-
Notifications
You must be signed in to change notification settings - Fork 25
/
Copy pathskorch_example.py
70 lines (55 loc) · 2.36 KB
/
skorch_example.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
# Copyright 2023 Neal Lathia
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from libraries.util.datasets import load_regression_dataset
from libraries.util.domains import DIABETES_DOMAIN
from sklearn.metrics import mean_squared_error
from skorch.regressor import NeuralNetRegressor
from torch import nn
from modelstore.model_store import ModelStore
class ExampleModule(nn.Module):
def __init__(self, num_units=1):
super(ExampleModule, self).__init__()
self.linear = nn.Linear(10, num_units)
def forward(self, X, **kwargs):
return self.linear(X)
def _train_example_model() -> NeuralNetRegressor:
# Load the data
X_train, X_test, y_train, y_test = load_regression_dataset(as_numpy=True)
# Train a model
net = NeuralNetRegressor(
ExampleModule,
max_epochs=1,
lr=0.1,
# Shuffle training data on each epoch
iterator_train__shuffle=True,
)
net.fit(X_train, y_train)
results = mean_squared_error(y_test, net.predict(X_test))
print(f"🔍 Trained model MSE={results}.")
return net
def train_and_upload(modelstore: ModelStore) -> dict:
# Train a skorch model
model = _train_example_model()
# Upload the model to the model store
print(f'⤴️ Uploading the skorch model to the "{DIABETES_DOMAIN}" domain.')
meta_data = modelstore.upload(DIABETES_DOMAIN, model=model)
return meta_data
def load_and_test(modelstore: ModelStore, model_domain: str, model_id: str):
# Load the model back into memory!
print(f'⤵️ Loading the skorch "{model_domain}" domain model={model_id}')
model = modelstore.load(model_domain, model_id)
# Run some example predictions
_, X_test, _, y_test = load_regression_dataset(as_numpy=True)
results = mean_squared_error(y_test, model.predict(X_test))
print(f"🔍 Loaded model MSE={results}.")