Porting UCX for Tofu-D interconnect of Fugaku

(Lightning Talk)

Yutaka WATANABE 1) Mitsuhisa SATO^{3,2)} Miwako TSUJI³⁾ Hitoshi MURAI 3) Taisuke BOKU²⁾

- 1) University of Tsukuba
- 2) Center for Computational Sciences at University of Tsukuba
- 3) RIKEN Center for Computational Science

Introduction & Motivation

- Tofu-D interconnect is a 6-dimensional mesh/torus network interface used in Supercompter Fugaku or Fujitsu FX1000 based systems
 - Tofu-D is integrated in Fujitsu A64FX CPU chip
 - A64FX is an ARM-based many-core processor: 48 compute cores + 2or4 assistant cores
 - "utofu API" is the lowest level of API to use Tofu-D from userland
- UCX does not support Tofu-D natively
 - We cannot fully utilize UCX ecosystem on Fugaku or other systems using Tofu-D
- We are planning to make a task-based distributed programming framework with UCX
 - Task parallel model do not need global synchronization among cores
 - Have a potential to fully utilize the many-core processors
 - UCX will be used as an compatible and lightweight low-level communication layer
 - UCX has less overhead than MPI
 - MPI has problem with multithreaded environment
 - UCX is very useful to make a portable framework with requires node-to-node communication

[1] Block diagram of Tofu-D network interface

Task-flow graph

Task-based distributed programming model

[1] https://www.r-ccs.riken.jp/fugaku/system/

Preliminary performance evaluation using ping-pong benchmark on Supercomputer Fugaku

CPU	Fujitsu A64FX
Interconnect	Tofu-D
Bandwidth per TNI	6.8 GB/s
Injection bandwidth	40.8 GB/s

Performance of UCT zero copy PUT API with preliminary implementation of UCX for Tofu-D

2021/12/1

Current status & Future work

Current status

- Implementing Atomic API, Active Message API of UCT for Tofu-D
- At least continue to implement until OpenSHMEM works correctly with UCX on Tofu-D

Future plan

- Scaling test using Supercomputer Fugaku (Fugaku has about 150k nodes)
 - Any scaling test haven't been done yet
- Optimizing the implementation for Tofu-D based on the performance evaluation
- Implementing task-based distributed programming framework with UCX for Tofu-D