TestPeriodRepresentation(object): def _check_freq(self, freq, base_date): rng = PeriodIndex(start=base_date, periods=10, freq=freq) exp = np.arange(10, dtype=np.int64) - tm.assert_numpy_array_equal(rng._values, exp) + tm.assert_numpy_array_equal(rng.asi8, exp) def test_annual(self): diff --git a/pandas/tests/indexes/test_category.py b/pandas/tests/indexes/test_category.py index c2e40c79f8914..e9fddfde90348 100644 --- a/pandas/tests/indexes/test_category.py +++ b/pandas/tests/indexes/test_category.py @@ -353,6 +353,14 @@ def test_append(self): expected = Index(list('caaabbca')) tm.assert_index_equal(result, expected, exact=True) + def test_append_to_another(self): + # hits _concat_index_asobject + fst = Index(['a', 'b']) + snd = CategoricalIndex(['d', 'e']) + result = fst.append(snd) + expected = Index(['a', 'b', 'd', 'e']) + tm.assert_index_equal(result, expected) + def test_insert(self): ci = self.create_index() diff --git a/pandas/tests/indexes/test_multi.py b/pandas/tests/indexes/test_multi.py index e59456b8a2d5e..cd6a5c761d0c2 100644 --- a/pandas/tests/indexes/test_multi.py +++ b/pandas/tests/indexes/test_multi.py @@ -962,6 +962,53 @@ def test_values_boxed(self): # Check that code branches for boxed values produce identical results tm.assert_numpy_array_equal(result.values[:4], result[:4].values) + def test_values_multiindex_datetimeindex(self): + # Test to ensure we hit the boxing / nobox part of MI.values + ints = np.arange(10**18, 10**18 + 5) + naive = pd.DatetimeIndex(ints) + aware = pd.DatetimeIndex(ints, tz='US/Central') + + idx = pd.MultiIndex.from_arrays([naive, aware]) + result = idx.values + + outer = pd.DatetimeIndex([x[0] for x in result]) + tm.assert_index_equal(outer, naive) + + inner = pd.DatetimeIndex([x[1] for x in result]) + tm.assert_index_equal(inner, aware) + + # n_lev > n_lab + result = idx[:2].values + + outer = pd.DatetimeIndex([x[0] for x in result]) + tm.assert_index_equal(outer, naive[:2]) + + inner = pd.DatetimeIndex([x[1] for x in result]) + tm.assert_index_equal(inner, aware[:2]) + + def test_values_multiindex_periodindex(self): + # Test to ensure we hit the boxing / nobox part of MI.values + ints = np.arange(2007, 2012) + pidx = pd.PeriodIndex(ints, freq='D') + + idx = pd.MultiIndex.from_arrays([ints, pidx]) + result = idx.values + + outer = pd.Int64Index([x[0] for x in result]) + tm.assert_index_equal(outer, pd.Int64Index(ints)) + + inner = pd.PeriodIndex([x[1] for x in result]) + tm.assert_index_equal(inner, pidx) + + # n_lev > n_lab + result = idx[:2].values + + outer = pd.Int64Index([x[0] for x in result]) + tm.assert_index_equal(outer, pd.Int64Index(ints[:2])) + + inner = pd.PeriodIndex([x[1] for x in result]) + tm.assert_index_equal(inner, pidx[:2]) + def test_append(self): result = self.index[:3].append(self.index[3:]) assert result.equals(self.index) diff --git a/pandas/tests/test_base.py b/pandas/tests/test_base.py index df2547fc7b0da..4b5ad336139b0 100644 --- a/pandas/tests/test_base.py +++ b/pandas/tests/test_base.py @@ -338,8 +338,9 @@ def test_ops(self): if not isinstance(o, PeriodIndex): expected = getattr(o.values, op)() else: - expected = pd.Period(ordinal=getattr(o._values, op)(), - freq=o.freq) + expected = pd.Period( + ordinal=getattr(o._ndarray_values, op)(), + freq=o.freq) try: assert result == expected except TypeError: @@ -450,7 +451,7 @@ def test_value_counts_unique_nunique_null(self): for orig in self.objs: o = orig.copy() klass = type(o) - values = o._values + values = o._ndarray_values if not self._allow_na_ops(o): continue @@ -1175,3 +1176,54 @@ def test_iter_box(self): assert isinstance(res, pd.Period) assert res.freq == 'M' assert res == exp + + +@pytest.mark.parametrize('array, expected_type, dtype', [ + (np.array([0, 1], dtype=np.int64), np.ndarray, 'int64'), + (np.array(['a', 'b']), np.ndarray, 'object'), + (pd.Categorical(['a', 'b']), pd.Categorical, 'category'), + (pd.DatetimeIndex(['2017', '2018']), np.ndarray, 'datetime64[ns]'), + (pd.DatetimeIndex(['2017', '2018'], tz="US/Central"), pd.DatetimeIndex, + 'datetime64[ns, US/Central]'), + (pd.TimedeltaIndex([10**10]), np.ndarray, 'm8[ns]'), + (pd.PeriodIndex([2018, 2019], freq='A'), np.ndarray, 'object'), + (pd.IntervalIndex.from_breaks([0, 1, 2]), np.ndarray, 'object'), +]) +def test_values_consistent(array, expected_type, dtype): + l_values = pd.Series(array)._values + r_values = pd.Index(array)._values + assert type(l_values) is expected_type + assert type(l_values) is type(r_values) + + if isinstance(l_values, np.ndarray): + tm.assert_numpy_array_equal(l_values, r_values) + elif isinstance(l_values, pd.Index): + tm.assert_index_equal(l_values, r_values) + elif pd.api.types.is_categorical(l_values): + tm.assert_categorical_equal(l_values, r_values) + else: + raise TypeError("Unexpected type {}".format(type(l_values))) + + assert l_values.dtype == dtype + assert r_values.dtype == dtype + + +@pytest.mark.parametrize('array, expected', [ + (np.array([0, 1], dtype=np.int64), np.array([0, 1], dtype=np.int64)), + (np.array(['0', '1']), np.array(['0', '1'], dtype=object)), + (pd.Categorical(['a', 'a']), np.array([0, 0], dtype='int8')), + (pd.DatetimeIndex(['2017-01-01T00:00:00']), + np.array(['2017-01-01T00:00:00'], dtype='M8[ns]')), + (pd.DatetimeIndex(['2017-01-01T00:00:00'], tz="US/Eastern"), + np.array(['2017-01-01T05:00:00'], dtype='M8[ns]')), + (pd.TimedeltaIndex([10**10]), np.array([10**10], dtype='m8[ns]')), + pytest.mark.xfail(reason='PeriodArray not implemented')(( + pd.PeriodIndex(['2017', '2018'], freq='D'), + np.array([17167, 17532]), + )), +]) +def test_ndarray_values(array, expected): + l_values = pd.Series(array)._ndarray_values + r_values = pd.Index(array)._ndarray_values + tm.assert_numpy_array_equal(l_values, r_values) + tm.assert_numpy_array_equal(l_values, expected)