
ifunc: Remote Function
Injection and Invocation

Interface for UCX

Wenbin Lü
Luis E. Peña

Pavel Shamis
Steve Poole

UCF Workshop 2021

12/02/2021

Motivation:

Source: https://www.nature.com/articles/d41586-018-06610-y

• Information explosion is happening non-
stop

• Storing, processing and serving all these
data consumes enormous amounts of
energy

• Non-trivial financial and environmental
impact

1

Motivation: Data-dependent Dynamic Applications

Source: https://twitter.com/flashmasterdash/status/1006564546142760960

2

Motivation: The Cost of Moving Data Around

Source: https://colin-scott.github.io/personal_website/research/interactive_latency.html

Latency numbers every programmer should know

3

Motivation: Let’s Move Compute to Data Instead

Traditional storage systems Computational storage systems

Source: https://community.arm.com/iot/b/internet-of-things/posts/computational-storage-is-bringing-processing-closer-to-the-data

4

Motivation: SmartNICs/DPUs are Also Coming

Source: Mellanox

5

Motivation: Is the Software Side Ready?

Source: https://medium.com/@jilvanpinheiro/40d46afbe384

• How to move “compute” around?
• Portability
• Scalability
• Maintainability

• Integration with existing libraries and
development workflows?
• Compatible with established solutions
• Flexible enough to add new features with ease

6

Project Goal

API for moving compute to data in the form of remotely injected functions
&

Optimized implementation for said API

API name: ifunc

7

Outline

• Background

• The ifunc API design

• The ifunc API implementation

• Performance evaluation

• Conclusion & future work

8

Background: The Two-Chains Framework

• Package, transfer and execution of code and data

• A set of API and toolchain

• Fast, lightweight, portable
• Low-latency & high-throughput

• CPU <-> CSD <-> DPU <-> GPU

• Based on the UCX communication framework

• Our work is open source, and we plan to submit it to the upstream

CLUSTER 2021: Two-Chains: High Performance Framework for Function Injection and Execution

9

https://arxiv.org/abs/2108.02253

Background: Where ifunc Fits in the Picture

Source: https://openucx.org/

ifunc

10

Background: RDMA-PUT-Based ifunc

11

Basic Idea of RDMA-based ifunc

• A C function will be compiled and shipped to a remote process in the form of an ifunc

message
• RDMA writes are used to deliver the message

• The message also contains a set of arguments (a.k.a payload) for the ifunc

• The ifunc could access code and/or data on the target process (target arguments)

12

Comparison with UCX Active Messages

• UCX AM
• User-defined handlers; transfer of

payloads; active polling required

• Handlers are registered on the target

process

• Handlers are rereferred to using compile-

time determined numeric IDs

• Internal on-demand message buffers

• ifunc
• User-defined functions; transfer of

payloads; active polling required

• ifunc libs are loaded on the source

process

• ifunc libs are loaded at run-time and are

identified using C strings (ifuncs’ names)

• Requires RDMA-enabled buffers

allocated by the user

13

Creating an ifunc Library

• These three functions must be present (suppose your ifunc is called “foo”)

• Compile the library into foo.so

• Placed in a directory accessible by the UCX application (export UCX_IFUNC_LIB_DIR=“…”)

• Requires ISA-dependent compilation toolchain, more on this later

14

RDMA-based ifunc Workflow

15

UCP-level ifunc API

16

RDMA-based ifunc Workflow

• Target process

• Allocates an RDMA-enabled (pinned) memory buffer to receive ifunc messages

– Tell the target about its virtual address and size

• Poll the buffer for delivered ifunc messages and execute them

• Source process
• Registers an ifunc using its name

• Creates ifunc messages using source arguments

– UCX runtime prepares the payloads with payload_bound and payload_init of the ifunc library

• RDMA write the ifunc messages to the target process’s buffer

17

Sample ifunc Library

18

Sample ifunc Application

19

Implementating ifunc

• Use dlopen to load the ifunc dynamic library

• One-time registration cost

• Ship the .text, .rodata, .data sections in the message

• All “internal” functions, global/static variables are

working

Source: https://en.wikipedia.org/wiki/Executable_and_Linkable_Format

20

Implementating ifunc

• Use dlopen to load the ifunc dynamic library

• One-time registration cost

• Ship the .text, .rodata, .data sections in the message

• All “internal” functions, global/static variables are

working

• What about external symbols?
• Functions: printf, malloc, clock_gettime, rand, etc.

• Also: global variables on the target process

• Address space layout randomization (ASLR)

Source: https://stackoverflow.com/questions/63465933

21

Dynamic Linking: a Recap

• Resolve virtual addresses of symbols at program load-time (or even later)

• It’s the OS’s C library’s job, read the manpage of ld.so if interested

• The .text section only contains PC-relative offsets to functions and variables
• ASLR + PIC & PIE = unpredictable relative offsets!

• All problems in computer science can be solved by another level of indirection

(fundamental theorem of software engineering).
• Procedure Linkage Table (PLT) and Global Offset Table (GOT)

22

Dynamic Linking: PLT and GOT

23

Dynamic Linking: GOT-only Early-binding

• Compile with –fno-plt

24

Remote Dynamic Linking: Borrowing the GOT

ldr x1, :got:printf
blr x1

ldr x1, foo$got
ldr x1, [x1, #:got_lo12:fib]
blr x1

patch_asm.py

25

Security Concerns

• Isn’t this literally executing arbitrary code sent by

someone else?

• The InfiniBand standard specifies the use of a 32-bit

RKEY to perform writes to pinned memory

• The ifunc dynamic libraries are stored on the

filesystem, governed by FS permissions

• As safe as the rest of your application/system

26

Caveat: Instruction Cache Coherency

• One of our test machine’s L1i & L1d caches are incoherent!

• We’re in a “code is data” situation so this becomes an issue

• The polling loop checks the content of the buffer until a message arrives
• The i-cache must be cleared before we branch to the ifunc’s .text section

• Non-trivial performance penalty

• Especially for small payload sizes

27

Performance Evaluation

• Measure our implementation’s point-to-point message latency and throughput

• Also compare against UCX AM

• Hardware & software setup:
• CPU: Neoverse-N1

• NIC: Mellanox Connectx-6 MT28908 HDR 200Gb/s

– Connected back-to-back without an IB switch

• OS: Ubuntu 20.04.2

• All results are inter-node numbers

28

Performance Evaluation: Message Latency

29

Performance Evaluation: Message Rate

30

Performance Evaluation, cont.

• Also evaluated on the Ookami cluster at Stony Brook University

• L1 caches are coherent, no more expensive cache clearing

• With several improvements/fixes here and there

• Hardware & software setup:
• CPU: A64FX FX700 (32 GB HBM2)

• NIC: Mellanox Connectx-6 MT28908 HDR 100Gb/s

• OS: CentOS 8.1.1911

• All results are inter-node numbers

31

Performance Evaluation: Message Latency

32

Performance Evaluation: Message Rate

33

Published Results

• Open-source code release under the umbrella of OPENSNAPI working group

(collaboration between NVIDIA, LANL, Huawei, Arm):

https://github.com/openucx/ucx-two-chains

• Paper accepted by OpenSHMEM Workshop 2021

• UCX Programming Interface for Remote Function Injection and Invocation

• Authors: Luis E. Peña, Wenbin Lu, Pavel Shamis, and Steve Poole

34

https://github.com/openucx/ucx-two-chains

Conclusions

• Move compute to data to save time and energy

• The RDMA-based ifunc API of the Two-Chains framework is our first step

• Send binary code and data payload to remote processes for execution

• Performance comparable to native UCX active messages for all payload sizes

• Still need to work on remote dynamic linking

35

Future Work

• Implement full remote dynamic linking

• The ifunc dynamic library is no longer needed on the target process’s filesystem!

• Switch to send-recv communication
• No more user-managed buffers, no HugePage & RWX privilege compatibility issues

• Incoming messages are progressed along with other UCX activities

• Portable ifunc library compilation toolchain

• LLVM?

36

