From 4375daffeed16531bae3fdaf85324b590d1dcb59 Mon Sep 17 00:00:00 2001 From: Sidharthan Nair Date: Thu, 3 Oct 2019 18:25:03 +0100 Subject: [PATCH] Bugfix/groupby datetime issue (#28569) --- doc/source/whatsnew/v1.0.0.rst | 2 +- pandas/core/groupby/generic.py | 4 +++- pandas/tests/groupby/test_apply.py | 19 +++++++++++++++++++ 3 files changed, 23 insertions(+), 2 deletions(-) diff --git a/doc/source/whatsnew/v1.0.0.rst b/doc/source/whatsnew/v1.0.0.rst index 16d23d675a8bb..f8c4f9f3dc410 100644 --- a/doc/source/whatsnew/v1.0.0.rst +++ b/doc/source/whatsnew/v1.0.0.rst @@ -191,7 +191,7 @@ Datetimelike - Bug in :class:`Series` and :class:`DataFrame` with integer dtype failing to raise ``TypeError`` when adding or subtracting a ``np.datetime64`` object (:issue:`28080`) - Bug in :class:`Week` with ``weekday`` incorrectly raising ``AttributeError`` instead of ``TypeError`` when adding or subtracting an invalid type (:issue:`28530`) - Bug in :class:`DataFrame` arithmetic operations when operating with a :class:`Series` with dtype `'timedelta64[ns]'` (:issue:`28049`) -- +- Bug in :func:`pandas.core.groupby.generic.SeriesGroupBy.apply` raising ``ValueError`` when a column in the original DataFrame is a datetime and the column labels are not standard integers (:issue:`28247`) Timedelta ^^^^^^^^^ diff --git a/pandas/core/groupby/generic.py b/pandas/core/groupby/generic.py index b5aec189700ce..e556708dc9283 100644 --- a/pandas/core/groupby/generic.py +++ b/pandas/core/groupby/generic.py @@ -1913,7 +1913,9 @@ def _recast_datetimelike_result(result: DataFrame) -> DataFrame: result = result.copy() obj_cols = [ - idx for idx in range(len(result.columns)) if is_object_dtype(result.dtypes[idx]) + idx + for idx in range(len(result.columns)) + if is_object_dtype(result.dtypes.iloc[idx]) ] # See GH#26285 diff --git a/pandas/tests/groupby/test_apply.py b/pandas/tests/groupby/test_apply.py index 76588549532b1..4d0063b773bc5 100644 --- a/pandas/tests/groupby/test_apply.py +++ b/pandas/tests/groupby/test_apply.py @@ -657,3 +657,22 @@ def test_apply_with_mixed_types(): result = g.apply(lambda x: x / x.sum()) tm.assert_frame_equal(result, expected) + + +@pytest.mark.parametrize( + "group_column_dtlike", + [datetime.today(), datetime.today().date(), datetime.today().time()], +) +def test_apply_datetime_issue(group_column_dtlike): + # GH-28247 + # groupby-apply throws an error if one of the columns in the DataFrame + # is a datetime object and the column labels are different from + # standard int values in range(len(num_columns)) + + df = pd.DataFrame({"a": ["foo"], "b": [group_column_dtlike]}) + result = df.groupby("a").apply(lambda x: pd.Series(["spam"], index=[42])) + + expected = pd.DataFrame( + ["spam"], Index(["foo"], dtype="object", name="a"), columns=[42] + ) + tm.assert_frame_equal(result, expected)