
Accelerating recommendation model 

training using ByteCCL and UCX
Haibin Lin (Bytedance), Mikhail Brinskii (NVIDIA), Yimin Jiang (Bytedance), 
Yulu Jia (Bytedance), Chengyu Dai (Bytedance), Yibo Zhu (Bytedance)



• Ranking and recommendation

• Application: ads, feed, search, etc.

• Involves machine learning models that predict the probability of one or 
multiple events at the same time. Events ranked higher are shown to users

ByteDance Recommendation models

Cheng, Heng-Tze, et al. "Wide & deep learning for recommender systems." Proceedings of the 1st workshop on deep learning for recommender systems. 2016.



• “wide and deep” is a ranking model applied successfully in practice [2]

ByteDance Recommendation model: wide and deep

[2] Cheng, Heng-Tze, et al. "Wide & deep learning for recommender systems." Proceedings of the 1st workshop on deep learning for recommender systems. 2016.

Sparse features
- category indices
- e.g., movie type, user demographics

Dense features
- continuous values
- e.g., age, num views

Embedding table lookup
• Lookup the corresponding one-hot 

embedding vector based on the category 
index

• Billions of parameters for lookup

Neural network layers
• Model non-linear functions and 

feature interactions



• Synchronous parallel training
• Neural network is replicated across workers
• Embedding is sharded across workers

• Each worker is responsible for embedding 
lookup for the shard it owns

• Use alltoall to communicate embedding 
lookup results to form the embeddings of 

each data batch

ByteDance Distributed recommendation model training

Oldridge, Even, et al. "Merlin: A GPU Accelerated Recommendation Framework." Proceedings of IRS. 2020.

Data batch

Data batch

Data batch

Data batch

Data batch

Data batch

Data batch

Data batch

alltoall



• Synchronous v.s. asynchronous parallel training 
• whether the workers iterate training steps with synchronization or not

• sync training leads to better reproducibility, model convergence but worse system 
performance

• requires different communication primitives
• sync: alltoall, allreduce

• async: push/pull, gather/scatter

• Embedding placement on devices: GPU v.s. CPU v.s. SSD
• Each device type has its own capacity-bandwith characteristic
• implications for communication: src and dst may be on different devices, opportunity 

for topology-aware optimization

ByteDance Design choices for distributed training



ByteDance ByteCCL overview
• Developed on top of BytePS[3] with an extended set of communication primitives

• allreduce, alltoall, gather, scatter, allgather, broadcast, send & recv

• Supports both sparse and dense neural network use cases
• computer vision, natural language processing, speech, recommendation models

• Supports sync and async training 
• Integrated with multiple machine learning frameworks

• Tensorflow, PyTorch, MXNet

• Supports and optimized for multiple hardware (CPU & GPU)
• e.g., alltoall variants: CPU to CPU, GPU to GPU, CPU to GPU, GPU to CPU

[3] Jiang, Yimin, et al. "A Unified Architecture for Accelerating Distributed {DNN} Training in Heterogeneous GPU/CPU Clusters." 14th {USENIX} Symposium on 
Operating Systems Design and Implementation ({OSDI} 20). 2020.



• ps-lite C++ interface
• Control plane - ps::StartPS, ps::Finalize
• Data plane - ps::KVWorker::ZPush, KVWorker::ZPull

ByteDance ByteCCL Architecture

• ByteCCL
• Tensorflow/PyTorch framework integration
• Memory management
• Collective algorithms and scheduling

• Provides python APIs (allreduce, alltoall, etc)

• ps-lite transport backends
• ZMQVan: TCP
• RDMAVan: RDMA, shared memory IPC
• FabricVan: AWS EFA 

• UCXVan: tcp, rc_x, cuda, shm, etc

ps-lite

Transport backends

C++ APIs

ByteCCL

ZMQVan RDMAVan UCXVanFabricVan

KVWorker KVServer

Machine learning application

hardware



ByteDance Why UCX

• Supports various platforms and networks

• Simple yet rich API, masking low-level details of RDMA programming
• Advanced protocols for transfer messages of different sizes
• Automatic selection of best available transports and devices
• Multi-rail support

• DC support

• GPU memory support
• Zero-copy with registration cache



ByteDance Why UCX



ByteDance UCX integration for ps-lite (overview)

• UCX van implements Van abstraction

• Client-server connection establishment mode
• Several threads, two multi-thread support schemes:
• Common worker for all threads
• Send and receive threads use different workers

• Communication is based on TAG API:

• Send data with ucp_tag_send_nb()
• Poll for incoming data with ucp_tag_probe_nb()

• Receive data with ucp_tag_recv_nb()



ByteDance UCX integration for ps-lite (overview)

Sender (sender thread)
• Sends meta data for every message with meta_tag
• Send message itself with data_tag

Receiver (polling thread)
• Probes for incoming packets with meta_tag
• Receives meta data and posts receive operation 

for the packets with data_tag
• Pushes received message to thread safe queue

ucp_tag_send_nbx(meta_data, meta_tag)

Sender Thread Polling thread

van->SendMsg()

ucp_tag_send_nbx(data, data_tag)

ucp_worker_progress()

msg = ucp_tag_probe_nb(meta_tag);

save data or RTS in the 
unexpected queue

ucp_tag_msg_recv_nb(meta_buf, msg)

data_buf = getRxBuf(meta_msg)
ucp_tag_recv_nb(data_buf, data_tag, comp_cb)

ucp_worker_progress()

comp_cb()

Recv thread

van->RecvMsg(msg)

Pop data

Sender Receiver



ByteDance UCX integration for ps-lite (optimizations)

• Short protocol for small data

• Separate communication context per GPU device

• Pre-pinning of memory 
• Separate UCX workers for send and receive threads

• Lockless thread-safe queue



• Topology-aware optimizations with GDR and IPC
• Imbalanced NIC affinity: turn on GDR if the GPU and the 

NIC shares the PCIe switch

• Intra-node transfers: use shared memory

• Concurrent primitive supports
• Multiple collective operations can happen concurrently 
• e.g., concurrent allreduce & alltoall

• More asynchronous
• async requests are tracked and processed via UCX callbacks
• collective operations do not require explicit synchronization

ByteDance Optimizations in ByteCCL



ByteDance Performance results

• CPU recommendation model training
• RDMA cluster with 64 CPU nodes
• Each node with CX-6 200Gb/s NIC x 1

• Recommendation model A, model size: ~1 TB
• 12% end-to-end speedup compared to horovod with HPCX

• GPU recommendation model training
• RDMA cluster with 16 GPU nodes
• Each node with CX-6 200Gb/s NIC x 4, NVLink A100 x 8

• Recommendation model B, model size: ~4 TB
• 8.6% end-to-end throughput increase compared to NCCL



• Intra-node performance is low

• For both cpu-cpu transfer and cpu-gpu / gpu-cpu transfers

• Unclear configuration prefix support
• e.g., PREFIX_UCX_RDMA_CM_SOURCE_ADDRESS

• Multi-rail traffic load balancing
• Some NIC have more (non-UCX) TCP workload than others, how to let 

UCX know this?

ByteDance Pain points and future work



• Special thanks for supports from NVIDIA/MLNX

• Yong Zhuang, Marina Varshaver, Akshay Venkatesh, Devendar Bureddy, 

Bin Lei, Yossi Itigin, Tal Nada Shalabi, Miao Wang, and many others

ByteDance Acknowledgements


