From 5318825b6efa3f69076207765829a36fc108e748 Mon Sep 17 00:00:00 2001 From: Wonju Lee Date: Sat, 15 Apr 2023 07:00:47 +0900 Subject: [PATCH] modify title line length --- .../basic_skills/03_dataset_import_export.rst | 18 +++++++++--------- .../basic_skills/04_detect_data_format.rst | 6 +++--- .../intermediate_skills/08_data_validate.rst | 4 ++-- 3 files changed, 14 insertions(+), 14 deletions(-) diff --git a/docs/source/docs/level-up/basic_skills/03_dataset_import_export.rst b/docs/source/docs/level-up/basic_skills/03_dataset_import_export.rst index c4e67b15dc..c64e703a9b 100644 --- a/docs/source/docs/level-up/basic_skills/03_dataset_import_export.rst +++ b/docs/source/docs/level-up/basic_skills/03_dataset_import_export.rst @@ -1,6 +1,6 @@ -============= +=============================== Level 3: Data Import and Export -============= +=============================== Datumaro is a tool that supports public data formats across a wide range of tasks such as classification, detection, segmentation, pose estimation, or visual tracking. @@ -8,7 +8,7 @@ To facilitate this, Datumaro provides assistance with data import and export via This makes it easier for users to work with various data formats using Datumaro. Prepare dataset -============ +=============== For the segmentation task, we here introduce the Cityscapes, which collects road scenes from 50 different cities and contains 5K fine-grained pixel-level annotations and 20K coarse annotations. @@ -16,7 +16,7 @@ More detailed description is given by :ref:`here `. The Cityscapes dataset is available for free `download `_. Convert data format -============ +=================== Users sometimes needs to compare, merge, or manage various kinds of public datasets in a unified system. To achieve this, Datumaro not only has `import` and `export` funcionalities, but also @@ -59,32 +59,32 @@ We now convert the Cityscapes data into the MS-COCO format, which is described i .. code-block:: bash - datum create -o + datum project create -o We now import Cityscapes data into the project through .. code-block:: bash - datum import --format cityscapes -p + datum project import --format cityscapes -p (Optional) When we import a data, the change is automatically commited in the project. This can be shown through `log` as .. code-block:: bash - datum log -p + datum project log -p (Optional) We can check the imported dataset information such as subsets, number of data, or categories through `info`. .. code-block:: bash - datum info -p + datum project info -p Finally, we export the data within the project with MS-COCO format as .. code-block:: bash - datum export --format coco -p -o -- --save-media + datum project export --format coco -p -o -- --save-media For a data with an unknown format, we can detect the format in the :ref:`next level `! diff --git a/docs/source/docs/level-up/basic_skills/04_detect_data_format.rst b/docs/source/docs/level-up/basic_skills/04_detect_data_format.rst index 5a30683f0f..739ffadde8 100644 --- a/docs/source/docs/level-up/basic_skills/04_detect_data_format.rst +++ b/docs/source/docs/level-up/basic_skills/04_detect_data_format.rst @@ -1,6 +1,6 @@ -============= +=================================================== Level 4: Detect Data Format from an Unknown Dataset -============= +=================================================== Datumaro provides a function to detect the format of a dataset before importing data. This can be useful in cases where information about the original format of the data has been lost or is unclear. @@ -8,7 +8,7 @@ With this function, users can easily identify the format and proceed with approp handling processes. Detect data format -============ +================== .. tabbed:: CLI diff --git a/docs/source/docs/level-up/intermediate_skills/08_data_validate.rst b/docs/source/docs/level-up/intermediate_skills/08_data_validate.rst index 61aedebbb6..104ad392dd 100644 --- a/docs/source/docs/level-up/intermediate_skills/08_data_validate.rst +++ b/docs/source/docs/level-up/intermediate_skills/08_data_validate.rst @@ -1,6 +1,6 @@ -============= +=========================== Level 8: Dataset Validation -============= +=========================== When creating a dataset, it is natural for imbalances to occur between categories, and sometimes