NVIDIA.

UCX GPU SUPPORT

UCX vF2F 2021

UCX GPU SUPPORT MAP

UCP - Protocols UCS

GPU memory detection e Rendezvous protocol Topology
Memtype cache Communication APl support - Lanes selection _ Cache all sys devices
Adjusted fast-path short Tag matching (incl. offload) - RNDV fragments pool L Bteieree eslleulEier
thresholds Active messages - Select zero-copy vs. pipelined
API to pass memory type Stream (without RNDV)

RMA
Memory type cache
Atomics vl
memtype_ep
- Copy to/from GPU memory Memory type definition
- Instance for each memory type

UCX

UCT - Transports UCM

RDMA RoCM Cuda Memory type
allocate/release hooks

GPU-direct support rocm_ipc rocm_gdr rocm_copy cuda_ipc gdrcopy cuda_copy cuda

WHAT’S NEW IN 2021

Proto_v2 : Pipeline, Put/Get/Atomic with GPU memory + ucx_perftest
More accurate topology detection based on sysfs walk

Cuda driver hooks based on binary parser - supports static link!

Global memtype cache

Select cuda stream by memory type

Auto-register whole allocation

Select Cuda-IPC based on NVLINK topology

RNDV fragment pool per device

COMING IN 2022

Device memory pipeline (for Cuda-IPC)

Intra-node 2-stage pipeline (based on map-shared host buffers)

May require adding remote memory cache for UCP endpoint
DMA-buf support

Tuning out-of-box proto_v2 performance
Eager/rndv threshold

Select pipeline vs. GDR based on topology

Better multi-context support

DEVICE MEMORY PIPELINE

Use cases:
Processes on same node exchanging Cuda-managed memory; have NVLink
Processes on different nodes exchanging Cuda memory over RDMA; GPU-direct is fast;
User buffer registration is too expensive, or not possible because BAR is small
Solution approach:
Rndv fragment memory pools on every system device (initialize on demand)
Protocols select device memory according to user buffer locality
Challenges:

The receiver needs to select a rdnv fragment that is Nvlink-reachable from the sender, or host fragment if not reachable

INTRA-NODE 2-STAGE

Use case: Processes on same machine exchanging Cuda memory; no NVLink

Current protocol is:

send_buffer -> cudaMempy -> rdnv_frag -> knem/cma/xpmem copy -> rndv_frag -> cudaMemcpy -> recv_buffer

A better protocol would be:

send_buffer -> cudaMemcpy -> shared_rdnv_frag -> cudaMemcpy -> recv_buffer

Challenges:
Manage and reuse shared rndv fragments

Cache remotely-mapped fragments per endpoint

Current plan:

Create remote regions hast per UCP ep, to also replace the cache on xpmem

DMA-BUF SUPPORT

GPU transport to expose querying a memory region’s file descriptor
RDMA transport to support registering DMA-buf memory with a file descriptor

UCP to get the file descriptor from GPU, pass to RDMA

Close the file descriptor right after, to not exhaust fd space

MOVE REGISTRATION CACHE TO UCP

Pro
DMAbuf-friendly - no need to get fd from GPU if cache is hit
Reduce SW overheads for zcopy path
Allows buffer-id tracking - since memory detect and memory reg are on different MDs
Allows future optimization: Use bcopy initially, and pin memory after N uses
Con

UCT user will have to create registration cache to keep same level of performance

Mitigation: keep regcache in UCT as well, at least for a while

Protocol latency, usec

500

U1
o

PROTOCOLS CUTOFF

—cager/short ==eager/bcopy ==rndv/get/zcopy ==rndv/ppln

Message size

PROTO_V2 PLAN

Infrastructure Done

Tag match protocols Done
Put/get/atomics Done
Rendezvous pipeline Done
Topology awareness Done

Active messages WIP for v1.13
Stream Not started
Client/server connection WIP for v1.13
Error flows Not started

Tune out-of-box performance WIP, continuous effort

PROTO_V2 NEXT STEPS

Implement all APl with new protocols

Remove exiting protocol and ep config code
Rendezvous protocol with 10V list

Protocol versions and wire compatibility

Detailed traces of “why” specific protocol was selected
Fine tune performance estimation model

Topology “injection”

NVIDIA.

