Ar'M ifunc: Remote Function
~Injection and Invocation
| Interface for UCX

Wenbin LU
Luis E. Pefia
Pavel Shamis

Steve Poole

UCF WorkShop 2021
12/02/2021

Motivation:

Information explosion is happening non-

stop

Storing, processing and serving all these

data consumes enormous amounts of
energy

Non-trivial financial and environmental
impact

9,000 terawatt hours (TWh)
— ENERGY FORECAST 20.9% of projected
Widely cited forecasts suggest that the electricity demand

-~ total electricity demand of information and
communications technology (ICT) will
accelerate in the 2020s, and that data
centres will take a larger slice.

M Networks (wireless and wired)
M Production of ICT

Consumer devices (televisions,
computers, mobile phones)

M Data centres

0 - » .
2010 2012 2014 2016 2018 2020 2022 2024 2026 2028 2030

Source: https://www.nature.com/articles/d41586-018-06610-y

arm

Motivation: Data-dependent Dynamic Applications

Source: https://twitter.com/flashmasterdash/status/1006564546142760960

: arm

Motivation: The Cost of Moving Data Around

Latency numbers every programmer should know

ins

L1 cache reference: 1ns

Branch mispredict: 3ns

L2 cache reference: 4ns

Mutex lock/unlock: 17ns

100ns =1

u Main memory reference:
100ns

HEEEEEEEEEE 1,000ns = 1ps

B EEEEERER Compress 1KB wth Zippy:
2,000ns = 2us

10,000ns = 10pus = =

Send 2,000 bytes over
commodity network: 44ns

SSD random read:
16,000ns = 16us

Read 1,000,000 bytes

sequentially from memory:

3,000ns = 3us

Round trip in same
datacenter: 500,000ns =
500ps

1,000,000ns = 1ms =m

Read 1,000,000 bytes
sequentially from SSD:
49,000ns = 49us

Disk seek: 2,000,000ns =~
2ms

Read 1,000,000 bytes
sequentially from disk:
825,000ns =~ 825us

Packet roundtrip CA to
Netherlands:
150,000,000ns ~ 150ms

Source: https://colin-scott.github.io/personal_website/research/interactive_latency.html

arm

Motivation: Let’s Move Compute to Data Instead

Traditional storage systems

3. Compute

1. Request data from storage

v

2. Move data to compute

)
o
D

4. Move results to storage

Computational storage systems

O|0

Q—

1. Request operation

2. Compute @

3. Return result

Source: https://community.arm.com/iot/b/internet-of-things/posts/computational-storage-is-bringing-processing-closer-to-the-data

arm

Motivation: SmartNICs/DPUs are Also Coming

|| e | ComaetX“h | et What is Inside BlueField?
ure Flow Steering / Switching TRNG
500t || RomA ransport | Subsystem | ROMA transport

Appication Dffcad VA M A 16-core ARM CPU subsystem with

L2Cache = L2Cache L2Cache L2Cache associated memory controllers

A Dual port 100 Gigabit Ethernet or

L2 Cache L2 Cache L2 Cache L2 Cache InfiniBand IO controller

S
QR 202 207 202 212 200 02 B An integrated PCle Gen4 switch with
wc. s2lanesof extemal P

eMMC,

¥ ¥a

aye) €7

e €1
v¥aa

Public
USB, PCle Gen 4 - 16 ports ey o
M| pandarssccslerators NVie o
: RDMA, Crypto, etc.)

Source: Mellanox

5 arm

Motivation: Is the Software Side Ready?

* How to move “compute” around?
- 4
y Portablllty IMPLEMENTATION
- Scalability
- Maintainability

THE
SOFTWARE
DEVELOPMENT

* Integration with existing libraries and
CYCLE

development workflows?
- Compatible with established solutions
- Flexible enough to add new features with ease

Source: https://medium.com/@jilvanpinheiro/40d46afbe384

: arm

Project Goal

API for moving compute to data in the form of remotely injected functions
&
Optimized implementation for said API

APl name: ifunc

7 arm

Outline

Background

The ifunc APl design

The ifunc APl implementation
Performance evaluation

Conclusion & future work

arm

Background: The Two-Chains Framework

* Package, transfer and execution of code and data

- A set of APl and toolchain

e Fast, lightweight, portable
- Low-latency & high-throughput
- CPU <-> CSD <-> DPU <-> GPU

e Based on the UCX communication framework

- Our work is open source, and we plan to submit it to the upstream

CLUSTER 2021: Two-Chains: High Performance Framework for Function Injection and Execution

: arm

https://arxiv.org/abs/2108.02253

Background: Where ifunc Fits in the Picture

Applications
ifunc
p

UCP — High Level API (Protocols)
Transport selection, multi-rail, fragmentation

HPC API: I/0 API: Connection establishment:
tag matching, active messages Stream, RPC, remote memory access, atomics client/server, external

UCT — Low Level API (Transports)

RDMA GPU / Accelerators Others

memory

Couan Jroow
Hardware

Source: https://openucx.org/

1 arm

UCX

Background: RDMA-PUT-Based ifunc

11

Process |

U
UCP Endpoint m

UCP Context A
4— CP Endpoint
Wt

Pinned Memory

Process li

RDMA

UCP [Rkey + Endpoint]

UCP Context B

UCP Context A

Pinned
Memory

arm

Basic Idea of RDMA-based ifunc

* A Cfunction will be compiled and shipped to a remote process in the form of an ifunc

12

message

- RDMA writes are used to deliver the message

The message also contains a set of arguments (a.k.a payload) for the ifunc

The ifunc could access code and/or data on the target process (target arguments)

void foo_main(void *payload, size_t payload._

arm

Comparison with UCX Active Messages

* UCXAM * ifunc

« User-defined handlers; transfer of - User-defined functions; transfer of
payloads; active polling required payloads; active polling required

- Handlers are registered on the target - ifunc libs are loaded on the source
process process

- Handlers are rereferred to using compile- - ifunc libs are loaded at run-time and are
time determined numeric IDs identified using C strings (ifuncs’ names)

- Internal on-demand message buffers - Requires RDMA-enabled buffers

allocated by the user

i arm

Creating an ifunc Library

* These three functions must be present (suppose your ifunc is called “foo”)

14

size_t
foo_payload_bound(void *source_args, size_t source_args_size

e
foo_payload_init(void *source_args, size_t source_args_size,
void *payload, size_t *payload_size

void
foo_main(void *payload, size_t payload_size, void *target_args
Compile the library into foo.so
- Placed in a directory accessible by the UCX application (export UCX_IFUNC_LIB_DIR="...")

- Requires ISA-dependent compilation toolchain, more on this later

arm

RDMA-based ifunc Workflow

15

Source Process

UCP Context
Registered
ifunc

pr— — ifunc msg

header

text,.data

[

/ payload

payload bound
/

N

/

/ . .
~~~ payload_init

LUCP Endpoint

Target Process

UCP Context

Polling

v

>Pinned

Memory

NN

arm



UCP-level ifunc API

char *name;
int pure;
ucp_ifunc_reg_param_t;

ucs_status_t
ucp_register_ifunc(ucp_context_h context, ucp_ifunc_reg_param_t param, ucp_ifunc_h *ifunc_p

ucs_status_t
ucp_ifunc_msg_create(ucp_ifunc_h ifunc_h, void *source_args,
size_t source_args_size, ucp_ifunc_msg_t *msg_p

ucs_status_t

ucp_ifunc_send_nbix(ucp_ep_h ep, ucp_ifunc_msg_t msg, uintéd_t remote_addr, ucp_rkey_h rkey

ucs_status_t
ucp_poll_ifunc(ucp_context_h context, void *buffer, size_t buffer_size, void *target_args




RDMA-based ifunc Workflow

* Target process

- Allocates an RDMA-enabled (pinned) memory buffer to receive ifunc messages
— Tell the target about its virtual address and size

- Poll the buffer for delivered ifunc messages and execute them

* Source process

- Registers an ifunc using its name

- Creates ifunc messages using source arguments

— UCX runtime prepares the payloads with payload_bound and payload init of the ifunc library

- RDMA write the ifunc messages to the target process’s buffer

17 arm



Sample ifunc Library

size_t foo_payload_bound(void *source_args, size_t source_args_size)
est_encode_size(source_args, source_args_size);
int foo_payload_init(void *source_args, size_t source_args_size,
void *payload, size_t *payload_size)
encode(payload, payload_size, source_args, source_args_size);
0;
void foo_main(void *payload, size_t payload_size, void *target_args)

db_handle dbh = *(db_handle*) target_args;
decode_insert(dbh, payload, payload_size);




Sample ifunc Application

ucp_register_ifunc(ucp_ctx, irp, &ih);
ucp_ifunc_msqg_create(ih, record, record_size, &imsqg);
ucp_ifunc_send_nbix(ep, imsg, recv_buffer, rmt_rkey);

ucp_ep_flush_nb(ep, 0, ep_flush_cb);

ret = ucp_poll_ifunclucp_ctx, recv_buffer, recv_buffer_size, &db_handle ;
ret != UCS_OK);




Implementating ifunc

i ST ELF head
* Use dlopen to load the ifunc dynamic library cader

- One-time registration cost Program header table

- Ship the .text, .rodata, .data sections in the message
text

- All “internal” functions, global/static variables are

working rodata

.data ?

Section header table

Source: https://en.wikipedia.org/wiki/Executable_and_Linkable Format

20 arm



Implementating ifunc

e Use dlopen to load the ifunc dynamic library o

« One-time registration cost
- Ship the .text, .rodata, .data sections in the message
- All “internal” functions, global/static variables are

working

 What about external symbols?
- Functions: printf, malloc, clock_gettime, rand, etc.
- Also: global variables on the target process 0x400000

- Address space layout randomization (ASLR) 2

21

Kernel memory

User stack
(created at run time)

v
B

Memory-mapped region for
shared libraries

I

Run-time heap
(created by malloc)

Read/write segment
(.data, .bss)

Read-only code segment
(.init,.text,.rodats)

Memory
invisible to
user code

Loaded from the
executable file

Source: https://stackoverflow.com/questions/63465933

arm



Dynamic Linking: a Recap

* Resolve virtual addresses of symbols at program load-time (or even later)

- It’s the OS’s C library’s job, read the manpage of Id.so if interested

* The .text section only contains PC-relative offsets to functions and variables

« ASLR + PIC & PIE = unpredictable relative offsets!

* All problems in computer science can be solved by another level of indirection

(fundamental theorem of software engineering).
 Procedure Linkage Table (PLT) and Global Offset Table (GOT)

22

arm



Dynamic Linking: PLT and GOT

.text (read-only)

plt (read-only)

adrp x0, 0x401000
add x0, x0, #0x2fO0
bl printf@plt

PLT[O]

stp
adrp
1dr
add
br

x16,
x16,
x17,
x16,
xX17

x30, [sp, #-16]!
0x411000

[x16, #Oxff8]
x16, #0xff8

\/—\

23

getchar@plt

adrp
1dr
add
br

x16,
x17,
x16,
xX17

0x412000
[X16, #0x60]
x16, #0X60

plt

print

adrp
1dr
add
br

x16,
x17,
x16,
xX17

0x412000
[X16, #0x68]
x16, #0X68

1d.so

— | printf@libc.so

.got (read-write)

i
|
|

7

2

0x412058 &PLT[0]
0x412060 &PLT[0]
0x412068 &PLT[0]
0x412070 &PLT[0]

iééfchar@got.plt)

(printf@got.plt)

<

arm



Dynamic Linking: GOT-only Early-binding

24

Compile with —fno-plt

text (read-only)

1dr x1, :got:printf
blr x1

\\\\____’/,/"_“~\\\

1 (load-time)

ld.so b — — — — — —

.got (read—write*

0x411030 ....
\ 0x411038 g
0x411040 printf@libc.so
&OX411048 C e

etchar@libc.so

printf@libc.so

arm



Remote Dynamic Linking: Borrowing the GOT

FRAME LEN GOT OFFSET PAYLOAD OFFSET IFUNC NAME
SIGNAL CODE

Source Process L'lzlfget Process W///////A SIGNAL
RDMA

header I header

text A text

\/f’\ ldr x1, :got:printf
KT\ blr x1
|
I

dlopen() = qot
foo.so - .
dlopen()

patch_asm.py

ldr x1, fooSgot
Idr x1, [x1, #:got_lo12:fib]
blr x1

. arm



Security Concerns

* Isn’t this literally executing arbitrary code sent by

someone else?

* The InfiniBand standard specifies the use of a 32-bit
Target Source

RKEY to perform writes to pinned memory Mapped
Buffer

HEADER
> (SIGNAL)

CODE
PAYLOAD
SIGNAL

HEADER
(SIGNAL)

e The ifunc dynamic libraries are stored on the

CODE
PAYLOAD
SIGNAL

RDMA rkey check

filesystem, governed by FS permissions

SPIN POLL ON
SIGNALS
(+WFE)

* As safe as the rest of your application/system

26 arm



Caveat: Instruction Cache Coherency

* One of our test machine’s L1i & L1d caches are incoherent!

« We're in a “code is data” situation so this becomes an issue

* The polling loop checks the content of the buffer until a message arrives

- The i-cache must be cleared before we branch to the ifunc’s .text section

* Non-trivial performance penalty

- Especially for small payload sizes

27

arm



Performance Evaluation

 Measure our implementation’s point-to-point message latency and throughput

- Also compare against UCX AM

 Hardware & software setup:
« CPU: Neoverse-N1
- NIC: Mellanox Connectx-6 MT28908 HDR 200Gb/s
— Connected back-to-back without an IB switch

« OS: Ubuntu 20.04.2

« All results are inter-node numbers

28



Performance Evaluation: Message Latency

1000 7 !
1 —— UCX AM )
o
| —#*— ifunc X[
1 == % Reduction se=X
e3¢
_— X
w0
e
= 100-:
(®] ad
b}
(7]
o
L
£
>
c
& 108
[(0] |
-
1 T T T T T T T T T k 70&

<, v, <, 6 < <, v, Vs 6. <. <
& & 6. . % £ 1 6, v, %y 2,
e G © T fy 6,}29 7]

Payload size

2 arm



Performance Evaluation: Message Rate

=
o
(o]

()
5 —— UCXAM || %
i —+— ifunc
2 107 i =*= % Increase |[ o
) Q
O | Qo
g o
3
S 10° + )
2 . Ds.
. i °
= i
Q -
= 10° = e
& : Do
5 -' ;
S !
o 104 = | = O
= ] | L o
X=X
M D e N Y= M
103 l T T T T T T T N\
<, <, < 6, <, %, <, 6, <. <, [0)
& & 6. . Ky £~ 4~ 6, <, S (o)
e o Vo T o Ty Hy oy % %
Payload size

30

arm



Performance Evaluation, cont.

* Also evaluated on the Ookami cluster at Stony Brook University

« L1 caches are coherent, no more expensive cache clearing

- With several improvements/fixes here and there

 Hardware & software setup:
- CPU: A64FX FX700 (32 GB HBM2)
« NIC: Mellanox Connectx-6 MT28908 HDR 100Gb/s

« 0S: Cent0S 8.1.1911

« All results are inter-node numbers

OOKAMI

& arm




Performance Evaluation: Message Latency

32

Latency (microseconds)
SA

T L B T T T T T T T T T T T [ T T

- |—6— UCX Active Message
[ |—%—UCX ifunc

% Reduction

| I R TR B P i T TR | T BT I

N %\@(bfl,@b&\ng(ﬁ)@%@&%%%

Payload Size (bytes)

arm



Performance Evaluation: Message Rate

N
o
»

Message Rate (messages/s)
)
[¢)]

—
o
™~

| |—6— UCX Active Message
—#— UCX ifunc
% Increase

| I R TR B P i T TR | i I

33

Payload Size (bytes)

arm



Published Results

* Open-source code release under the umbrella of OPENSNAPI working group

(collaboration between NVIDIA, LANL, Huawei, Arm):

https://eithub.com/openucx/ucx-two-chains

* Paper accepted by OpenSHMEM Workshop 2021

- UCX Programming Interface for Remote Function Injection and Invocation

« Authors: Luis E. Pena, Wenbin Lu, Pavel Shamis, and Steve Poole

34

arm


https://github.com/openucx/ucx-two-chains

Conclusions

35

Move compute to data to save time and energy

The RDMA-based ifunc API of the Two-Chains framework is our first step
Send binary code and data payload to remote processes for execution
Performance comparable to native UCX active messages for all payload sizes

Still need to work on remote dynamic linking

arm



Future Work

36

Implement full remote dynamic linking

- The ifunc dynamic library is no longer needed on the target process’s filesystem!

Switch to send-recv communication
- No more user-managed buffers, no HugePage & RWX privilege compatibility issues

- Incoming messages are progressed along with other UCX activities

Portable ifunc library compilation toolchain

- LLVM?

arm



