-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathinfer.py
41 lines (33 loc) · 1.48 KB
/
infer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
import argparse
import bitnet
from torch import nn
from transformers import AutoTokenizer
from layers import attention, mamba
from layers.jetmoe.utils import parallel_experts
from model.modeling_anemone import AnemoneForCausalLM
def infer(model_name: str, prompt):
if "mixed-precision" in model_name or "v4" in model_name:
attention.BitLinearNew.forward = nn.Linear.forward # Replace bitlinear for attention
parallel_experts.BitLinearNew.forward = nn.Linear.forward
if "M-A-mixed-precision" in model_name:
attention.BitLinearNew.forward = nn.Linear.forward
parallel_experts.BitLinearNew.forward = nn.Linear.forward
mamba.BitLinearNew.forward = nn.Linear.forward
if "bf16" in model_name:
bitnet.BitLinearNew.forward = nn.Linear.forward
model = AnemoneForCausalLM.from_pretrained(model_name)
tokenizer = AutoTokenizer.from_pretrained(model_name)
inputs = tokenizer(prompt, return_tensors="pt")
model.to("cuda")
inputs.to("cuda")
output = model.generate(**inputs, max_length=100, repetition_penalty=1.4,)
print(tokenizer.decode(output[0]))
if __name__ == "__main__":
# parse arguments
parser = argparse.ArgumentParser()
parser.add_argument("--prompt", type=str, default="This is a story about")
parser.add_argument("--model_name", type=str, default="MoMv3-mixed-precision")
args = parser.parse_args()
model_name = "Ostixe360/"+args.model_name
prompt = args.prompt
infer(model_name, prompt)