diff --git a/doc/source/whatsnew/v1.1.1.rst b/doc/source/whatsnew/v1.1.1.rst index f0ad9d1ca3b0f..7f5182e3eaa6f 100644 --- a/doc/source/whatsnew/v1.1.1.rst +++ b/doc/source/whatsnew/v1.1.1.rst @@ -51,6 +51,10 @@ Categorical - - +**Groupby/resample/rolling** + +- Bug in :class:`pandas.core.groupby.RollingGroupby` where passing ``closed`` with column selection would raise a ``ValueError`` (:issue:`35549`) + **Plotting** - diff --git a/pandas/core/window/common.py b/pandas/core/window/common.py index 58e7841d4dde5..51a067427e867 100644 --- a/pandas/core/window/common.py +++ b/pandas/core/window/common.py @@ -52,7 +52,7 @@ def __init__(self, obj, *args, **kwargs): kwargs.pop("parent", None) groupby = kwargs.pop("groupby", None) if groupby is None: - groupby, obj = obj, obj.obj + groupby, obj = obj, obj._selected_obj self._groupby = groupby self._groupby.mutated = True self._groupby.grouper.mutated = True diff --git a/pandas/core/window/rolling.py b/pandas/core/window/rolling.py index 87bcaa7d9512f..ea03a7f2f8162 100644 --- a/pandas/core/window/rolling.py +++ b/pandas/core/window/rolling.py @@ -2196,7 +2196,7 @@ def _apply( # Cannot use _wrap_outputs because we calculate the result all at once # Compose MultiIndex result from grouping levels then rolling level # Aggregate the MultiIndex data as tuples then the level names - grouped_object_index = self._groupby._selected_obj.index + grouped_object_index = self.obj.index grouped_index_name = [grouped_object_index.name] groupby_keys = [grouping.name for grouping in self._groupby.grouper._groupings] result_index_names = groupby_keys + grouped_index_name @@ -2220,10 +2220,6 @@ def _apply( def _constructor(self): return Rolling - @cache_readonly - def _selected_obj(self): - return self._groupby._selected_obj - def _create_blocks(self, obj: FrameOrSeries): """ Split data into blocks & return conformed data. @@ -2262,7 +2258,7 @@ def _get_window_indexer(self, window: int) -> GroupbyRollingIndexer: rolling_indexer: Union[Type[FixedWindowIndexer], Type[VariableWindowIndexer]] if self.is_freq_type: rolling_indexer = VariableWindowIndexer - index_array = self._groupby._selected_obj.index.asi8 + index_array = self.obj.index.asi8 else: rolling_indexer = FixedWindowIndexer index_array = None @@ -2279,7 +2275,7 @@ def _gotitem(self, key, ndim, subset=None): # here so our index is carried thru to the selected obj # when we do the splitting for the groupby if self.on is not None: - self._groupby.obj = self._groupby.obj.set_index(self._on) + self.obj = self.obj.set_index(self._on) self.on = None return super()._gotitem(key, ndim, subset=subset) diff --git a/pandas/tests/window/test_grouper.py b/pandas/tests/window/test_grouper.py index 5241b9548a442..e1dcac06c39cc 100644 --- a/pandas/tests/window/test_grouper.py +++ b/pandas/tests/window/test_grouper.py @@ -304,3 +304,54 @@ def test_groupby_subselect_rolling(self): name="b", ) tm.assert_series_equal(result, expected) + + def test_groupby_rolling_subset_with_closed(self): + # GH 35549 + df = pd.DataFrame( + { + "column1": range(6), + "column2": range(6), + "group": 3 * ["A", "B"], + "date": [pd.Timestamp("2019-01-01")] * 6, + } + ) + result = ( + df.groupby("group").rolling("1D", on="date", closed="left")["column1"].sum() + ) + expected = Series( + [np.nan, 0.0, 2.0, np.nan, 1.0, 4.0], + index=pd.MultiIndex.from_tuples( + [("A", pd.Timestamp("2019-01-01"))] * 3 + + [("B", pd.Timestamp("2019-01-01"))] * 3, + names=["group", "date"], + ), + name="column1", + ) + tm.assert_series_equal(result, expected) + + def test_groupby_subset_rolling_subset_with_closed(self): + # GH 35549 + df = pd.DataFrame( + { + "column1": range(6), + "column2": range(6), + "group": 3 * ["A", "B"], + "date": [pd.Timestamp("2019-01-01")] * 6, + } + ) + + result = ( + df.groupby("group")[["column1", "date"]] + .rolling("1D", on="date", closed="left")["column1"] + .sum() + ) + expected = Series( + [np.nan, 0.0, 2.0, np.nan, 1.0, 4.0], + index=pd.MultiIndex.from_tuples( + [("A", pd.Timestamp("2019-01-01"))] * 3 + + [("B", pd.Timestamp("2019-01-01"))] * 3, + names=["group", "date"], + ), + name="column1", + ) + tm.assert_series_equal(result, expected)