UCF2021
Rust & OpenSHMEM

Tony Curtis & Rebecca Hassett
Stony Brook University

o
@ In. S INSTITUTE FOR ADVANCED
COMPUTATIONAL SCIENCE

UCF2021: Rust & OpenSHMEM

1. Tony

a. Intro to OpenSHMEM and this project
2. Rebecca

a. Overview of Rust

b. Rust calling OpenSHMEM

(§) °
IHCS INSTITUTE FOR ADVANCED
COMPUTATIONAL SCIENCE

UCF2021: Rust & OpenSHMEM
RustySHMEM Project Motivation

OpenSHMEM is a PGAS library - Project
Interconnects (e.g. Infiniband, GNI, OPA); — Funding: DOD / LANL
shared memory (e.g. knem, xpmem) — Interfacing with OpenSHMEM using newer

— Point-to-point RDMA and Contexts

— Teams and Collectives Ia?g:jieS:

— Atomics, locks . Go!

— Dynamic memory management _ Goals:
* Open specification « Memory Safety
* Community driven * Security
* Various implementations * Speed

— SBU/ 0SSS, Open-MPI, SOS, MVAPICH2-X Open « Usability

SHMEM

http://www.openshmem.org/

— OSHMPI
— Vendor: Cray/IBM/...

‘ g;:) o C
- Ig S INSTITUTE FOR ADVANCED

COMPUTATIONAL SCIENCE

http://www.openshmem.org/

UCF2021: Rust & OpenSHMEM

. Reference Implementation
— Communications: UCX
— Wireup: PMIx
— Collectives: SHCOLL (Duke/Rice collab)

e Plan to move to UCC

‘ g;) o
IR' S INSTITUTE FOR ADVANCED
COMPUTATIONAL SCIENCE

UCF2021: Rust & OpenSHMEM

Applications (HPC, Al, ML, BigData)

MPICH, Open-MPI, etc. ionbpien R e St Parsec, OCR, Legion, etc. TensorFlow, Burst Buffer, etc.
hapel,
.—. n n N

UCP (Protocols) - High Level API
Transport selection, cross-transport multi-rail, fragmentation, software protocols for operations that are not supported by hardware

Message Passing APl Domain: PGAS API Domain: Task Based API Domain: VO API Domain:
Tag-Matching, Rendezvous RMAs, Atomics Active Messages Stream

UCT (Hardware Transports) - Low Level API UCS (Services) UCM
RMA, Atomic, Tag-Matching, Send/Recv, Active Messages Common utilities Memory

UCX

Transport for RDMA VERBs driver Transport for Transport for intra-node host memory communication Transport for Ethernet @ Services
Structures

(InfiniBand, ROCE, OPA) Gemini/Aries GPGPU
— s TCP/P Moy
sysv || Posix || KNEM CMA || XPMEM Sockets Hooks
. y / / y,

=T 1 1 1
0 0 & T, 5

o n
l CS INSTITUTE FOR ADVANCED
COMPUTATIONAL SCIENCE

UCF2021: Rust & OpenSHMEM

@ http://www.openshmem.or
. . n
Tony Curtis (SBU), Howard Pritchard (LANL) (S)pe
HMEM ° http://www.openucx.org/
[Job scheduler CZD[$ oshrun -np N pr‘ogr‘am ° https://github.com/openshmem-org/osss-ucx
J ° https://pmix.github.io/pmix/
Reference OpenSHMEM 1.4 ++ Implementation PMiIx server ° http://www.open-mpi.org/
Open Source Software Solutions ° https://github.com/pmix/prrte
LANL
Stony Brook U
Rice U / Georgia Tech
° UCX for communications .
User and contributor PMIx client PE #0 e — PE #N-1
OpenSHMEM AP shmem_long put shmem_quiet shmem_long_atomic_add ...
OpenSHMEM Collectives API shmemc_put shmemc_quiet shmemc_add64
° PMiIx for startup,
resilience Abstr. Comms API
° Program launch via UCP .
mpiexec: ucp_put_nb ucp_worker_flush ucp_atomic_post
Open-MPI UcX
PMIx Reference UCT
RunTime
Environment
cma knem xpmem |BV GN|

o
@ In. S INSTITUTE FOR ADVANCED

COMPUTATIONAL SCIENCE

http://www.openucx.org/
https://github.com/openshmem-org/osss-ucx
https://pmix.github.io/pmix/
http://www.openucx.org/
https://github.com/pmix/prrte
http://www.openshmem.org/

UCF2021: Rust & OpenSHMEM

Rust meets OpenSHMEM

Proof of Concept interface with OSHMEM

(§) °
Ig' :S INSTITUTE FOR ADVANCED
COMPUTATIONAL SCIENCE

UCF2021: Rust & OpenSHMEM

Rust is a new language to sit where C/C++

used to

_ Looks a bit like Java/C++

— Efforts to insert into Linux kernel & userland

- https://doc.rust-lang.org/book/

- Because it has useful safety guarantees
(motivation)

I CS INSTITUTE FOR ADVANCED
COMPUTATIONAL SCIENCE

https://doc.rust-lang.org/book/

UCF2021: Rust & OpenSHMEM

Rust Prioritizes Safety

® Ownership rules and borrow checker prevent
undefined behavior, e.g.

o Dereferencing null or dangling pointers
o Reading uninitialized memory

o Data races

o Use-After-Free

Ig S INSTITUTE FOR ADVANCED
COMPUTATIONAL SCIENCE

int counter = 0;

CF2021: Rust |
& OpenSHMEM [

int me;

shmem_init();
= shmem_my pe();

C code with globals
and raw pointers

shmem_int_atomic_add(&counter, me + 1, 0);
shmem_barrier_all();

if (me == 0) {
const int npes = shmem n _pes();

printf("Sum from 1 to %d = %d\n", npes,

shmem_finalize();

return 0;

Iﬂ S INSTITUTE FOR ADVANCED

COMPUTATIONAL SCIENCE

counter);

UCF2021: Rust & OpenSHMEM

use std::mem: :drop;

fn main() {
let x = "Hello".to_string();
drop(x);

println!("{}", x);

error[E@382]: use of moved value: “x’
--> test.rs:6:18
5 drop(x);

println! ("{}", x);

|

|

| - value moved here
|

| A value used here after move
|

= note: move occurs because “x has type “std::string::String’, which does not implement the “Copy ™ trait

o
@ Iﬂ. S INSTITUTE FOR ADVANCED

COMPUTATIONAL SCIENCE

11

UCF2021: Rust & OpenSHMEM

Unsafe Rust Superpowers
Dereferencing raw pointers

Calling unsafe functions (e.g. C FFl)

Accessing/Modifying mutable static variables
Implement unsafe traits
Accessing union fields

‘ g;) o C
Ig S INSTITUTE FOR ADVANCED 12
COMPUTATIONAL SCIENCE

UCF2021: Rust & OpenSHMEM

unsafte
unsafe

g !“‘(p'(."’- - 1
— »

€ T¢

Rust Programming might appear safe at firs glance.. but
don't look under the hood. You'll get a nasty surprise!

‘ g ? .g
I CS INSTITUTE FOR ADVANCED
\ COMPUTATIONAL SCIENCE

UCF2021: Rust & OpenSHMEM

std::vec::Vec Implementation

pub fn push(&mut self, value: T) {
// This will panic or abort if we would allocate > isize::MAX bytes

// or 1f the length increment would overflow for zero-sized types.
if self.len == self.buf.capacity() {
self.reserve(l);

}

unsafe {
let end = self.as_mut_ptr().add(self.len);
ptr::write(end, value);
self.len += 1;

}

}

C Q H 14
- I INSTITUTE FOR ADVANCED
COMPUTATIONAL SCIENCE

UCF2021: Rust & OpenSHMEM

~ Raw Pointers %
Valid Invalid

let mut num = 5; let address = 0x012345usize;
let r = address as #const 1i32;

let r1 = &num as *const 132;

let r2 = &mut num as #mut 132; Dereferencing arbitrary memory location is

undefined behavior
unsafe {

println!("rl is: {}", #rl);
println! ("r2 is: {}", #r2);

A - 15
\ I INSTITUTE FOR ADVANCED
COMPUTATIONAL SCIENCE

Unsafe Drop Example

#! [feature(dropck_eyepatch)]
struct Inspector<'a>(&'a u8, &'static str);
unsafe impl<#[may_dangle] 'a> Drop for Inspector<'a> {

fn drop(&mut self) {
println! ("Inspector(_, {}) knows when #not* to inspect.", self.1);

}
¥

struct World<'a> {
days: Box<u8>,
inspector: Option<Inspector<'a>>,

}

fn main() {
let mut world = World {
inspector: None,
days: Box::new(1l),
}s3
world.inspector = Some(Inspector (&world.days, "gatget"));

32iAac 16
- In S INSTITUTE FOR ADVANCED

COMPUTATIONAL SCIENCE

UCF2021: Rust & OpenSHMEM
Dynamic Array Initialization

use std::mem::{self, MaybeUninit};

// Size of the array 1is hard-coded but easy to change (meaning, changing

// the

constant is sufficient). This means we can't use [a, b, c] syntax

// dinitialize the array, though, as we would have to keep that in sync
// with “SIZE !

const SIZE: usize = 10;
let x = {
// Create an uninitialized array of “MaybeUninit'. The “assume_init’
// safe because the type we are claiming to have initialized here s
// bunch of “MaybeUninit's, which do not require initialization.
let mut x: [MaybeUninit<Box<u32>>; SIZE] = unsafe {
MaybeUninit::uninit() .assume_init()
T3
// Dropping a “MaybeUninit® does nothing. Thus using raw pointer
// assignment instead of “ptr::write’ does not cause the old
// uninitialized value to be dropped.
// Exception safety is not a concern because Box can't panic
for i in'0._.STZE F
x[i] = MaybeUninit::new(Box::new(i as u32));
¥
// Everything is 1initialized. Transmute the array to the
// dinitialized type.

unsafe { mem::transmute::<_, [Box<u32>; SIZE]>(x) }

just
to

is
a

SiAacs

INSTITUTE FOR ADVANCED
COMPUTATIONAL SCIENCE

17

UCF2021: Rust & OpenSHMEM
Unsafe Functions vs. Unsafe Blocks

if self.len == self.buf.cap() {
self.buf.double();

unsafe fn push(&mut self, value: T) {
if self.len == self.buf.cap() {

self.buf.double(); }

unsafe {

}

letond = ...3
ptr::write(end, value);
self.len += 14

let end =:...5
ptr::write(end, value);
self.len += 1;

}

i = . _ 18
I INSTITUTE FOR ADVANCED
COMPUTATIONAL SCIENCE

UCF2021: Rust & OpenSHMEM
Unsafe Functlon Contracts

Function std:ptr::write E 1.0.0 (const: unstable) [-][src]

pub unsafe fn write<T>(dst: *mut T, src: T)

[-] Overwrites a memory location with the given value without reading or dropping the old value.

write does not drop the contents of dst. This is safe, but it could leak allocations or resources, so care should be taken not to
overwrite an object that should be dropped.

Additionally, it does not drop src. Semantically, src is moved into the location pointed to by dst.

This is appropriate for initializing uninitialized memory, or overwriting memory that has previously been read from.
Safety

Behavior is undefined if any of the following conditions are violated:

e dst mustbe valid for writes.

* dst must be properly aligned. Use write_unaligned if this is not the case.

Note that even if T has size 0, the pointer must be non-null and properly aligned.

> Ig S INSTITUTE FOR ADVANCED

COMPUTATIONAL SCIENCE

19

UCF2021: Rust & OpenSHMEM
Unsafe Functlon Contracts

[[] pub fn push(&mut self, value: T)

Appends an element to the back of a collection.

Panics

Panics if the new capacity exceeds isize: :MAX bytes.

Examples

let mut vec = vec![1, 2];
vec.push(3);
assert_eq!(vec, [1, 2, 3]);

[src]

(4§ :) °
- Ig. :S INSTITUTE FOR ADVANCED
COMPUTATIONAL SCIENCE

20

UCF2021: Rust & OpenSHMEM Yy

Generating FFI m

« rust-bindgen generates interface to call C/C++
library functions

o libclang parses and type checks C/C++ header

files
extern "C" {

b fn shmem malloc(size: size t) -> *mut ::std::os::raw::c_void;

o All FFI functions are unsafe

e OF _ 21
I INSTITUTE FOR ADVANCED
COMPUTATIONAL SCIENCE

Before: After:

fn main() [
shmem: :init();

fn main() {
shmem: :init();
let counter = shmem::malloc(1l * mem::size_of::<i32>()) as *mut i32;)
unsafe { let mut counter = shmem::SymmMem::<i32>::new(1);
*counter = 9;
} *counter = 9;

shmem: :barrier_all(); let me = shmem: :my pe() .
e .. o] k)

let me = shmem::my_pe();
shmem: :barrier_all();
shmem: :int_atomic_add(counter, me + 1, 0);

et Eacr e tntil) shmem: :int_atomic_add(&counter, me + 1, 0);

if me == @ { shmem: :barrier_all();
let n = shmem::n_pes();

unsafe { if me == 9 {
println!("Sum from 1 to {} = {}", n, *counter); let n = shmem::n_pes();
println!("Sum from 1 to {} = {}", n, *counter);

shmem: : free(counter as shmem: :SymmMemAddr);
shmem: : finalize();

shmem: : finalize();

Ig S INSTITUTE FOR ADVANCED

COMPUTATIONAL SCIENCE

struct SymmMem<T> { 1
ptr: *mut T, pl<T> Deref for SymmMem<T> {

length: usize, type Target = T;

mpl<T> SymmMem<T> { deref (&self
n new(x: usize) -> SymmMem<T> { unsafe -{ &*se
t num_bytes = x * mem::size of::<T>() as usize;
t symm ptr = malloc(num_bytes);
insert(symm ptr as usize, num bytes);
SymmMem {
ptr: symm ptr as *mut T,

Tengthi X, pl<T> DerefMut for SymmMem<T> {

fn deref_mut(&mut self) -> &mut T {
e { &mut
n set(&mut self, offset: usize, value: T) {
if offset < self.length {
insafe { }
*(self.ptr.offset(offset as isize)) = value;

Delee | impl<T> Drop for SymmMem<T> {

panic! (7 fn drop(&mut self) {

offset is out of bounds, offset: {}, pointer lengt r‘emove(('&ffrf.ptr‘ as SymmMemAddr‘) as uSiZe);
offset, self.length

Iﬂ S INSTITUTE FOR ADVANCED

COMPUTATIONAL SCIENCE

c GM:| Storage<Mutex<HashMap<usize, usize>>> = Storage

CF2021: Rust
& OpenSHMEM fn i?ser't(ptr‘: usize, num_bytes: usize) {

let mut map = GM.get().lock().unwrap();
map.insert(ptr, num_bytes);

fn remove(ptr: usize) {
let mut map = GM.get().lock().unwrap();

if map.get(&ptr) != None {
map . remove (&ptr);
free(ptr as SymmMemAddr);

fn clear() {
let mut map = GM.get().lock().unwrap();

for key in map.keys() {
free(*key as SymmMemAddr);
}

map.clear();

‘ g;) o
Ig' S INSTITUTE FOR ADVANCED

COMPUTATIONAL SCIENCE

CF2021: Rust

& OpenSHMEM

f, offset: 0, value: T);
, offset: 0) -> &T;

fn set(&mut selt

self.set(@, value);

1<T>| OffsetTrait<usize, T> for SymmMem<T> {
fn set(&mut self, offset: usize, value: T) {
if offset < self.length {

f.ptr.offset(offset as isize)) = value;

panic! ("Offset is out of bounds, offset: {}, point

}

fn get(&mut self, offset: usize) -> &T {

3 iAacs

INSTITUTE FOR ADVANCED
COMPUTATIONAL SCIENCE

25

CF2021 RUSt pub trait SymmMemTrait<T> {

fn atomic_fetch add(&mut self, val: T, pe: T) -> T;
fn put(&mut self, dest: &SymmMem<T>, n: u64, pe: i32);

npl | SymmMemTrait<i32> [for SymmMem<i32> {
fn atomic_fetch add(&mut self, val: i32, pe: i32) -> i32 {

1safe
A

abort on unwind(|| shmemlib::shmem int atomic fetch add(self.ptr, val, pe))

}
fn put(&mut self, dest: &SymmMem<i32>, n: u64, pe: i32) {

unsafe {

abort on unwind(|| shmemlib::shmem int put(dest.ptr, self.ptr, n, pe));

impl SymmMemTrait<f32> [for SymmMem<f32> {

fn put(&mut self, dest: &SymmMem<f32>, n: u64, pe: i32) {

o [
are |

abort on unwind(|| shmemlib::shmem float put(dest.ptr, self.ptr, n, pe));

Iﬂ S INSTITUTE FOR ADVANCED

COMPUTATIONAL SCIENCE

CF2021: Rust
& OpenSHMEM

mut dest = shmem::SymmMem: :<i32>::new(1);
mut src = shmem: :SymmMem: :<132>::new(1);

2SEE =15
*dest = 10;

shmem: :barrier all();
if me == 1 {

src.put(&dest, 1, 0);

shmem: :barrier all();

3 iAacs

INSTITUTE FOR ADVANCED
COMPUTATIONAL SCIENCE

CF2021: Rust
& OpenSHMEM

fn abort on unwind<F: FnOnce() -> R, R>(f: F) -> R {
std::panic::catch unwind(

std: :panic::AssertUnwindSafe(f),

)

.unwrap or _else(]| | {
println! ("Error unwinding across FFI boundary");
std: :process: :abort();

‘ SS) o
Ig : INSTITUTE FOR ADVANCED

COMPUTATIONAL SCIENCE

UCF2021: Rust & OpenSHMEM
Future Work

® Generic Functions
o Infer SymmMem struct parameter type using
reflection

® Assessing Rust’s FFI Overhead
® Direct Rust/UCP interface

I CS INSTITUTE FOR ADVANCED
COMPUTATIONAL SCIENCE

29

Rust programming language

Crustacean

I

Rustacean

‘ g ? .n
I CS INSTITUTE FOR ADVANCED
\ COMPUTATIONAL SCIENCE

30

UCF2021: Rust & OpenSHMEM

e Thanks to

— DoD/LANL/OSSS/SBU and all project partners
— NSF for SBU’s ookami cluster
* https://www.stonybrook.edu/ookami/

— And of course, Rebecca, for wading bravely into this project

(§) °
Ig' :S INSTITUTE FOR ADVANCED
COMPUTATIONAL SCIENCE

31

https://www.stonybrook.edu/ookami/

