diff --git a/Project.toml b/Project.toml index 03b97bd6b0d0..6fd19b2f6fa1 100644 --- a/Project.toml +++ b/Project.toml @@ -26,16 +26,16 @@ UUIDs = "cf7118a7-6976-5b1a-9a39-7adc72f591a4" cohomCalg_jll = "5558cf25-a90e-53b0-b813-cadaa3ae7ade" [compat] -AbstractAlgebra = "0.43.11" +AbstractAlgebra = "0.44.0" AlgebraicSolving = "0.8.0" Distributed = "1.6" GAP = "0.12.0" -Hecke = "0.34.7" +Hecke = "0.35.0" JSON = "^0.20, ^0.21" JSON3 = "1.13.2" LazyArtifacts = "1.6" Markdown = "1.6" -Nemo = "0.47.1" +Nemo = "0.48.0" Pkg = "1.6" Polymake = "0.11.20" ProgressMeter = "1.10.2" diff --git a/test/book/specialized/brandhorst-zach-fibration-hopping/vinberg_1.jlcon b/test/book/specialized/brandhorst-zach-fibration-hopping/vinberg_1.jlcon index fcfbfc80f870..ba1de8527d16 100644 --- a/test/book/specialized/brandhorst-zach-fibration-hopping/vinberg_1.jlcon +++ b/test/book/specialized/brandhorst-zach-fibration-hopping/vinberg_1.jlcon @@ -6,8 +6,10 @@ Fraction field of univariate polynomial ring in t over QQ julia> E = elliptic_curve(Qtf, [0,0,0,0,t^5*(t-1)^2]) -Elliptic curve with equation -y^2 = x^3 + t^7 - 2*t^6 + t^5 +Elliptic curve + over fraction field of Qt +with equation + y^2 = x^3 + t^7 - 2*t^6 + t^5 julia> j_invariant(E) 0 diff --git a/test/book/specialized/brandhorst-zach-fibration-hopping/vinberg_2.jlcon b/test/book/specialized/brandhorst-zach-fibration-hopping/vinberg_2.jlcon index e36b701630ba..376a1d089a91 100644 --- a/test/book/specialized/brandhorst-zach-fibration-hopping/vinberg_2.jlcon +++ b/test/book/specialized/brandhorst-zach-fibration-hopping/vinberg_2.jlcon @@ -184,8 +184,10 @@ julia> (x,y) = gens(R); P = K_t.([0,0]); # rational point julia> g, _ = transform_to_weierstrass(g, x, y, P); julia> E4 = elliptic_curve(g, x, y) -Elliptic curve with equation -y^2 = x^3 + 1//4*t^4*x^2 - 1//2*t^2*x + 1//4 +Elliptic curve + over fraction field of univariate polynomial ring +with equation + y^2 = x^3 + 1//4*t^4*x^2 - 1//2*t^2*x + 1//4 julia> g,_ = two_neighbor_step(Y2, fibers_in_Y2[5]);g t^2*x^3 + (-1//4*t^4 + 2*t)*x^2 + x + y^2 @@ -197,8 +199,10 @@ julia> (x,y) = gens(R); P = K_t.([0,0]); # rational point julia> g, _ = transform_to_weierstrass(g, x, y, P); julia> E5 = elliptic_curve(g, x, y) -Elliptic curve with equation -y^2 = x^3 + (1//4*t^4 - 2*t)*x^2 + t^2*x +Elliptic curve + over fraction field of univariate polynomial ring +with equation + y^2 = x^3 + (1//4*t^4 - 2*t)*x^2 + t^2*x julia> g,_ = two_neighbor_step(Y2, fibers_in_Y2[6]);g (t^2 + 2*t + 1)*x^3 + y^2 - 1//4*t^4 @@ -210,5 +214,7 @@ julia> (x,y) = gens(R); P = K_t.([0,1//2*t^2]); # rational point julia> g, _ = transform_to_weierstrass(g, x, y, P); julia> E6 = elliptic_curve(g, x, y) -Elliptic curve with equation -y^2 + (-t^2 - 2*t - 1)//t^4*y = x^3 +Elliptic curve + over fraction field of univariate polynomial ring +with equation + y^2 + (-t^2 - 2*t - 1)//t^4*y = x^3