-
-
Notifications
You must be signed in to change notification settings - Fork 298
/
spiral.py
executable file
·68 lines (57 loc) · 1.79 KB
/
spiral.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
import numpy as np
import matplotlib.pyplot as plt
import dezero
from dezero import optimizers
from dezero import Model
import dezero.functions as F
import dezero.layers as L
from dezero import DataLoader
max_epoch = 100
batch_size = 30
hidden_size = 10
lr = 1.0
train_set = dezero.datasets.Spiral(train=True)
test_set = dezero.datasets.Spiral(train=False)
train_loader = DataLoader(train_set, batch_size)
test_loader = DataLoader(test_set, batch_size, shuffle=False)
class TwoLayerNet(Model):
def __init__(self, hidden_size, out_size):
super().__init__()
self.l1 = L.Linear(hidden_size)
self.l2 = L.Linear(out_size)
self.bn1 = L.BatchNorm()
def forward(self, x):
y = F.sigmoid(self.bn1(self.l1(x)))
y = self.l2(y)
return y
model = TwoLayerNet(hidden_size, 3)
optimizer = optimizers.SGD(lr).setup(model)
for epoch in range(max_epoch):
for x, t in train_loader:
y = model(x)
loss = F.softmax_cross_entropy(y, t)
model.cleargrads()
loss.backward()
optimizer.update()
if epoch % 10 == 0:
print('loss:', loss.data)
# Plot
x = np.array([example[0] for example in train_set])
t = np.array([example[1] for example in train_set])
h = 0.001
x_min, x_max = x[:, 0].min() - .1, x[:, 0].max() + .1
y_min, y_max = x[:, 1].min() - .1, x[:, 1].max() + .1
xx, yy = np.meshgrid(np.arange(x_min, x_max, h), np.arange(y_min, y_max, h))
X = np.c_[xx.ravel(), yy.ravel()]
with dezero.test_mode():
score = model(X)
predict_cls = np.argmax(score.data, axis=1)
Z = predict_cls.reshape(xx.shape)
plt.contourf(xx, yy, Z)
N, CLS_NUM = 100, 3
markers = ['o', 'x', '^']
colors = ['orange', 'blue', 'green']
for i in range(len(x)):
c = t[i]
plt.scatter(x[i][0], x[i][1],s=40, marker=markers[c], c=colors[c])
plt.show()