-
Notifications
You must be signed in to change notification settings - Fork 2.4k
/
main.cpp
231 lines (192 loc) · 8.52 KB
/
main.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
// Copyright (C) 2018-2024 Intel Corporation
// SPDX-License-Identifier: Apache-2.0
//
/**
* @brief The entry point the OpenVINO Runtime sample application
* @file classification_sample_async/main.cpp
* @example classification_sample_async/main.cpp
*/
#include <sys/stat.h>
#include <condition_variable>
#include <fstream>
#include <map>
#include <memory>
#include <mutex>
#include <string>
#include <vector>
// clang-format off
#include "openvino/openvino.hpp"
#include "samples/args_helper.hpp"
#include "samples/common.hpp"
#include "samples/classification_results.h"
#include "samples/slog.hpp"
#include "format_reader_ptr.h"
#include "classification_sample_async.h"
// clang-format on
using namespace ov::preprocess;
namespace {
bool parse_and_check_command_line(int argc, char* argv[]) {
gflags::ParseCommandLineNonHelpFlags(&argc, &argv, true);
if (FLAGS_h) {
show_usage();
showAvailableDevices();
return false;
}
slog::info << "Parsing input parameters" << slog::endl;
if (FLAGS_m.empty()) {
show_usage();
throw std::logic_error("Model is required but not set. Please set -m option.");
}
if (FLAGS_i.empty()) {
show_usage();
throw std::logic_error("Input is required but not set. Please set -i option.");
}
return true;
}
} // namespace
int main(int argc, char* argv[]) {
try {
// -------- Get OpenVINO Runtime version --------
slog::info << ov::get_openvino_version() << slog::endl;
// -------- Parsing and validation of input arguments --------
if (!parse_and_check_command_line(argc, argv)) {
return EXIT_SUCCESS;
}
// -------- Read input --------
// This vector stores paths to the processed images
std::vector<std::string> image_names;
parseInputFilesArguments(image_names);
if (image_names.empty())
throw std::logic_error("No suitable images were found");
// -------- Step 1. Initialize OpenVINO Runtime Core --------
ov::Core core;
// -------- Step 2. Read a model --------
slog::info << "Loading model files:" << slog::endl << FLAGS_m << slog::endl;
std::shared_ptr<ov::Model> model = core.read_model(FLAGS_m);
printInputAndOutputsInfo(*model);
OPENVINO_ASSERT(model->inputs().size() == 1, "Sample supports models with 1 input only");
OPENVINO_ASSERT(model->outputs().size() == 1, "Sample supports models with 1 output only");
// -------- Step 3. Configure preprocessing --------
const ov::Layout tensor_layout{"NHWC"};
ov::preprocess::PrePostProcessor ppp(model);
// 1) input() with no args assumes a model has a single input
ov::preprocess::InputInfo& input_info = ppp.input();
// 2) Set input tensor information:
// - precision of tensor is supposed to be 'u8'
// - layout of data is 'NHWC'
input_info.tensor().set_element_type(ov::element::u8).set_layout(tensor_layout);
// 3) Suppose model has 'NCHW' layout for input
input_info.model().set_layout("NCHW");
// 4) output() with no args assumes a model has a single result
// - output() with no args assumes a model has a single result
// - precision of tensor is supposed to be 'f32'
ppp.output().tensor().set_element_type(ov::element::f32);
// 5) Once the build() method is called, the pre(post)processing steps
// for layout and precision conversions are inserted automatically
model = ppp.build();
// -------- Step 4. read input images --------
slog::info << "Read input images" << slog::endl;
ov::Shape input_shape = model->input().get_shape();
const size_t width = input_shape[ov::layout::width_idx(tensor_layout)];
const size_t height = input_shape[ov::layout::height_idx(tensor_layout)];
std::vector<std::shared_ptr<unsigned char>> images_data;
std::vector<std::string> valid_image_names;
for (const auto& i : image_names) {
FormatReader::ReaderPtr reader(i.c_str());
if (reader.get() == nullptr) {
slog::warn << "Image " + i + " cannot be read!" << slog::endl;
continue;
}
// Collect image data
std::shared_ptr<unsigned char> data(reader->getData(width, height));
if (data != nullptr) {
images_data.push_back(data);
valid_image_names.push_back(i);
}
}
if (images_data.empty() || valid_image_names.empty())
throw std::logic_error("Valid input images were not found!");
// -------- Step 5. Setting batch size using image count --------
const size_t batchSize = images_data.size();
slog::info << "Set batch size " << std::to_string(batchSize) << slog::endl;
ov::set_batch(model, batchSize);
printInputAndOutputsInfo(*model);
// -------- Step 6. Loading model to the device --------
slog::info << "Loading model to the device " << FLAGS_d << slog::endl;
ov::CompiledModel compiled_model = core.compile_model(model, FLAGS_d);
// -------- Step 7. Create infer request --------
slog::info << "Create infer request" << slog::endl;
ov::InferRequest infer_request = compiled_model.create_infer_request();
// -------- Step 8. Combine multiple input images as batch --------
ov::Tensor input_tensor = infer_request.get_input_tensor();
for (size_t image_id = 0; image_id < images_data.size(); ++image_id) {
const size_t image_size = shape_size(model->input().get_shape()) / batchSize;
std::memcpy(input_tensor.data<std::uint8_t>() + image_id * image_size,
images_data[image_id].get(),
image_size);
}
// -------- Step 9. Do asynchronous inference --------
size_t num_iterations = 10;
size_t cur_iteration = 0;
std::condition_variable condVar;
std::mutex mutex;
std::exception_ptr exception_var;
// -------- Step 10. Do asynchronous inference --------
infer_request.set_callback([&](std::exception_ptr ex) {
std::lock_guard<std::mutex> l(mutex);
if (ex) {
exception_var = ex;
condVar.notify_all();
return;
}
cur_iteration++;
slog::info << "Completed " << cur_iteration << " async request execution" << slog::endl;
if (cur_iteration < num_iterations) {
// here a user can read output containing inference results and put new
// input to repeat async request again
infer_request.start_async();
} else {
// continue sample execution after last Asynchronous inference request
// execution
condVar.notify_one();
}
});
// Start async request for the first time
slog::info << "Start inference (asynchronous executions)" << slog::endl;
infer_request.start_async();
// Wait all iterations of the async request
std::unique_lock<std::mutex> lock(mutex);
condVar.wait(lock, [&] {
if (exception_var) {
std::rethrow_exception(exception_var);
}
return cur_iteration == num_iterations;
});
slog::info << "Completed async requests execution" << slog::endl;
// -------- Step 11. Process output --------
ov::Tensor output = infer_request.get_output_tensor();
// Read labels from file (e.x. AlexNet.labels)
std::string labelFileName = fileNameNoExt(FLAGS_m) + ".labels";
std::vector<std::string> labels;
std::ifstream inputFile;
inputFile.open(labelFileName, std::ios::in);
if (inputFile.is_open()) {
std::string strLine;
while (std::getline(inputFile, strLine)) {
trim(strLine);
labels.push_back(strLine);
}
}
// Prints formatted classification results
constexpr size_t N_TOP_RESULTS = 10;
ClassificationResult classificationResult(output, valid_image_names, batchSize, N_TOP_RESULTS, labels);
classificationResult.show();
} catch (const std::exception& ex) {
slog::err << ex.what() << slog::endl;
return EXIT_FAILURE;
} catch (...) {
slog::err << "Unknown/internal exception happened." << slog::endl;
return EXIT_FAILURE;
}
return EXIT_SUCCESS;
}