UCX]l
Feature rich UCX bindings for Julia

Valentin Churavy
vchuravy@mit.edu

i julia ik

CSAIL

Why Julia?

Language design

U

Efficient execution

@__l Julia: Dynamism and Performance @ Effective Extensible Programming: Unleashing
Reconciled by Design (doi:10.1145/3276490) Julia on GPUs (doi:10.1109/TPDS.2018.2872064)

https://dx.doi.org/10.1145/3276490
https://dx.doi.org/10.1109/TPDS.2018.2872064

message driven

fork-join

message

Yy

sequential process..gf

Parallelism 1n Julia

- Distributed:
MPLjl
Distributed.jl — RPC based; primary-workers
Dagger.jl — similar to Dask

- Task-based parallelism:
@sync/@spawn

- Rich GPU support — It's Julia all the way down

Supporting NVIDIA, AMD, Intel — vendor specific packages + common
infrastructure

Features

1. Auto-generated wrappers (based on 1.10 for now) for UCS/UCP
2. High-Level support for

a. Active Messages
b. tag_send/tag_recv
c. stream_send/stream_recv

3. Integration with Julia event-loop & multi-threading
Coming soon:

- High-level support for RMA and maybe AMO
- Updateto 1.11

Example

) . function start_client(port=default_port)
function echo_server(ep::UCX.Endpoint)

: - ctx = UCX.UCXContext()
size = Int[0] . worker = UCX.Worker (ctx)
wait(recv(ep, size, sizeof(Int))) ep = UCX.Endpoint(worker, IPv4("127.0.0.1"), port)
data = Array{UInt8}(undef, size[1]) try
wait(recv(ep, data, sizeof(data))) client(ep)
wait(send(ep, data, sizeof(data))) finally
end close(worker)
end

d
function client(ep::UCX.Endpoint) en

data = "Hello world"

reql = send(ep, Int[sizeof(data)], sizeof(Int))
req2 = send(ep, data, sizeof(data))

wait(reql); wait(req2)

buffer = Array{UInt8}(undef, sizeof(data))
wait(recv(ep, buffer, sizeof(buffer)))
@assert String(buffer) == data

end

function start_server(port = default_port)
ctx = UCX.UCXContext()
worker = UCX.Worker(ctx)

function listener_callback(::UCX.UCXListener, conn_request: :UCX.UCXConnectionRequest)
UCX.@spawn_showerr begin
try
echo_server (UCX.Endpoint(Sworker, Sconn_request))
finally
close(Sworker)
end
end
nothing
end
listener = UCX.UCXListener(worker.worker, listener_callback, port)

GC.@preserve listener begin
while isopen(worker)
wait(worker)
end
close(worker)
end
end

Integration with Julia event-loop

- Julia builds upon an LibUV event-loop

- UCX.jl should use "_nb" variants and execute other Julia code while waiting for
completion

- We need to guarantee that progress is being made.
- Callbacks from UCX execute normal Julia code
- How do we get low AM latency

Progress being made

- After starting Listener user needs to call wait to guarantee that progress is
being made automatically (akin to a background thread)

- Three progress modes:

a. Polling — highest latency / lowest resource utilization
b. Busy — low latency / unfair scheduling (task)
c. Idler — low latency / unfair scheduling (0S)

@spawn begin
while isopen(worker)
wait(worker) # suspend task
end
close(worker)
end

Progress mode: Polling

- Requires UCP_FEATURE_WAKEUP, but that disables SHMEM support
(ucx#5322)

- Usesucp_worker_get_efd + ucp_worker_arm
and JuliaFileWatching.poll_fd

https://github.com/JuliaParallel/UCX.jl/blob/d622f9b77272a458a2¢ee3
a45fc1362030a62ccf1/src/UCX. j1#L331-L357

Progress mode: Idling

- Uses LibUV uv_idle_t
http://docs.libuv.org/en/vl.x/idle.html
- Effectively a busy-loop on the OS level :/

uv_idle_t — |dle handle

Idle handles will run the given callback once per loop iteration, right before the uv_prepare_t handles.

Note: The notable difference with prepare handles is that when there are active idle handles, the loop will perform a zero
timeout poll instead of blocking for i/o.

Warning: Despite the name, idle handles will get their callbacks called on every loop iteration, not when the loop is actu-
ally “idle™.

http://docs.libuv.org/en/v1.x/idle.html

Progress mode: Busy

- Does what it says on the tin — busy loop within Julia

- Could lead to pseudo-livelocks
- Accidentally preventing other Julia tasks to run
- What if those other Julia tasks are needed to make progress?

progress(worker)

while isopen(worker)
ccall(:jl_gc_safepoint, Cvoid, ())
yield()
progress(worker)

end

Latency results

Configuration

Polling

Busy

Idler

Polling

Busy

Idler

Median

23.455 ps

4.260 us

4.120 us

69.301 s

17.147 ps

16.907 us

Mean

25.666 s

4.654 ps

4.517 ps

70.135 ps

16.511 s

17.459 us

STD

6.095 ps

1.081 us

1.361 us

4.859 ps

4.129 us

3.097 s

System

x86

x86

x86

PPC

PPC

PPC

Other alternatives considered

1. Call progress on non-Julia thread

a.

Callbacks are Julia functions — need to interact with Julia runtime

2. Call progress on non-Juliathread + uv_async_send

a.

®© Q0 U

LibUV has a facility to inform the event loop from a foreign thread an AsyncCondition
callback needs to be triggered.

We could implement multi-stage callbacks. UCX invoked Callback, LibUV notifies Julia
Not tested yet, but...

Higher latency, additional allocations required

Can't return status from callback to UCX proper. Needed for am_recv_callback

A wrinkle in the fabric: Active Messages

- Callbacks from UCX are invoked by progress and are Julia code.

- Most callbacks are “simple” and don't trigger task-switches or allocations
- Notify UCXRequest object of completion, very fast, no allocations
- Considering adding a language level construct to guarantee that there are no runtime
interactions

- Active Messages callbacks are many things, none of them is “simple”

progress()

-> am_callback

-> pri

ntln

-> task-switch
-> ...

-> progress()

UCX assumes that progress is not called recursively.
If it is called recursively on the same thread, we will
execute the currently executing callback again.

Effectively invoking an AM twice — hilarity ensues.

Roadmap/TODO

- Ensure that UCX+Julia Threading is well behaved

- GPU memory support — taking inspiration from MPL ||

- Informing UCX through UCP_OP_ATTR_FIELD_MEMORY_TYPE
- Inthe works as UCX.jl#35, but needs to be disentangled

- Implement Distributed.jl over UCX |l
- Probably worth-it, but rather complex
- Easier win: Enhance MemPool.jl/Dagger.jl to use UCX to move GPU data

Gripe: Signal handlers

Julia uses signal handlers to implement multi-threading and GC.
Have to disable it, also a problem for libraries like MPL jl:

https://juliaparallel.github.io/MPIl.jl/latest/knownissues/#UCX

reinstall signal handlers
ccall((:ucs_debug_disable_signals, API.libucs), Cvoid, ())

https://github.com/JuliaParallel/UCX.jl/blob/d622f9b77272a458a2¢ee3
a45fc1362030a62ccf1/src/UCX. jl#L12-1L21

https://juliaparallel.github.io/MPI.jl/latest/knownissues/#UCX

Good defaults or bad defaults?

Sometimes choices that make it easier for C/C++ can make it harder for other
languages: Like signal-handlers, or dlopen interception...

On the other hand high-level languages can have more information than C/C++:

- MEMORY_TYPE is very easy to support since we have “colored” pointers
- IIUC dlopen hijacking is used to reduce latency for memory detection

From a Julia perspective: We would like to opt-out (or better require explicit opt-in)
for invasive features and collaborate with UCX

Thank you!

Happy to take contributions to UCX_jl
or talk about collaborative efforts.

vchuravy@mit.edu

Monthly Julia HPC call

Fourth Tuesday of the Month 2PM ET
Open to anyone

Agenda & Notes

https://docs.google.com/document/d/1Zip_Cyu9v9uHR13aTn8N1LrnFPFbDSW6eoIRdfwNXVY/edit?usp=sharing

Backup: Distributed.jl over UCX

VERY preliminary results

Latency - Logscale

Latency - Logscale

Single Node CPU Latency

Latency test on IBM Power9 & NVidia V100

Two Node CPU Latency

T r T T
256 1K 4K 16K 64K 256K 1M
Message size (bytes) - Logscale

Two Node GPU Latency

am

40ms [pistributed 40 msT [pistributed
—ucx —ucx
2.5 ms 2.5 ms-|
16ms 16ms
1.0ms 2 10ms
@
g
631.0 s 3 6310 s
>
o
g
3981 ps £ 3981ps
5
2512 s 2512 s
158.5 s 158.5 s
100.0 ps 100.0 s
T . —— — T T
1 4 16 64 25 1K 4K 16K 64K 256K 1M 4M 14 16 e
Message size (bytes) - Logscale
Single Node GPU Latency
100 ms.| | —Distributed 100 ms.| | —Distributed
—ucx —ucx
5.6 ms+ 5.6 ms—
32ms 32ms
°
s
g
18ms & 18ms
g
L]
>
1.0ms S 10ms
1
3
562.3 ps-| 562.3 ps-|
316.2 ps— 316.2 ps-
177.8 s 177.8 ps-
: T — T T
1 4 16 64 256 1K 4K 16K 64K 256K 1M aM 1 4 16 64

Message size (bytes) - Logscale

T
4K

T T T T
256 1K 16K 64K 256K 1M 4M

Message size (bytes) - Logscale

