
Peter Entschev (NVIDIA)

 November 30th, 2021

UCX-Py － Progress Summary 2021

2

UCX-Py

• Python interface for UCX

• Provides sync and async APIs

• Simple replacement for Python communications (e.g., sockets)

• Targeted at library and framework developers

• No low-level communications, UCX or C knowledge required

• Made available to users (e.g., data scientists) via frameworks such as Dask

Introduction

3

Using UCX-Py

async def server(ep):
 # allocate buffer and receive tag message
 arr = cupy.empty(10000, dtype='u1')
 await ep.recv(arr)

 # send data back via tag message
 await ep.send(arr)

 await ep.close()
 lf.close()

async def main():
 global lf
 lf = ucp.create_listener(server, port=12345)

 while not lf.closed():
 await asyncio.sleep(0.1)

Server Client

Send/Receive with CuPy

async def client():
 host = ucp.get_address(ifname='eth0') # get address for eth0
 ep = await ucp.create_endpoint(host, port=12345)

 msg = cupy.zeros(10000, dtype='u1') # data to send
 await ep.send(msg) # send tag message

 # receive tag response
 resp = cupy.empty_like(msg)
 await ep.recv(resp) # receive the echo
 cupy.testing.assert_array_equal(msg, resp)
 await ep.close()

4

Using UCX-Py

async def server(ep):
 # buffer -> __array_inteface__ / __cuda_array_interface__
 msg = numpy.zeros(10000, dtype='f8')

 # send tag message
 await ep.send(msg)

Server Client

Array Protocols

async def client(ep):
 # buffer -> __array_inteface__ / __cuda_array_interface__
 tag_msg = numpy.empty(10000, dtype='f8') # Must match sender

 # receive tag message into tag_msg
 await ep.recv(tag_msg)

5

UCX-Py in Dask
RAPIDS GPU-BDB

Dask task stream with Python sockets
(Red is communication)

Dask task stream with UCX-Py
(Red is communication)

6

UCX-Py

• TCP_SOCKCM/UCX 1.11+ support

• Improved endpoint error handling

• Improved stability for InfiniBand devices

• Support for Active Messages

• Support for RMA operations

• Support for IP-less setups (without a UCX Listener)

• Separate UCX-Py Core and Asynchronous APIs － Code cleanup

• Improved Documentation

• Simplified Configuration for InfiniBand (dask-cuda)

Summary of 2021 Progress

7

UCX-Py － Progress 2021

• Introduced UCX 1.10

• Many bugs still existed prior to 1.11

• Some features were missing, compared to old implementation

• Common use case: NVLink (intranode) + TCP (internode)

○ Dask

○ NVIDIA Morpheus

• TCP: very important for UCX-Py users

TCP SOCKCM

https://dask.org/
https://developer.nvidia.com/morpheus-cybersecurity

8

UCX-Py － Progress 2021

• Error callbacks can be registered for each endpoint

• Prior to UCX 1.11 some transports didn't support them (e.g., cuda_ipc)

• May be used to track errors as well as closed connections

• Previously UCX-Py implemented its own connection closing mechanism

• Error callbacks are more versatile － no hangs due to disconnected
endpoint

• Default in UCX-Py (when UCX 1.11+ is used)

Endpoint Error Handling

9

UCX-Py － Progress 2021

• Provide more familiar interface for Python users

• Avoid unnecessary tag-matching overhead

• Metadata (size, memory type) can be packed into the message

• User can register allocator for received messages

• Zero-copy conversion possible for allocators supporting

○ __array_interface__

○ __cuda_array_interface__

○ Python buffer protocol

Active Messages

10

UCX-Py － Progress 2021

async def server(ep):
 # buffer -> __array_inteface__ / __cuda_array_interface__
 msg = numpy.zeros(10000, dtype='f8')

 # send tag message
 await ep.send(msg)

Server Client

Tag Messages Example

async def client(ep):
 # buffer -> __array_inteface__ / __cuda_array_interface__
 tag_msg = numpy.empty(10000, dtype='f8') # Must match sender

 # receive tag message into tag_msg
 await ep.recv(tag_msg)

11

UCX-Py － Progress 2021

async def server(ep):
 # buffer -> __array_inteface__ / __cuda_array_interface__
 msg = numpy.zeros(10000, dtype='f8')

 # send tag message
 await ep.send(msg)

 # send active message
 await ep.am_send(msg)

Server Client

Active Messages Example

async def client(ep):
 # buffer -> __array_inteface__ / __cuda_array_interface__
 tag_msg = numpy.empty(10000, dtype='f8') # Must match sender

 # receive tag message into tag_msg
 await ep.recv(tag_msg)

 ucp.register_am_allocator(
 lambda n: numpy.empty(n, dtype='u1'), 'host'
)
 ucp.register_am_allocator(
 lambda n: cupy.empty(n, dtype='u1'), 'cuda'
)

 # receive active message, no pre-allocation or prior knowledge
 # of size/memory type required
 am_msg = await ep.am_recv()

12

UCX-Py － Progress 2021

• Enables direct access to local Python memory by a remote peer

• Extended by UCXIO, a class simulating Python streams over UCX RMA

• Only supported in core API at the moment

• Contributed by Matt Baker, ORNL

Remote Memory Access Operations

13

UCX-Py － Progress 2021

• UCX worker address can be queried

• Address can be serialized as a byte-string

• Byte-string can be distributed (via DNS SRV record, shared filesystem,
etc.)

• Remote processes can establish connections using that address

• No need for an IP address to be assigned

○ When no IP address is assigned, requires InfiniBand or another
capable interconnect

• No listener is needed

IP-Less Setups

14

UCX-Py － Progress 2021

• Separation of Core and Asynchronous APIs has been consolidated

• No more Core→Asynchronous API dependency

• Better Cython code organization into multiple files

• Cython code still has a "main" file including all other files to keep binary
to a single shared library file

Separate Core and Asynchronous APIs

15

UCX-Py － Progress 2021

• Added docker-specific documentation on NVLink

• More information on common OS limits, such as maximum file descriptors
and connections open

• Moved Dask docs with more complete examples to
https://docs.rapids.ai/api/dask-cuda/nightly/ucx.html

Improved Documentation

https://docs.rapids.ai/api/dask-cuda/nightly/ucx.html

16

UCX-Py － Progress 2021

• Included reference Docker container

• Helps introduce all UCX-Py requirements for new users

• Used as well as reference for application deployment

• Allows running all tests and benchmarks

• Currently limited to basic memory and transports only (no CUDA or
MOFED)

Reference Docker Container

17

UCX-Py － Progress 2021

• Simplified CI capabilities running nightly

• Multiple UCX versions tests

• Running on an NVIDIA DGX-1

○ Supports CUDA, NVLink, InfiniBand

• Allowed us to quickly notice functionality and
performance regressions

UCX-Py Nightly CI

18

Dask-CUDA

• Mapping of CUDA↔InfiniBand devices is totally done by UCX

• Considerable code simplification － no more libhwloc required in UCX-Py

• Allows proper identification in non-baremetal systems (e.g., cloud)

• Does not require users to indicate InfiniBand auto/manual device mapping

• RDMACM working － required for large-scale clusters

Simplified Configuration for InfiniBand

19

UCX-Py － Progress 2021

• Got delayed (again) in 2021

• Effort to add UCX-Py tests into OpenUCX CI started (PR #7412)

○ CI currently lacks CUDA support

• Once CI limitations are resolved, upstreaming will be done in order:

○ Core library (Cython + C code)

○ Asynchronous (high-level) library

○ Packaging (PyPI, conda)

Upstreaming Code to Mainline OpenUCX

https://github.com/openucx/ucx/pull/7412

20

UCX-Py － 2022

• Multi-threading support

• Improvements on small message transfers (< 1MB), up to 5x slower today

• Remove the obligation to specify UCX_TLS for applications (e.g., Dask)

○ Today a CUDA context is necessary prior to UCX initialization for
CUDA↔IB GPUDirectRDMA

• Please reach out to us if you have any requests

○ https://github.com/rapidsai/ucx-py

• Contributors welcome and encouraged!

Planned Improvements

https://github.com/rapidsai/ucx-py

THANK YOU

Peter Entschev (NVIDIA), pentschev@nvidia.com

mailto:pentschev@nvidia.com

