
UCP ACTIVE MESSAGES
DECEMBER 2021

AGENDA

Introduction

Use Cases

Active Message API

Future Work

INTRODUCTION
What is UCX

UCP provides high level APIs:

▪ Remote memory access – one-sided communications, targeting MPI, SHMEM, other PGASes

▪ Tag based send/receive API – targeting MPI implementations, but is also used for storage and other PGAS frameworks

▪ Stream based send/receive – is not actively developed now (no rendezvous, no GPU memory support, etc)

▪ Active Messages - communications driven by message handlers

INTRODUCTION
Supported Features (TAG vs AM APIs)

Features TAG API AM API

Rendezvous protocol V V

Multi-rail V V

GPU memory support V V

Tag matching V X

Zero copy on the receiver with eager protocol X V

Full error handling support X V

User header support X V

USE CASES
Where AM can be useful

▪ Cloud storage applications (UCX iodemo example)

▪ Spark-GPU and Rapids

▪ AI (ps-lite)

▪ Charm++

▪ GASNet

▪ Collectives (UCC, others)

https://github.com/openucx/ucx/tree/master/test/apps/iodemo
https://github.com/NVIDIA/spark-rapids
https://github.com/bytedance/ps-lite/tree/byteps

ACTIVE MESSAGE API

▪ Set AM handler:
ucs_status_t
ucp_worker_set_am_recv_handler(ucp_worker_h worker,

const ucp_am_handler_param_t *param);

▪ Clear AM handler:

Invoke ucp_worker_set_am_recv_handler() with param->cb = NULL

▪ Data handler semantic
ucs_status_t
(*ucp_am_recv_callback_t)(void *arg, const void *header,

size_t header_length,
void *data, size_t length,
const ucp_am_recv_param_t *param);

struct ucp_am_recv_param {
uint64_t recv_attr;
ucp_ep_h reply_ep;

};

▪ Send function:
ucs_status_ptr_t
ucp_am_send_nbx(ucp_ep_h ep, unsigned id, const void *header, size_t header_length,

const void *buffer, size_t count,const ucp_request_param_t *param);

ucp_worker_progress()

ucp_am_handler_param_t param;
param.id = AM_ID;
param.cb = am_handler;
param.arg = arg;
ucp_worker_set_am_recv_handler(worker, ¶m);

ucp_am_send_nbx(ep, AM_ID,
 header, header_length,

 buffer, count, params);

am_handler(arg, header, header_length,
 data, length, param);

SENDER RECEIVER

Basic API

ACTIVE MESSAGE API

• Send flags (passed to ucp_am_send_nbx() in param->flags):

• UCP_AM_SEND_FLAG_REPLY: ep which can be used for replying to sender will be passed to receive callback on the receiver side

• UCP_AM_SEND_FLAG_EAGER: send using eager protocol regardless of the message length

• UCP_AM_SEND_FLAG_RNDV: send using rendezvous protocol regardless of the message length

• Receive callback flags (passed to ucp_am_recv_callback_t in param->recv_attrs) :

• UCP_AM_RECV_ATTR_FIELD_REPLY_EP: indicates that param->reply_ep contains valid ep associated with the sender. Lifetime of this ep is the
scope of the receive callback.

• UCP_AM_RECV_ATTR_FLAG_DATA: Indicates that received data pointer is persistent, receiver may keep using it outside the callback (to free this
data later need to call ucp_am_data_release()). Mutually exclusive with UCP_AM_RECV_ATTR_FLAG_RNDV.

• UCP_AM_RECV_ATTR_FLAG_RNDV: Indicates that data argument is not a real data, but a descriptor needed to initiate rendezvous request.
Mutually exclusive with UCP_AM_RECV_ATTR_FLAG_DATA.

Possible return codes from the AM callback

API flags

Flags UCP_AM_RECV_ATTR_FLAG_DATA UCP_AM_RECV_ATTR_FLAG_RNDV No Flag

Keep data UCS_IN_PROGRESS UCS_IN_PROGRESS Not allowed

Release data UCS_OK UCS_OK UCS_OK

ACTIVE MESSAGE API
Rendezvous protocol

• Sender sends RTS with user header, not real data

• By default, send protocol is selected implicitly for the user
(eager or rendezvous)

• Send protocol can be specified explicitly by passing
UCP_AM_SEND_FLAG_EAGER/RNDV flag to ucp_am_send_nbx()
routine

• On the receiver data callback is invoked with:

• UCP_AM_RECV_ATTR_FLAG_RNDV flag

• data argument is not a real data, but special descriptor

• Once receive buffer is ready, receiver may initiate rendezvous
receive by

ucs_status_ptr_t
ucp_am_recv_data_nbx(ucp_worker_h worker,

void *data_desc,
void *buffer,
size_t count,
const ucp_request_param_t *param);

where data_desc is data argument received in am callback

ucp_worker_progress()

ucp_am_handler_param_t param;
param.id = AM_ID;
param.cb = am_handler;
param.arg = arg;
ucp_worker_set_am_recv_handler(worker, ¶m);

ucp_am_send_nbx(ep, AM_ID,
 header, header_length,

 buffer, count, params);

am_handler(arg, header, header_length,

 data, length, param)
{

 if (param->recv_attr & UCP_AM_RECV_ATTR_FLAG_RNDV) {

 req = ucp_am_recv_data_nbx(worker, data,

 recv_buffer, count,
 param);
 }
...
}

SENDER RECEIVER

ucp_worker_progress()

FUTURE WORK
Multi-fragment eager protocol

▪ UCP maximal eager message size is limited

▪ Eager messages bigger than the limit are sent in multiple fragments

▪ With current AM API, UCP invokes AM handler once, also for multi-frag message:

▪ UCP allocates an internal buffer to assemble the message fragments

▪ Severe performance overheads: extra memory allocation and copy

▪ UCP AM API extension is proposed in UCX PR #7055:

▪ Introduce “per-chunk” mode, when AM handler gets invoked for every arrived fragment

Supports zero-copy on the receiver even for multi-fragmented message

▪ Allow user to invoke ucp_am_recv_data_nbx() for the first chunk to provide UCP a buffer to be used for assembling a message

Eliminates memory copy if user need to store incoming message in its own buffer

https://github.com/openucx/ucx/pull/7055

FUTURE WORK
Data fetch API

▪ Support for “read” (io-demo) or “pull” (ps-lite) use cases (sender wants to fetch data
from the receiver)

▪ The goal is to minimize number of auxiliary protocol messages:

▪ Requestor (sender) can send its address and rkey in the initial “pull” request

▪ Responder (receiver) can issue RDMA_WRITE based on the details received in “pull” request

▪ Initial design proposed in UCX PR#5594 (currently closed)

▪ Pros:

▪ Performance improvement for “pull” patterns

▪ More flexible API, no need to mix APIs

▪ No need for explicit memory management (register/deregister, keys exchange)

▪ Cons:

▪ Complicates UCP AM API, can be confusing, e.g.:

▪ How to provide receive buffer count and datatype to ucp_am_send_nbx() routine

▪ What arguments to define in new ucp_am_send_reply_nbx()routine

▪ Similar optimization pattern can be implemented by using mix of AM and RMA APIs

ucp_am_send_nbx(data_req)
 ucp_worker_progress()
 |---> am_handler()

ucp_worker_progress()
ucp_am_send_nbx(data)

 ucp_worker_progress()
 |---> am_handler()

Sender Receiver
Current flow

ucp_am_send_nbx(data_req)

ucp_worker_progress() Senders addr and rkey received,
can do RDMA_WRITE
ucp_am_send_reply_nbx(data)

Sender Receiver

Proposed flow

attempt is

