

AGENDA

Introduction

Use Cases

Active Message API

Future Work

INTRODUCTION

What is UCX

UCP provides high level APIs:

- Remote memory access
- Tag based send/receive API
- Stream based send/receive
- Active Messages

- one-sided communications, targeting MPI, SHMEM, other PGASes
- targeting MPI implementations, but is also used for storage and other PGAS frameworks
- is not actively developed now (no rendezvous, no GPU memory support, etc)
- communications driven by message handlers

INTRODUCTION

Supported Features (TAG vs AM APIs)

Features	TAG API	AM API
Rendezvous protocol		
Multi-rail		
GPU memory support		
Tag matching		
Zero copy on the receiver with eager protocol		
Full error handling support		
User header support		

USE CASES

Where AM can be useful

- Cloud storage applications (<u>UCX iodemo example</u>)
- Spark-GPU and Rapids
- Al (<u>ps-lite</u>)
- Charm++
- GASNet
- Collectives (UCC, others)

ACTIVE MESSAGE API

Basic API

Data handler semantic

Send function:

ACTIVE MESSAGE API

API flags

- Send flags (passed to ucp_am_send_nbx() in param->flags):
 - UCP_AM_SEND_FLAG_REPLY: ep which can be used for replying to sender will be passed to receive callback on the receiver side
 - UCP_AM_SEND_FLAG_EAGER: send using eager protocol regardless of the message length
 - UCP AM SEND FLAG RNDV: send using rendezvous protocol regardless of the message length
- Receive callback flags (passed to ucp_am_recv_callback_t in param->recv_attrs):
 - UCP_AM_RECV_ATTR_FIELD_REPLY_EP: indicates that param->reply_ep contains valid ep associated with the sender. Lifetime of this ep is the scope of the receive callback.
 - UCP_AM_RECV_ATTR_FLAG_DATA: Indicates that received data pointer is persistent, receiver may keep using it outside the callback (to free this data later need to call ucp_am_data_release()). Mutually exclusive with UCP_AM_RECV_ATTR_FLAG_RNDV.
 - UCP_AM_RECV_ATTR_FLAG_RNDV: Indicates that data argument is not a real data, but a descriptor needed to initiate rendezvous request. Mutually exclusive with UCP_AM_RECV_ATTR_FLAG_DATA.

Possible return codes from the AM callback

Flags	UCP_AM_RECV_ATTR_FLAG_DATA	UCP_AM_RECV_ATTR_FLAG_RNDV	No Flag
Keep data	UCS_IN_PROGRESS	UCS_IN_PROGRESS	Not allowed
Release data	UCS_OK	UCS_OK	UCS_OK

ACTIVE MESSAGE API

Rendezvous protocol

- Sender sends RTS with user header, not real data
- By default, send protocol is selected implicitly for the user (eager or rendezvous)
- Send protocol can be specified explicitly by passing UCP_AM_SEND_FLAG_EAGER/RNDV flag to ucp_am_send_nbx() routine
- On the receiver data callback is invoked with:
 - UCP_AM_RECV_ATTR_FLAG_RNDV flag
 - data argument is not a real data, but special descriptor
- Once receive buffer is ready, receiver may initiate rendezvous receive by

where data_desc is data argument received in am callback

FUTURE WORK

Multi-fragment eager protocol

- UCP maximal eager message size is limited
- Eager messages bigger than the limit are sent in multiple fragments
- With current AM API, UCP invokes AM handler once, also for multi-frag message:
 - UCP allocates an internal buffer to assemble the message fragments
 - Severe performance overheads: extra memory allocation and copy
- UCP AM API extension is proposed in UCX PR #7055:
 - Introduce "per-chunk" mode, when AM handler gets invoked for every arrived fragment Supports zero-copy on the receiver even for multi-fragmented message
 - Allow user to invoke ucp_am_recv_data_nbx() for the first chunk to provide UCP a buffer to be used for assembling a message Eliminates memory copy if user need to store incoming message in its own buffer

FUTURE WORK

Data fetch API

- Support for "read" (io-demo) or "pull" (ps-lite) use cases (sender wants to fetch data from the receiver)
- The goal is to minimize number of auxiliary protocol messages:
 - Requestor (sender) can send its address and rkey in the initial "pull" request
 - Responder (receiver) can issue RDMA_WRITE based on the details received in "pull" request
- Initial design proposed in UCX PR#5594 (currently closed)
- Pros:
 - Performance improvement for "pull" patterns
 - More flexible API, no need to mix APIs
 - No need for explicit memory management (register/deregister, keys exchange)
- Cons:
 - Complicates UCP AM API, can be confusing, e.g.:
 - How to provide receive buffer count and datatype to ucp_am_send_nbx() routine
 - What arguments to define in new ucp_am_send_reply_nbx()routine
 - Similar optimization pattern can be implemented by using mix of AM and RMA APIs

Proposed flow

