From d373a85cca11054e900b12bfa6679f1732b8af8d Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?Lars=20G=C3=B6ttgens?= Date: Fri, 16 Feb 2024 12:39:07 +0100 Subject: [PATCH] Change some things from British to American spelling (#3367) * `factorisations` -> `factorizations` * comment and docu fixes * Add `centraliser` -> `centralizer` deprecation * `neighbour` -> `neighbor` --- README.md | 2 +- .../Experimental/Singularities/space_germs.md | 2 +- docs/src/NumberTheory/galois.md | 2 +- experimental/GModule/Cohomology.jl | 4 +-- experimental/GModule/GModule.jl | 2 +- experimental/GModule/GaloisCohomology.jl | 2 +- .../QuadFormAndIsom/src/embeddings.jl | 2 +- experimental/Schemes/SpaceGerms.jl | 2 +- src/Groups/sub.jl | 2 -- src/NumberTheory/GaloisGrp/GaloisGrp.jl | 2 +- src/NumberTheory/GaloisGrp/Qt.jl | 2 +- src/NumberTheory/NmbThy.jl | 6 ++-- src/TropicalGeometry/groebner_fan.jl | 4 +-- src/TropicalGeometry/hypersurface.jl | 2 +- src/TropicalGeometry/linear_space.jl | 8 ++--- src/TropicalGeometry/variety.jl | 30 +++++++++---------- src/deprecations.jl | 3 ++ src/exports.jl | 2 +- test/NumberTheory/nmbthy.jl | 4 +-- 19 files changed, 42 insertions(+), 41 deletions(-) diff --git a/README.md b/README.md index 595a9923be14..e91e73bc2e41 100644 --- a/README.md +++ b/README.md @@ -54,7 +54,7 @@ julia> zk = maximal_order(k) Maximal order of Imaginary quadratic field defined by x^2 + 5 with basis AbsSimpleNumFieldElem[1, sqrt(-5)] -julia> factorisations(zk(6)) +julia> factorizations(zk(6)) 2-element Vector{Fac{AbsSimpleNumFieldOrderElem}}: -1 * -3 * 2 -1 * (-sqrt(-5) - 1) * (-sqrt(-5) + 1) diff --git a/docs/src/Experimental/Singularities/space_germs.md b/docs/src/Experimental/Singularities/space_germs.md index 0e9f215a227e..0457ead8759d 100644 --- a/docs/src/Experimental/Singularities/space_germs.md +++ b/docs/src/Experimental/Singularities/space_germs.md @@ -6,7 +6,7 @@ CurrentModule = Oscar ## [Generalities on Space germs](@id space_germ_generalities) -The geometric notion of a space germ is a local concept. A space germ $(X,x)$ at a point $x$ is an equivalence class of ringed spaces, each of which contains $x$ in its underlying topological space, and the equivalence relation is precisely the existence of an open neighbourhood of $x$ on which the spaces coincide. +The geometric notion of a space germ is a local concept. A space germ $(X,x)$ at a point $x$ is an equivalence class of ringed spaces, each of which contains $x$ in its underlying topological space, and the equivalence relation is precisely the existence of an open neighborhood of $x$ on which the spaces coincide. Depending on the kind of ringed space in question, space germs arise in different forms: diff --git a/docs/src/NumberTheory/galois.md b/docs/src/NumberTheory/galois.md index 3521c038ae44..df8a02f60dd9 100644 --- a/docs/src/NumberTheory/galois.md +++ b/docs/src/NumberTheory/galois.md @@ -41,7 +41,7 @@ between `K` and `k` can be computed as well. ## Automorphism Group -The automorphisms are computed using various specialised factoring +The automorphisms are computed using various specialized factoring algorithms: lifting the roots of the defining polynomial in the given field modulo suitable prime ideal powers and recovering the true roots from this information. diff --git a/experimental/GModule/Cohomology.jl b/experimental/GModule/Cohomology.jl index f4d8fe6cf8f3..6762947010f4 100644 --- a/experimental/GModule/Cohomology.jl +++ b/experimental/GModule/Cohomology.jl @@ -291,7 +291,7 @@ function induce(C::GModule{<:Oscar.GAPGroup, FinGenAbGroup}, h::Map, D = nothing #= C is Z[U] module, we needd C otimes Z[G] - any pure tensor c otimes g can be "normalised" g = u*g_i for one of the + any pure tensor c otimes g can be "normalized" g = u*g_i for one of the reps fixed above, so c otimes g = c otimes u g_i == cu otimes g_i For the G-action we thus get @@ -2080,7 +2080,7 @@ function extension(::Type{PcGroup}, c::CoChain{2,<:Oscar.PcGroupElem}) # F^p = w (order relation) # compute (F, 0)^p = (?, t) = (?, 0)(1, t) # compute (w, 0) = (?, s) = (?, 0)(1, s) - # so (?, 0) = (w, 0)(1,s)^-1= (w, 0)(1,-s) if chain is normalised + # so (?, 0) = (w, 0)(1,s)^-1= (w, 0)(1,-s) if chain is normalized # thus (F, 0)^p = (?, 0)(1, t) = (w, 0)(1,-s)(1, t) # the ? should be identical, namely the collected version of w # then (F, 0)^p = (w, t-s) might be the answer diff --git a/experimental/GModule/GModule.jl b/experimental/GModule/GModule.jl index d52cd4a9dbf4..11dfc8eaff02 100644 --- a/experimental/GModule/GModule.jl +++ b/experimental/GModule/GModule.jl @@ -728,7 +728,7 @@ function _two_cocycle(mA::Map, C::GModule{<:Any, <:AbstractAlgebra.FPModule{AbsS end I = identity_matrix(K, dim(C)) - @vprint :MinField 1 "computing un-normalised 1-chain (of matrices)\n" + @vprint :MinField 1 "computing un-normalized 1-chain (of matrices)\n" # pairs: (g, X_g) with operation (g, X_g)(h, X_h) = (gh, X_g^h * X_h) @vtime :MinField 2 c = closure([(gen(G, i), homs[i]) for i=1:ngens(G)], diff --git a/experimental/GModule/GaloisCohomology.jl b/experimental/GModule/GaloisCohomology.jl index 5d6ff89b807b..bead762397c7 100644 --- a/experimental/GModule/GaloisCohomology.jl +++ b/experimental/GModule/GaloisCohomology.jl @@ -1292,7 +1292,7 @@ end For `K/k` a number field, where `k` has to be Antic or QQField and `K` Antic return a container for the relative Brauer group parametrizing central -simple algebras with center `k` that are split by `K` (thus can be realised +simple algebras with center `k` that are split by `K` (thus can be realized as a 2-cochain with values in `K`) """ mutable struct RelativeBrauerGroup diff --git a/experimental/QuadFormAndIsom/src/embeddings.jl b/experimental/QuadFormAndIsom/src/embeddings.jl index 5015532d4bf6..a0468f772937 100644 --- a/experimental/QuadFormAndIsom/src/embeddings.jl +++ b/experimental/QuadFormAndIsom/src/embeddings.jl @@ -1710,7 +1710,7 @@ function admissible_equivariant_primitive_extensions(A::ZZLatWithIsom, # We look for the GA|GB-invariant and fA|fB-stable subgroups of VA|VB which respectively # contained lpqA|lpqB, where pqA and pqB are respectively the p-primary parts of qA and qB. - # This is done by computing orbits and stabilisers of VA/lpqA (resp VB/lpqB) + # This is done by computing orbits and stabilizers of VA/lpqA (resp VB/lpqB) # seen as a F_p-vector space under the action of GA (resp. GB). Then we check which ones # are fA-stable (resp. fB-stable) subsA = _subgroups_orbit_representatives_and_stabilizers_elementary(VAinqA, GA, p^g, fqA, ZZ(l)) diff --git a/experimental/Schemes/SpaceGerms.jl b/experimental/Schemes/SpaceGerms.jl index 0743396cb9e8..a48a584a6e83 100644 --- a/experimental/Schemes/SpaceGerms.jl +++ b/experimental/Schemes/SpaceGerms.jl @@ -592,7 +592,7 @@ end CompleteIntersectionGerm(X::AbsSpec, p::AbsAffineRationalPoint) CompleteIntersectionGerm(p::AbsAffineRationalPoint) -Return a complete intersection germ `(X,p)` for a given `X`and a rational point `p` on some affine scheme `Y`, provided that $X$ is locally a complete intersection in some neighbourhood of `p`. If no `X` is specified, `Y` is used in its place. +Return a complete intersection germ `(X,p)` for a given `X`and a rational point `p` on some affine scheme `Y`, provided that $X$ is locally a complete intersection in some neighborhood of `p`. If no `X` is specified, `Y` is used in its place. """ CompleteIntersectionGerm(p::AbsAffineRationalPoint) = CompleteIntersectionGerm(codomain(p), coordinates(p)) diff --git a/src/Groups/sub.jl b/src/Groups/sub.jl index 76c606f9cbf5..2932195d1a50 100644 --- a/src/Groups/sub.jl +++ b/src/Groups/sub.jl @@ -354,8 +354,6 @@ function centralizer(G::GAPGroup, x::GAPGroupElem) return _as_subgroup(G, GAP.Globals.Centralizer(G.X, x.X)) end -const centraliser = centralizer # FIXME/TODO: use @alias? - ################################################################################ # # diff --git a/src/NumberTheory/GaloisGrp/GaloisGrp.jl b/src/NumberTheory/GaloisGrp/GaloisGrp.jl index 3f27edfa4751..6bdf9fcf5cb4 100644 --- a/src/NumberTheory/GaloisGrp/GaloisGrp.jl +++ b/src/NumberTheory/GaloisGrp/GaloisGrp.jl @@ -1669,7 +1669,7 @@ function starting_group(GC::GaloisCtx, K::T; useSubfields::Bool = true) where T O = sum_orbits(K, x->mk(pc(map_coeff(GC, x))), map(mk, c)) GC.start = (2, O) - #the factors define a partitioning of pairs, the stabiliser of this + #the factors define a partitioning of pairs, the stabilizer of this #partition is the largest possible group... #code from Max... diff --git a/src/NumberTheory/GaloisGrp/Qt.jl b/src/NumberTheory/GaloisGrp/Qt.jl index bb5e2a311a3e..b6cd7f0c2498 100644 --- a/src/NumberTheory/GaloisGrp/Qt.jl +++ b/src/NumberTheory/GaloisGrp/Qt.jl @@ -710,7 +710,7 @@ function Hecke.newton_polygon(f::T) where T <: Generic.Poly{S} where S <: Union{ dev = collect(coefficients(f)) d = degree(base_ring(f)) a = Tuple{Int, Int}[] - #careful: valuation is q-valued, normalised for val(p) == 1 + #careful: valuation is q-valued, normalized for val(p) == 1 # lines have Int corredinated, so we scale by the degree of the field # => the slopes are also multiplied by this!!! for i = 0:length(dev) -1 diff --git a/src/NumberTheory/NmbThy.jl b/src/NumberTheory/NmbThy.jl index a6670cc19996..50a04d723f84 100644 --- a/src/NumberTheory/NmbThy.jl +++ b/src/NumberTheory/NmbThy.jl @@ -183,11 +183,11 @@ end =# @doc raw""" - factorisations(a::AbsNumFieldOrderElem{AbsSimpleNumField,AbsSimpleNumFieldElem}) -> Vector{Fac{OrdElem}} + factorizations(a::AbsNumFieldOrderElem{AbsSimpleNumField,AbsSimpleNumFieldElem}) -> Vector{Fac{OrdElem}} -Return all factorisations of $a$ into irreducibles. +Return all factorizations of $a$ into irreducibles. """ -function factorisations(a::AbsNumFieldOrderElem{AbsSimpleNumField,AbsSimpleNumFieldElem}) +function factorizations(a::AbsNumFieldOrderElem{AbsSimpleNumField,AbsSimpleNumFieldElem}) O = parent(a) S = collect(keys(factor(a*O))) if length(S) == 0 diff --git a/src/TropicalGeometry/groebner_fan.jl b/src/TropicalGeometry/groebner_fan.jl index 7b960cc551f6..9f568b2b92aa 100644 --- a/src/TropicalGeometry/groebner_fan.jl +++ b/src/TropicalGeometry/groebner_fan.jl @@ -426,8 +426,8 @@ function groebner_fan(I::MPolyIdeal; # Starting cone ### C = maximal_groebner_cone(G,ord,homogeneityWeight) - workingList = [(G,ord,C,unique_identifying_point(C))] # list of Groebner cones whose neighbours may be unknown - finishedList = typeof(workingList)() # list of Groebner cones whose neighbours are known + workingList = [(G,ord,C,unique_identifying_point(C))] # list of Groebner cones whose neighbors may be unknown + finishedList = typeof(workingList)() # list of Groebner cones whose neighbors are known finishedFacets = Vector{Vector{ZZRingElem}}() # list of interior facet points whose facet has been traversed diff --git a/src/TropicalGeometry/hypersurface.jl b/src/TropicalGeometry/hypersurface.jl index a1045642099a..d7ca5a50d099 100644 --- a/src/TropicalGeometry/hypersurface.jl +++ b/src/TropicalGeometry/hypersurface.jl @@ -142,7 +142,7 @@ Min tropical hypersurface """ function tropical_hypersurface(f::MPolyRingElem, nu::Union{Nothing,TropicalSemiringMap}=nothing; weighted_polyhedral_complex_only::Bool=false) - # initialise nu as the trivial valuation if not specified by user + # initialize nu as the trivial valuation if not specified by user isnothing(nu) && (nu=tropical_semiring_map(coefficient_ring(f))) tropf = tropical_polynomial(f,nu) diff --git a/src/TropicalGeometry/linear_space.jl b/src/TropicalGeometry/linear_space.jl index dd8c4413df5b..295d120f7a55 100644 --- a/src/TropicalGeometry/linear_space.jl +++ b/src/TropicalGeometry/linear_space.jl @@ -163,7 +163,7 @@ Min tropical linear space ``` """ function tropical_linear_space(plueckerIndices::Vector{Vector{Int}}, plueckerVector::Vector, nu::Union{Nothing,TropicalSemiringMap}=nothing; weighted_polyhedral_complex_only::Bool=false) - # if nu unspecified, initialise as the trivial valuation + min convention + # if nu unspecified, initialize as the trivial valuation + min convention isnothing(nu) && (nu=tropical_semiring_map(parent(first(plueckerVector)))) TropL = tropical_linear_space(plueckerIndices, @@ -195,7 +195,7 @@ Min tropical linear space ``` """ function tropical_linear_space(k::Int, n::Int, plueckerVector::Vector, nu::Union{Nothing,TropicalSemiringMap}=nothing; weighted_polyhedral_complex_only::Bool=false) - # if nu unspecified, initialise as the trivial valuation + min convention + # if nu unspecified, initialize as the trivial valuation + min convention isnothing(nu) && (nu=tropical_semiring_map(parent(first(plueckerVector)))) TropL = tropical_linear_space(AbstractAlgebra.combinations(1:n,k), nu.(plueckerVector), weighted_polyhedral_complex_only=weighted_polyhedral_complex_only) @@ -261,7 +261,7 @@ Min tropical linear space ``` """ function tropical_linear_space(A::MatElem, nu::Union{Nothing,TropicalSemiringMap}=nothing; weighted_polyhedral_complex_only::Bool=false) - # if nu unspecified, initialise as the trivial valuation + min convention + # if nu unspecified, initialize as the trivial valuation + min convention isnothing(nu) && (nu=tropical_semiring_map(base_ring(A))) n = max(nrows(A), ncols(A)) @@ -302,7 +302,7 @@ Min tropical linear space ``` """ function tropical_linear_space(I::MPolyIdeal, nu::Union{Nothing,TropicalSemiringMap}=nothing; weighted_polyhedral_complex_only::Bool=false) - # initialise nu as the trivial valuation if not specified by user + # initialize nu as the trivial valuation if not specified by user isnothing(nu) && (nu=tropical_semiring_map(coefficient_ring(I))) x = gens(base_ring(I)) diff --git a/src/TropicalGeometry/variety.jl b/src/TropicalGeometry/variety.jl index a6dce2036415..81f9be02a4e7 100644 --- a/src/TropicalGeometry/variety.jl +++ b/src/TropicalGeometry/variety.jl @@ -163,7 +163,7 @@ julia> tropical_variety(I) function tropical_variety(I::Union{MPolyIdeal,MPolyRingElem}, nu::Union{TropicalSemiringMap,Nothing}=nothing; weighted_polyhedral_complex_only::Bool=false, skip_saturation::Bool=false, skip_primary_decomposition::Bool=false) ### # Step 0.a: convert I to ideal if poly, - # initialise nu as the trivial valuation if not specified by user + # initialize nu as the trivial valuation if not specified by user ### if I isa MPolyRingElem I = ideal(parent(I),[I]) @@ -559,8 +559,8 @@ end # # * w is a weight vector with respect to which G is a Groebner basis, # # * w is compatible with coordinate permutations if symmetries exist, # # * instead of comparing C or G it suffices to compare w. -# working_list_todo = [] # list of groebner polyhedra with potentially unknown neighbours -# working_list_done = [] # list of groebner polyhedra with known neighbours +# working_list_todo = [] # list of groebner polyhedra with potentially unknown neighbors +# working_list_done = [] # list of groebner polyhedra with known neighbors # facet_points_done = [] # list of facet points whose tropical links were computed and traversed # compute_starting_points = true @@ -623,29 +623,29 @@ end # directions_to_traverse = tropical_link(ideal(G),val,point_to_traverse) # todo, this output can be wrong # for direction_to_traverse in directions_to_traverse -# # compute neighbour +# # compute neighbor # print("computing groebner_basis for ",point_to_traverse,direction_to_traverse,"... ") -# G_neighbour = groebner_flip(G,val,w,point_to_traverse,direction_to_traverse) +# G_neighbor = groebner_flip(G,val,w,point_to_traverse,direction_to_traverse) # println("done") -# C_neighbour = groebner_polyhedron(G_neighbour,val,point_to_traverse,perturbation=direction_to_traverse) -# w_neighbour = anchor_point(C_neighbour) +# C_neighbor = groebner_polyhedron(G_neighbor,val,point_to_traverse,perturbation=direction_to_traverse) +# w_neighbor = anchor_point(C_neighbor) -# # if neighbour is already in done list, skip +# # if neighbor is already in done list, skip # i = searchsortedfirst(working_list_done, -# (w_neighbour,C_neighbour,G_neighbour), +# (w_neighbor,C_neighbor,G_neighbor), # by=x->x[1]) -# if i<=length(working_list_done) && working_list_done[i][1]==w_neighbour +# if i<=length(working_list_done) && working_list_done[i][1]==w_neighbor # continue # end -# # if neighbour is already in todo list, skip +# # if neighbor is already in todo list, skip # i = searchsortedfirst(working_list_todo, -# (w_neighbour,C_neighbour,G_neighbour), +# (w_neighbor,C_neighbor,G_neighbor), # by=x->x[1]) -# if i<=length(working_list_todo) && working_list_todo[i][1]==w_neighbour +# if i<=length(working_list_todo) && working_list_todo[i][1]==w_neighbor # continue # end -# # otherwise, add neighbour to todo list -# insert!(working_list_todo, i, (w_neighbour,C_neighbour,G_neighbour)) +# # otherwise, add neighbor to todo list +# insert!(working_list_todo, i, (w_neighbor,C_neighbor,G_neighbor)) # end # end # end diff --git a/src/deprecations.jl b/src/deprecations.jl index fc436b0902b4..9c7b6a37fbb1 100644 --- a/src/deprecations.jl +++ b/src/deprecations.jl @@ -70,3 +70,6 @@ Base.@deprecate_binding jacobi_ideal jacobian_ideal @deprecate has_number_small_groups has_number_of_small_groups @deprecate number_transitive_groups number_of_transitive_groups @deprecate has_number_transitive_groups has_number_of_transitive_groups + +@deprecate factorisations factorizations +@deprecate centraliser centralizer diff --git a/src/exports.jl b/src/exports.jl index f129e80404cb..00e174ec89f7 100644 --- a/src/exports.jl +++ b/src/exports.jl @@ -513,7 +513,7 @@ export facet_indices export facet_sizes export facets export factor_of_direct_product -export factorisations +export factorizations export fano_matroid export fano_simplex export fat_ideal diff --git a/test/NumberTheory/nmbthy.jl b/test/NumberTheory/nmbthy.jl index f882f3a9d4a9..058cb21f27e5 100644 --- a/test/NumberTheory/nmbthy.jl +++ b/test/NumberTheory/nmbthy.jl @@ -4,10 +4,10 @@ using Test function evalu(x::Fac) return x.unit * prod(p*k for (p,k) = x.fac) end -@testset "Polymake.factorisations" begin +@testset "Polymake.factorizations" begin k, a = quadratic_field(-5) zk = maximal_order(k) - f = factorisations(zk(6)) + f = factorizations(zk(6)) @test length(f) == 2 @test all(x -> evalu(x) == 6, f) end