From 4b188ae8f73e5ecf1482690f6bf2724512a0692c Mon Sep 17 00:00:00 2001 From: Lyndon White Date: Tue, 4 Oct 2016 11:10:09 +0800 Subject: [PATCH] =Work on #17474 squashme --- base/special/gamma.jl | 181 ++++++++++++++++++++++-------------------- base/sysimg.jl | 2 +- test/math.jl | 7 +- 3 files changed, 100 insertions(+), 90 deletions(-) diff --git a/base/special/gamma.jl b/base/special/gamma.jl index 3bf5958e7ec5b4..1552c3385dd5eb 100644 --- a/base/special/gamma.jl +++ b/base/special/gamma.jl @@ -1,4 +1,5 @@ # This file is a part of Julia. License is MIT: http://julialang.org/license +typealias ComplexOrReal{T} Union{T,Complex{T}} gamma(x::Float64) = nan_dom_err(ccall((:tgamma,libm), Float64, (Float64,), x), x) gamma(x::Float32) = nan_dom_err(ccall((:tgammaf,libm), Float32, (Float32,), x), x) @@ -147,7 +148,7 @@ gamma(z::Complex) = exp(lgamma(z)) Compute the digamma function of `x` (the logarithmic derivative of `gamma(x)`) """ -function digamma(z::Union{Float64,Complex{Float64}}) +function digamma(z::ComplexOrReal{Float64}) # Based on eq. (12), without looking at the accompanying source # code, of: K. S. Kölbig, "Programs for computing the logarithm of # the gamma function, and the digamma function, for complex @@ -181,7 +182,7 @@ end Compute the trigamma function of `x` (the logarithmic second derivative of `gamma(x)`). """ -function trigamma(z::Union{Float64,Complex{Float64}}) +function trigamma(z::ComplexOrReal{Float64}) # via the derivative of the Kölbig digamma formulation x = real(z) if x <= 0 # reflection formula @@ -343,8 +344,8 @@ the Riemann zeta function ``\\zeta(s)``. """ zeta(s,z) -function zeta(s::Union{Int,Float64,Complex{Float64}}, - z::Union{Float64,Complex{Float64}}) +function zeta(s::Union{Int, ComplexOrReal{Float64}}, + z::ComplexOrReal{Float64}) ζ = zero(promote_type(typeof(s), typeof(z))) (z == 1 || z == 0) && return oftype(ζ, zeta(s)) @@ -449,7 +450,7 @@ end Compute the polygamma function of order `m` of argument `x` (the `(m+1)th` derivative of the logarithm of `gamma(x)`) """ -function polygamma(m::Integer, z::Union{Float64,Complex{Float64}}) +function polygamma(m::Integer, z::ComplexOrReal{Float64}) m == 0 && return digamma(z) m == 1 && return trigamma(z) @@ -475,83 +476,6 @@ function polygamma(m::Integer, z::Union{Float64,Complex{Float64}}) end end -# TODO: better way to do this -f64(x::Real) = Float64(x) -f64(z::Complex) = Complex128(z) -f32(x::Real) = Float32(x) -f32(z::Complex) = Complex64(z) -f16(x::Real) = Float16(x) -f16(z::Complex) = Complex32(z) - -# If we really cared about single precision, we could make a faster -# Float32 version by truncating the Stirling series at a smaller cutoff. -# and if we really cared about half precision, we could make a faster -# Float16 version, by using a precomputed table look-up. -for (f,T) in ((:f32,Float32),(:f16,Float16)) - @eval begin - zeta(s::Integer, z::Union{$T,Complex{$T}}) = $f(zeta(Int(s), f64(z))) - zeta(s::Union{Float64,Complex128}, z::Union{$T,Complex{$T}}) = zeta(s, f64(z)) - zeta(s::Number, z::Union{$T,Complex{$T}}) = $f(zeta(f64(s), f64(z))) - polygamma(m::Integer, z::Union{$T,Complex{$T}}) = $f(polygamma(Int(m), f64(z))) - digamma(z::Union{$T,Complex{$T}}) = $f(digamma(f64(z))) - trigamma(z::Union{$T,Complex{$T}}) = $f(trigamma(f64(z))) - end -end - - -function zeta(s::Integer, z::Number) - x = float(z) - t = Int(s) - if typeof(x) === typeof(z) && typeof(t) === typeof(s) - throw MethodError(zeta,(s,t)) - end - oftype(x, zeta(t, x)) -end - -function zeta(s::Number, z::Number) - x = float(z) - t = float(s) - if typeof(x) === typeof(z) && typeof(t) === typeof(s) - throw MethodError(zeta,(s,t)) - end - oftype(x, zeta(t, x)) -end - - -function polygamma(m::Integer, z::Number) - x = float(z) - typeof(x) == typeof(z) && throw(MethodError(polygamma, (m,z)) - oftype(x,polygamma(m, x)) -end - - -for f in (:digamma, :trigamma, :zeta, :eta, invdigamma) - @eval begin - $f(z::Base.BitInteger) = $f(Float64(z)) - $f(z::Float32) = Float32($f(Float64(z))) - $f(z::Float16) = Float16($f(Float64(z))) - - function $f(z::Number) - x = float(z) - typeof(x) == typeof(z) && throw(MethodError($f, (z,))) - oftype(x, $f(x)) - end - end -end - -for f in (:zeta, :eta) - @eval begin - $f{T<:Union{Base.BitInteger,Float32,Float16}}(x::t) = oftype(float(x), $f(Complex128(z))) - - function $f(z::Complex) - x = float(z) - typeof(x) == typeof(z) && throw(MethodError($f, (z,))) - oftype(x, $f(Complex(x)) - end - end -end - - """ invdigamma(x) @@ -559,10 +483,10 @@ end Compute the inverse [`digamma`](:func:`digamma`) function of `x`. """ function invdigamma(y::Float64) - # Implementation of fixed point algorithm described in - # "Estimating a Dirichlet distribution" by Thomas P. Minka, 2000 + # Implementation of fixed point algorithm described in + # "Estimating a Dirichlet distribution" by Thomas P. Minka, 2000 - # Closed form initial estimates + # Closed form initial estimates if y >= -2.22 x_old = exp(y) + 0.5 x_new = x_old @@ -610,7 +534,7 @@ lbeta(x::Number, w::Number) = lgamma(x)+lgamma(w)-lgamma(x+w) Riemann zeta function ``\\zeta(s)``. """ -function zeta(s::Union{Float64,Complex{Float64}}) +function zeta(s::ComplexOrReal{Float64}) # Riemann zeta function; algorithm is based on specializing the Hurwitz # zeta function above for z==1. @@ -665,7 +589,7 @@ end Dirichlet eta function ``\\eta(s) = \\sum^\\infty_{n=1}(-1)^{n-1}/n^{s}``. """ -function eta(z::Union{Float64,Complex{Float64}}) +function eta(z::ComplexOrReal{Float64}) δz = 1 - z if abs(real(δz)) + abs(imag(δz)) < 7e-3 # Taylor expand around z==1 return 0.6931471805599453094172321214581765 * @@ -680,3 +604,86 @@ function eta(z::Union{Float64,Complex{Float64}}) end end + +# Converting types that we can convert, and not ones we can not +# If we really cared about single precision, we could make a faster +# Float32 version by truncating the Stirling series at a smaller cutoff. +# and if we really cared about half precision, we could make a faster +# Float16 version, by using a precomputed table look-up. + +f64(x::Union{Base.BitInteger, Float16, Float32, Float64}) = Float64(x) +f64(x::Complex{Union{Base.BitInteger, Float16, Float32, Float64}}) = Complex128(x) +ofpromotedtype(as, c) = oftype(promote(as...), c) + +for T in (Float32, Float16) + @eval begin + polygamma(m::Integer, z::ComplexOrReal{T}) = ofpromotedtype((m,z), polygamma(Int(m), f64(z))) + digamma(z::ComplexOrReal{$T}) = oftype(z, digamma(f64(z))) + trigamma(z::ComplexOrReal{$T}) = oftype(z, trigamma(f64(z))) + zeta(s::Integer, z::ComplexOrReal{$T}}) = ofpromotedtype((s,z), zeta(Int(s), f64(z))) + end +end + +function zeta(s::ComplexOrReal{Union{Float16, Float32}}, + z::ComplexOrReal{Union{Float16, Float32, Float64, Base.BitInteger}) + ofpromotedtype((s, z), zeta(f64(s), f64(z))) +end + + +function zeta(s::Integer, z::Number) + x = float(z) + t = Int(s) + if typeof(x) === typeof(z) && typeof(t) === typeof(s) + # There is nothing to fallback to, since this didn't work + throw(MethodError(zeta,(s,t))) + end + ofpromotedtype((x,y), zeta(t, x)) +end + +function zeta(s::Number, z::Number) + x = float(z) + t = float(s) + if typeof(x) === typeof(z) && typeof(t) === typeof(s) + # There is nothing to fallback to, since this didn't work + throw(MethodError(zeta,(s,t))) + end + ofpromotedtype((x,t), zeta(t, x)) +end + + +function polygamma(m::Integer, z::Number) + x = float(z) + typeof(x) == typeof(z) && throw(MethodError(polygamma, (m,z))) + # There is nothing to fallback to, since this didn't work + oftype(x, polygamma(m, x)) +end + + +for f in (:digamma, :trigamma, :zeta, :eta, :invdigamma) + @eval begin + $f(z::Base.BitInteger) = $f(Float64(z)) + $f(z::Float32) = Float32($f(Float64(z))) + $f(z::Float16) = Float16($f(Float64(z))) + + function $f(z::Number) + x = float(z) + typeof(x) == typeof(z) && throw(MethodError($f, (z,))) + # There is nothing to fallback to, since this didn't work + oftype(x, $f(x)) + end + end +end + +for f in (:zeta, :eta) + @eval begin + $f{T<:Union{Base.BitInteger,Float32,Float16}}(z::Complex{T}) = oftype(float(z), $f(Complex128(z))) + + function $f(z::Complex) + x = float(z) + typeof(x) == typeof(z) && throw(MethodError($f, (z,))) + # There is nothing to fallback to, since this didn't work + oftype(x, $f(x)) + end + end +end + diff --git a/base/sysimg.jl b/base/sysimg.jl index 755dc3393d3fce..0050cdb4af77b6 100644 --- a/base/sysimg.jl +++ b/base/sysimg.jl @@ -372,7 +372,7 @@ function __init__() end include = include_from_node1 -include("precompile.jl") +#include("precompile.jl") #Don't commit me. Speed up testing l end # baremodule Base diff --git a/test/math.jl b/test/math.jl index 57426ff7b542f2..d8f35bbc15df4f 100644 --- a/test/math.jl +++ b/test/math.jl @@ -885,5 +885,8 @@ end @test_throws MethodError trigamma(big"2") @test_throws MethodError trigamma(big"2.0") @test_throws MethodError invdigamma(big"2") -@test_throws MethodError invdiamma(big"2.0") - +@test_throws MethodError invdigamma(big"2.0") +@test_throws MethodError eta(Complex(big"2")) +@test_throws MethodError eta(Complex(big"2.0")) +@test_throws MethodError zeta(Complex(big"2")) +@test_throws MethodError zeta(Complex(big"2.0"))