
UCX.jl
Feature rich UCX bindings for Julia

Valentin Churavy
vchuravy@mit.edu

Why Julia?

Language design

Efficient execution

Julia: Dynamism and Performance
Reconciled by Design (doi:10.1145/3276490)

AST

IR

GPU back end

Effective Extensible Programming: Unleashing
Julia on GPUs (doi:10.1109/TPDS.2018.2872064)

https://dx.doi.org/10.1145/3276490
https://dx.doi.org/10.1109/TPDS.2018.2872064

Parallelism in Julia

- Distributed:
- MPI.jl
- Distributed.jl — RPC based; primary-workers

- Dagger.jl — similar to Dask

- Task-based parallelism:
- @sync/@spawn

- Rich GPU support — It’s Julia all the way down
Supporting NVIDIA, AMD, Intel — vendor specific packages + common
infrastructure

Features

1. Auto-generated wrappers (based on 1.10 for now) for UCS/UCP
2. High-Level support for

a. Active Messages
b. tag_send/tag_recv
c. stream_send/stream_recv

3. Integration with Julia event-loop & multi-threading

Coming soon:

- High-level support for RMA and maybe AMO
- Update to 1.11

Example
function echo_server(ep::UCX.Endpoint)
 size = Int[0]
 wait(recv(ep, size, sizeof(Int)))

 data = Array{UInt8}(undef, size[1])
 wait(recv(ep, data, sizeof(data)))
 wait(send(ep, data, sizeof(data)))
end

function client(ep::UCX.Endpoint)
 data = "Hello world"
 req1 = send(ep, Int[sizeof(data)], sizeof(Int))
 req2 = send(ep, data, sizeof(data))
 wait(req1); wait(req2)

 buffer = Array{UInt8}(undef, sizeof(data))
 wait(recv(ep, buffer, sizeof(buffer)))
 @assert String(buffer) == data
end

function start_client(port=default_port)
 ctx = UCX.UCXContext()
 worker = UCX.Worker(ctx)
 ep = UCX.Endpoint(worker, IPv4("127.0.0.1"), port)

 try
 client(ep)
 finally
 close(worker)
 end
end

function start_server(port = default_port)
 ctx = UCX.UCXContext()
 worker = UCX.Worker(ctx)

 function listener_callback(::UCX.UCXListener, conn_request::UCX.UCXConnectionRequest)
 UCX.@spawn_showerr begin
 try
 echo_server(UCX.Endpoint($worker, $conn_request))
 finally
 close($worker)
 end
 end
 nothing
 end
 listener = UCX.UCXListener(worker.worker, listener_callback, port)

 GC.@preserve listener begin
 while isopen(worker)
 wait(worker)
 end
 close(worker)
 end
end

Integration with Julia event-loop

- Julia builds upon an LibUV event-loop
- UCX.jl should use `_nb` variants and execute other Julia code while waiting for

completion

- We need to guarantee that progress is being made.
- Callbacks from UCX execute normal Julia code
- How do we get low AM latency

Progress being made

- After starting Listener user needs to call wait to guarantee that progress is
being made automatically (akin to a background thread)

- Three progress modes:
a. Polling — highest latency / lowest resource utilization
b. Busy — low latency / unfair scheduling (task)
c. Idler — low latency / unfair scheduling (OS)

 @spawn begin
 while isopen(worker)
 wait(worker) # suspend task
 end
 close(worker)
end

Progress mode: Polling

- Requires UCP_FEATURE_WAKEUP, but that disables SHMEM support
(ucx#5322)

- Uses ucp_worker_get_efd + ucp_worker_arm
and Julia FileWatching.poll_fd

https://github.com/JuliaParallel/UCX.jl/blob/d622f9b77272a458a2ee3
a45fc1362030a62ccf1/src/UCX.jl#L331-L357

Progress mode: Idling

- Uses LibUV uv_idle_t
http://docs.libuv.org/en/v1.x/idle.html

- Effectively a busy-loop on the OS level :/

http://docs.libuv.org/en/v1.x/idle.html

Progress mode: Busy

- Does what it says on the tin — busy loop within Julia
- Could lead to pseudo-livelocks

- Accidentally preventing other Julia tasks to run
- What if those other Julia tasks are needed to make progress?

progress(worker)
while isopen(worker)
 ccall(:jl_gc_safepoint, Cvoid, ())
 yield()
 progress(worker)
end

Latency results
Configuration Median Mean STD System

Polling 23.455 μs 25.666 μs 6.095 μs x86

Busy 4.260 μs 4.654 μs 1.081 μs x86

Idler 4.120 μs 4.517 μs 1.361 μs x86

Polling 69.301 μs 70.135 μs 4.859 μs PPC

Busy 17.147 μs 16.511 μs 4.129 μs PPC

Idler 16.907 μs 17.459 μs 3.097 μs PPC

Other alternatives considered

1. Call progress on non-Julia thread
a. Callbacks are Julia functions — need to interact with Julia runtime

2. Call progress on non-Julia thread + uv_async_send
a. LibUV has a facility to inform the event loop from a foreign thread an AsyncCondition

callback needs to be triggered.
b. We could implement multi-stage callbacks. UCX invoked Callback, LibUV notifies Julia
c. Not tested yet, but...
d. Higher latency, additional allocations required
e. Can’t return status from callback to UCX proper. Needed for am_recv_callback

A wrinkle in the fabric: Active Messages

- Callbacks from UCX are invoked by progress and are Julia code.
- Most callbacks are “simple” and don’t trigger task-switches or allocations

- Notify UCXRequest object of completion, very fast, no allocations
- Considering adding a language level construct to guarantee that there are no runtime

interactions

- Active Messages callbacks are many things, none of them is “simple”

progress()
 -> am_callback
 -> println
 -> task-switch
 -> ...
 -> progress()

UCX assumes that progress is not called recursively.
If it is called recursively on the same thread, we will
execute the currently executing callback again.

Effectively invoking an AM twice — hilarity ensues.

Roadmap/TODO

- Ensure that UCX+Julia Threading is well behaved

- GPU memory support — taking inspiration from MPI.jl
- Informing UCX through UCP_OP_ATTR_FIELD_MEMORY_TYPE
- In the works as UCX.jl#35, but needs to be disentangled

- Implement Distributed.jl over UCX.jl
- Probably worth-it, but rather complex
- Easier win: Enhance MemPool.jl/Dagger.jl to use UCX to move GPU data

Gripe: Signal handlers
Julia uses signal handlers to implement multi-threading and GC.

Have to disable it, also a problem for libraries like MPI.jl:

https://juliaparallel.github.io/MPI.jl/latest/knownissues/#UCX

reinstall signal handlers
ccall((:ucs_debug_disable_signals, API.libucs), Cvoid, ())

https://github.com/JuliaParallel/UCX.jl/blob/d622f9b77272a458a2ee3
a45fc1362030a62ccf1/src/UCX.jl#L12-L21

https://juliaparallel.github.io/MPI.jl/latest/knownissues/#UCX

Good defaults or bad defaults?

Sometimes choices that make it easier for C/C++ can make it harder for other
languages: Like signal-handlers, or dlopen interception...

On the other hand high-level languages can have more information than C/C++:

- MEMORY_TYPE is very easy to support since we have “colored” pointers
- IIUC dlopen hijacking is used to reduce latency for memory detection

From a Julia perspective: We would like to opt-out (or better require explicit opt-in)
for invasive features and collaborate with UCX

Monthly Julia HPC call
Fourth Tuesday of the Month 2PM ET

Open to anyone

Agenda & Notes

Thank you!
Happy to take contributions to UCX.jl

or talk about collaborative efforts.

vchuravy@mit.edu

https://docs.google.com/document/d/1Zip_Cyu9v9uHR13aTn8N1LrnFPFbDSW6eoIRdfwNXVY/edit?usp=sharing

Backup: Distributed.jl over UCX
VERY preliminary results

