From 813e15f28c286f5d8ed7994392f846d0665ce059 Mon Sep 17 00:00:00 2001 From: Alexander Motin Date: Thu, 9 Jun 2022 18:27:36 -0400 Subject: [PATCH] AVL: Remove obsolete branching optimizations Modern Clang and GCC can successfully implement simple conditions without branching with math and flag operations. Use of arrays for translation no longer helps as much as it was 14+ years ago. Disassemble of the code generated by Clang 13.0.0 on FreeBSD 13.1, Clang 14.0.4 on FreeBSD 14 and GCC 10.2.1 on Debian 11 with this change still shows no branching instructions. Profiling of CPU-bound scan stage of sorted scrub shows reproducible reduction of time spent inside avl_find() from 6.52% to 4.58%. Reviewed-by: Brian Behlendorf Signed-off-by: Alexander Motin Sponsored-By: iXsystems, Inc. Closes #13540 --- module/avl/avl.c | 24 ++++-------------------- 1 file changed, 4 insertions(+), 20 deletions(-) diff --git a/module/avl/avl.c b/module/avl/avl.c index 1a95092bc2b6..f761a8ae7666 100644 --- a/module/avl/avl.c +++ b/module/avl/avl.c @@ -108,21 +108,6 @@ #include #include -/* - * Small arrays to translate between balance (or diff) values and child indices. - * - * Code that deals with binary tree data structures will randomly use - * left and right children when examining a tree. C "if()" statements - * which evaluate randomly suffer from very poor hardware branch prediction. - * In this code we avoid some of the branch mispredictions by using the - * following translation arrays. They replace random branches with an - * additional memory reference. Since the translation arrays are both very - * small the data should remain efficiently in cache. - */ -static const int avl_child2balance[2] = {-1, 1}; -static const int avl_balance2child[] = {0, 0, 1}; - - /* * Walk from one node to the previous valued node (ie. an infix walk * towards the left). At any given node we do one of 2 things: @@ -278,8 +263,7 @@ avl_find(avl_tree_t *tree, const void *value, avl_index_t *where) #endif return (AVL_NODE2DATA(node, off)); } - child = avl_balance2child[1 + diff]; - + child = (diff > 0); } if (where != NULL) @@ -531,7 +515,7 @@ avl_insert(avl_tree_t *tree, void *new_data, avl_index_t where) * Compute the new balance */ old_balance = AVL_XBALANCE(node); - new_balance = old_balance + avl_child2balance[which_child]; + new_balance = old_balance + (which_child ? 1 : -1); /* * If we introduced equal balance, then we are done immediately @@ -697,7 +681,7 @@ avl_remove(avl_tree_t *tree, void *data) * choose node to swap from whichever side is taller */ old_balance = AVL_XBALANCE(delete); - left = avl_balance2child[old_balance + 1]; + left = (old_balance > 0); right = 1 - left; /* @@ -781,7 +765,7 @@ avl_remove(avl_tree_t *tree, void *data) */ node = parent; old_balance = AVL_XBALANCE(node); - new_balance = old_balance - avl_child2balance[which_child]; + new_balance = old_balance - (which_child ? 1 : -1); parent = AVL_XPARENT(node); which_child = AVL_XCHILD(node);