. UCP ACTIVE MESSAGES
DECEMBER 2021

AGENDA

Introduction

>y

Use Cases

Active Message API

Future Work

INTRODUCTION

What is UCX
Applications

HPC (MPIl, SHMEM, ...) Storage, RPC, Al Web 2.0 (Spark, Hadoop)

UCP — High Level API (Protocols)
Transport selection, multi-rail, fragmentation

HPC API: /O API: Connection establishment:
tag matching, active messages Stream, RPC, remote memory access, atomics client/server, external

UCT — Low Level API (Transports)

RDMA GPU / Accelerators Others

memory

Hardware

UCP provides high level APIs:

= Remote memory access - one-sided communications, targeting MPI, SHMEM, other PGASes

= Tag based send/receive API - targeting MP| implementations, but is also used for storage and other PGAS frameworks
= Stream based send/receive - 1S not actively developed now (no rendezvous, no GPU memory support, etc)

= Active Messages - communications driven by message handlers

<X NVIDIA.

INTRODUCTION

Supported Features (TAG vs AM APlIs)

Features TAG API

Rendezvous protocol

Multi-rail

GPU memory support

Tag matching

Zero copy on the receiver with eager protocol

Full error handling support

X X X < < < <
< < < X < < <<

User header support

<A NVIDIA.

USE CASES

Where AM can be useful

Cloud storage applications ()
Spark-GPU and

Al ()

Charm++

GASNet

Collectives (UCC, others)

NVIDIA.

https://github.com/openucx/ucx/tree/master/test/apps/iodemo
https://github.com/NVIDIA/spark-rapids
https://github.com/bytedance/ps-lite/tree/byteps

ACTIVE MESSAGE API

Basic API
Set AM handler: SENDER RECEIVER
ucs status t
ucp_worker_set _am_recv_handler(ucp_worker_h worker, ucp_am_send_nbx(ep, AM 1D, uwjmfwﬁﬁﬁ?mmjpmm”
const ucp_am_handler_param_t *param); header, header_length, aramc —am handler

buffer, count, params);

Clear AM handler: \
D

. ar
Invoke ucp_worker_set _am_recv_handler() with param->cb = NULL A ucp_worker_progress()

param.arg = arg;
ucp_worker_set_am_recv_handler(worker, ¶m);

am_handler(arg, header, header_length,
data, length, param);

Data handler semantic

ucs status t

(*ucp_am_recv_callback t)(void *arg, const void *header,
size t header length,
void *data, size t length,
const ucp am recv param t *param);

struct ucp_am recv_param {
uinte4 t recv_attr;
ucp_ep h reply ep;
}s

Send function:
ucs status ptr t
ucp _am_send nbx(ucp ep h ep, unsigned id, const void *header, size t header 1length,
const void *buffer, size t count,const ucp request param t *param);

NVIDIA.

ACTIVE MESSAGE API

AP| flags

» Send flags (passed to ucp_am _send nbx() in param->flags):

- UCP_AM SEND FLAG REPLY: ep which can be used for replying to sender will be passed to receive callback on the receiver side
- UCP_AM_SEND FLAG_EAGER: send using eager protocol regardless of the message length

- UCP_AM_SEND FLAG_RNDV: send using rendezvous protocol regardless of the message length

- Receive callback flags (passed to ucp am recv callback t in param->recv_attrs):

- UCP_AM_RECV_ATTR_FIELD REPLY_EP: indicates that param->reply ep contains valid ep associated with the sender. Lifetime of this ep is the
scope of the receive callback.

- UCP_AM RECV_ATTR _FLAG DATA: Indicates that received data pointer is persistent, receiver may keep using it outside the callback (to free this
data later need to call ucp _am data release()). Mutually exclusive with UCP_AM RECV_ATTR_FLAG_RNDV.

- UCP_AM_RECV_ATTR_FLAG_RNDV: Indicates that data argument is not a real data, but a descriptor needed to initiate rendezvous request.
Mutually exclusive with UCP_AM RECV_ATTR_FLAG_DATA.

Possible return codes from the AM callback

Flags UCP_AM_RECV_ATTR_FLAG_DATA UCP_AM_RECV_ATTR_FLAG_RNDV No Flag
Keep data UCS IN PROGRESS UCS IN PROGRESS Not allowed
Release data UCS_OK UCS _OK UCS _OK

<X NVIDIA.

ACTIVE MESSAGE API

Rendezvous protocol

SENDER RECEIVER
Sender sends RTS with user header, not real data
. . . . ucp_am_handler_param_t param;
By default, send protocol is selected implicitly for the user ucp_am.send_nbx{ep, PV, enth param.id = AM_ID;
(eager or rendezvgus) buffer,’count, p_arams); param.cb =am_handler;
param.arg = arg;
Send protocol can be specified explicitly by passing ucp_worker_set_am_recv_handler(worker, ¶m);
UCP AM SEND FLAG EAGER/RNDV flag to ucp am send nbx()
routine
RTS{"'US
On the receiver data callback is invoked with: " heade, ucp_worker_progress|)
UCP_AM RECV_ATTR FLAG RNDV flag
. . . am_handler(arg, header, header length,
data argument is not a real data, but special descriptor data, length, param)
{
Once receive buffer is ready, receiver may initiate rendezvous " if (param->recv_attr & UCP_AM_RECV_ATTR_FLAG_RNDV) {
recejve by / req = ucp_am_recv_data_nbx(worker, data,
RDN\A_READ recv_buffer, count,
ucs status ptr t param);
ucp am recv data nbx(ucp worker h worker, !
void *data desc, X
vold *buffer, ucp_worker_progress() ‘
size t count, i
const ucp request param t *param); AT

where data _desc is data argument received in am callback

FUTURE WORK

Multi-fragment eager protocol

UCP maximal eager message size is limited
Eager messages bigger than the limit are sent in multiple fragments

With current AM API, UCP invokes AM handler once, also for multi-frag message:
UCP allocates an internal buffer to assemble the message fragments
Severe performance overheads: extra memory allocation and copy

UCP AM API extension is proposed in
Introduce “per-chunk” mode, when AM handler gets invoked for every arrived fragment
Supports zero-copy on the receiver even for multi-fragmented message
Allow user to invoke ucp_am_recv_data_nbx() for the first chunk to provide UCP a buffer to be used for assembling a message
Eliminates memory copy if user need to store incoming message in its own buffer

NVIDIA.

https://github.com/openucx/ucx/pull/7055

FUTURE WORK

Data fetch API

Support for “read” (io-demo) or “pull” (ps-lite) use cases (sender wants to fetch data
from the receiver)

The goal is to minimize number of auxiliary protocol messages:
Requestor (sender) can send its address and rkey in the initial “pull” request
Responder (receiver) can issue RDMA_WRITE based on the details received in “pull” request

Initial design proposed in (currently closed)

Pros:
Performance improvement for “pull” patterns
More flexible APIl, no need to mix APIs
No need for explicit memory management (register/deregister, keys exchange)

Cons:

Complicates UCP AM API, can be confusing, e.g.:
How to provide receive buffer count and datatype to ucp_am_send nbx() routine
What arguments to define in new ucp_am_send_reply nbx()routine

Similar optimization pattern can be implemented by using mix of AM and RMA APIs

Current flow
Sender Receiver

ucp_am_send nbx(data req)

I\ ucp_worker_progress()
D

U |---> am_handler()
Ll O’ata req

ucp_worker_progress()

ucp_am_send_nbx(data)

Proposed flow
Sender Receiver

ucp_am_send nbx(data _req)

I\ ucp_worker_progress()
D

U |---> am_handler()
Ll O’ata req

ucp_worker progress() Senders addr and rkey received,
€ can do RDMA_WRITE
W RIT ucp_am_send reply nbx(data)

22 NVIDIA.

attempt is

