

Accelerating recommendation model training using ByteCCL and UCX

Haibin Lin (Bytedance), Mikhail Brinskii (NVIDIA), Yimin Jiang (Bytedance), Yulu Jia (Bytedance), Chengyu Dai (Bytedance), Yibo Zhu (Bytedance)

Recommendation models

- Ranking and recommendation
 - Application: ads, feed, search, etc.
 - Involves machine learning models that predict the probability of one or multiple events at the same time. Events ranked higher are shown to users

Recommendation model: wide and deep

"wide and deep" is a ranking model applied successfully in practice [2]

Neural network layers

Model non-linear functions and feature interactions

Embedding table lookup

- Lookup the corresponding one-hot embedding vector based on the category index
- Billions of parameters for lookup

Dense features

- continuous values
- e.g., age, num views

Sparse features

- category indices
- e.g., movie type, user demographics

Distributed recommendation model training

- Synchronous parallel training
 - Neural network is replicated across workers
 - Embedding is sharded across workers
 - Each worker is responsible for embedding lookup for the shard it owns
 - Use alltoall to communicate embedding lookup results to form the embeddings of each data batch

Design choices for distributed training

- Synchronous v.s. asynchronous parallel training
 - whether the workers iterate training steps with synchronization or not
 - sync training leads to better reproducibility, model convergence but worse system performance
 - requires different communication primitives
 - sync: alltoall, allreduce
 - async: push/pull, gather/scatter
- Embedding placement on devices: GPU v.s. CPU v.s. SSD
 - Each device type has its own capacity-bandwith characteristic
 - implications for communication: src and dst may be on different devices, opportunity for topology-aware optimization

ByteCCL overview

- Developed on top of BytePS[3] with an extended set of communication primitives
 - allreduce, alltoall, gather, scatter, allgather, broadcast, send & recv
- Supports both sparse and dense neural network use cases
 - computer vision, natural language processing, speech, recommendation models
- Supports sync and async training
- Integrated with multiple machine learning frameworks
 - Tensorflow, PyTorch, MXNet
- Supports and optimized for multiple hardware (CPU & GPU)
 - e.g., alltoall variants: CPU to CPU, GPU to GPU, CPU to GPU, GPU to CPU

ByteCCL Architecture

- ByteCCL
 - Tensorflow/PyTorch framework integration
 - Memory management
 - Collective algorithms and scheduling
 - Provides python APIs (allreduce, alltoall, etc)
- ps-lite C++ interface
 - Control plane ps::StartPS, ps::Finalize
 - Data plane ps::KVWorker::ZPush, KVWorker::ZPull
- ps-lite transport backends
 - ZMQVan: TCP
 - RDMAVan: RDMA, shared memory IPC
 - FabricVan: AWS EFA
 - UCXVan: tcp, rc_x, cuda, shm, etc

Why UCX

- Supports various platforms and networks
- Simple yet rich API, masking low-level details of RDMA programming
- Advanced protocols for transfer messages of different sizes
- Automatic selection of best available transports and devices
- Multi-rail support
- DC support
- GPU memory support
- Zero-copy with registration cache

Why UCX

UCX integration for ps-lite (overview)

- UCX van implements Van abstraction
- Client-server connection establishment mode
- Several threads, two multi-thread support schemes:
 - Common worker for all threads
 - Send and receive threads use different workers
- Communication is based on TAG API:
 - Send data with ucp_tag_send_nb()
 - Poll for incoming data with ucp_tag_probe_nb()
 - Receive data with ucp_tag_recv_nb()

UCX integration for ps-lite (overview)

Sender (sender thread)

- Sends meta data for every message with meta_tag
- Send message itself with data_tag

Receiver (polling thread)

- Probes for incoming packets with meta_tag
- Receives meta data and posts receive operation for the packets with data_tag
- Pushes received message to thread safe queue

UCX integration for ps-lite (optimizations)

- Short protocol for small data
- Separate communication context per GPU device
- Pre-pinning of memory
- Separate UCX workers for send and receive threads
- Lockless thread-safe queue

Optimizations in ByteCCL

- Topology-aware optimizations with GDR and IPC
 - Imbalanced NIC affinity: turn on GDR if the GPU and the NIC shares the PCIe switch
 - Intra-node transfers: use shared memory
- Concurrent primitive supports
 - Multiple collective operations can happen concurrently
 - e.g., concurrent allreduce & alltoall
- More asynchronous
 - async requests are tracked and processed via UCX callbacks
 - collective operations do not require explicit synchronization

Performance results

- CPU recommendation model training
 - RDMA cluster with 64 CPU nodes
 - Each node with CX-6 200Gb/s NIC x 1
 - Recommendation model A, model size: ~1 TB
 - **12**% end-to-end speedup compared to horovod with HPCX
- GPU recommendation model training
 - RDMA cluster with 16 GPU nodes
 - Each node with CX-6 200Gb/s NIC x 4, NVLink A100 x 8
 - Recommendation model B, model size: ~4 TB
 - 8.6% end-to-end throughput increase compared to NCCL

Pain points and future work

- Intra-node performance is low
 - For both cpu-cpu transfer and cpu-gpu / gpu-cpu transfers
- Unclear configuration prefix support
 - e.g., PREFIX_UCX_RDMA_CM_SOURCE_ADDRESS
- Multi-rail traffic load balancing
 - Some NIC have more (non-UCX) TCP workload than others, how to let UCX know this?

Acknowledgements

- Special thanks for supports from NVIDIA/MLNX
 - Yong Zhuang, Marina Varshaver, Akshay Venkatesh, Devendar Bureddy,
 Bin Lei, Yossi Itigin, Tal Nada Shalabi, Miao Wang, and many others