
Remote 
OpenMP 

Offloading
Atmn Patel (University of Waterloo)

Johannes Doerfert (Argonne National Laboratory)



Motivation

OpenMP remains widely used for intra-node parallelism in HPC. 

It is non-trivial to extend OpenMP applications to distributed systems. 

It requires the incorporation of additional programming models such 
as MPI, or the wholesale replacement of OpenMP via X10, Chapel, etc.



Motivation

With the introduction of accelerator offloading, OpenMP provides a 
natural transition from parallelism on CPUs to GPUs.

In comparison to vendor-specific languages such as CUDA, OpenMP 
has been historically slower due to the abstractions and portability 

that OpenMP provides.

Recently however, this has been changing, see the New Device 
Runtime in LLVM’s OpenMP implementation.



PROJECT GOALS

Programmers don’t have 
to learn new models, nor 
change their workflows.

The resulting programs 
should be scalable.

Developer Productivity Performance

Allow OpenMP programmers to use remote CPUs and GPUs as if 
they were local ones – transparently offload.



Disclaimers

We are not trying to create a competitor to existing distributed 
programming models.1.
We are not experts in UCX, MPI, distributed programming, etc.2.
This is a proof-of-concept implementation.3.



Basic Use Case – Distributed Merge Sort



void __tgt_copy(<args>) {
plugin.copy(<args>);

}
void __tgt_run(<args>) {

plugin.run(<args>);
}

<kernel_fn> {
}

__tgt_copy(&A,N);
__tgt_run(<kernel_fn>)

OpenMP Target Offloading in LLVM

user_code.cpp

clang/flang

-fopenmp

-fopenmp-targets=<device-arch>

a.out
device.cubin

host.x86

libomptarget.so

void copy(<args>) {
cuMemCpy(<args>);

}
…

libomptarget.rtl.cuda.so

libcudart.so



void __tgt_copy(<args>) {
plugin.copy(<args>);

}
void __tgt_run(<args>) {

plugin.run(<args>);
}

<kernel_fn> {
}

__tgt_copy(&A,N);
__tgt_run(<kernel_fn>)

OpenMP Target Offloading in LLVM

user_code.cpp

clang/flang

-fopenmp

-fopenmp-targets=<device-arch>

a.out
device.cubin

host.x86

libomptarget.so

void copy(<args>) {
cuMemCpy(<args>);

}
…

libomptarget.rtl.cuda.so

libcudart.so

void __tgt_copy(<args>) {
plugin.copy(<args>);

}
void __tgt_run(<args>) {

plugin.run(<args>);
}

<kernel_fn> {
}

__tgt_copy(&A,N);
__tgt_run(<kernel_fn>)

OpenMP Target Offloading in LLVM

user_code.cpp

clang/flang

-fopenmp

-fopenmp-targets=<device-arch>

a.out
device.cubin

host.x86

libomptarget.so

void copy(<args>) {
cuMemCpy(<args>);

}
…

libomptarget.rtl.cuda.so

libcudart.so



AMDGPUAArch64 CUDA

PPC64/PPC64LEX86_64 VE

Supported Device Architectures



● Commodity-grade 
hardware support

● Protocol Buffers 
Serialization

● Available since 
LLVM 12

● HPC-grade 
hardware support

● Custom Serialization
● In development

Backends



• RPC framework developed by Google
• Support for load balancing, tracing, health checking and 

authentication
• Limitations:

• Uses protocol buffers for Serialization
• Optimized for small messages

• Large Dependencies
• Limited Purpose Zero-Copy Semantics
• Limited to TCP/IP

• Tested on Google Cloud – Excellent Weak Scaling Results On 
Commodity Hardware

gRPC



Google Cloud Evaluation (RSBench) – Weak Scaling



Google Cloud Evaluation (XSBench) – Weak Scaling



ThetaGPU Evaluation (XSBench) – Strong Scaling

LargeSmall

120+ A100 GPUs
With no source modifications

Largest Overhead
Data Transfers required for 

initialization



• UCX Implementation uses Tag-Matching Only; No RDMA, GPU-to-GPU Copy, etc.

• Our implementation has high network costs in comparison to mature UCX 
users 

• Lots of further tuning required.

• Evaluation has Chicken-Egg Problem - OpenMP applications are typically not 
multi-GPU

• Applications need a sufficiently long compute time to rationalize the network 
costs

• Limitations of OpenMP Accelerator Device Model

Limitations



• Each accelerator is independent.
• No concept of hierarchical 

offloading
• Leads to possibly redundant 

network operations
• Limited to Star-Topology

OpenMP Device Model



ThetaGPU Evaluation (gRPC-RSBench) – Strong Scaling



• Reasonably efficient and highly scalable on commodity and HPC

• Requires no source modifications to scale from 1 GPU to 100+ GPUs

• Support for many architectures, as well as across architectures

• i.e. X86  ARM offloading with SmartNICs

Advantages



• Incorporate more UCX features into Remote OpenMP Offloading

• Explore compression

• Explore hierarchical offloading opportunities within OpenMP

• Find applications within SmartNICs and beyond that can use Remote 
OpenMP Offloading

Vision



CREDITS: This presentation template was 
created by Slidesgo, including icons by 

Flaticon, infographics & images by Freepik.

QA

THANKS!

http://bit.ly/2Tynxth
https://www.flaticon.com/?utm_source=slidesgo_template&utm_medium=referral-link&utm_campaign=s%20g_resources&utm_content=flaticon
https://www.freepik.com/?utm_source=slidesgo_template&utm_medium=referral-link&utm_campaign=s%20g_resources&utm_content=freepik

