) 3
K , \
- 1
® -
<ANVIDIA. *
- °

UCX-Py — Progress Sum‘mai’y 2021 -
Peter Entschev (NVIDIA) 7\

p November 30th, 2021
Ld

UCX-Py

Python interface for UCX

Provides sync and async APIs

Simple replacement for Python communications (e.g., sockets)
Targeted at library and framework developers

No low-level communications, UCX or C knowledge required

Made available to users (e.g., data scientists) via frameworks such as Dask

2 NVIDIA.

Using UCX-Py

Send/Receive with CuPy

Server

async def server (ep):
allocate buffer and receive tag message
arr = cupy.empty (10000, dtype='ul')
await ep.recv(arr)

send data back via tag message
await ep.send(arr)

await ep.close()
1lf.close ()

async def main() :
global 1f
1f = ucp.create_listener(server, port=12345)

while not 1f.closed():
await asyncio.sleep(0.1)

Client

async def client():

host = ucp.get address (ifname='ethO") # get address for eth0

ep = await ucp.create endpoint (host, port=12345)

msg = cupy.zeros (10000, dtype='ul') # data to send
await ep.send (msqg) # send tag message

receive tag response

resp = cupy.empty like (msg)

await ep.recv(resp) # receive the echo
cupy.testing.assert array equal (msg, resp)
await ep.close()

3

<ANVIDIA.

Server

Using UCX-Py

Client

async def server (ep):

buffer -> array inteface / _ cuda array interface

msg = numpy.zeros(lﬁOOO, dtype='£f8")

send tag message
await ep.send (msqg)

async def client (ep):
buffer -> array inteface

receive tag message into tag msg
await ep.recv(tag msq)

tag msg = numpy.empty(10000,_atype:'f8W

/ ___cuda array interface _

Must match sender

<A NnvIDIA

RAPIDS GPU-BDB

UCX-Py in Dask

e Lt Ll sl ikt rell s L

- et e
l; nr.'lihn'k.‘.“ulll"u'ﬁn‘.lvd. |x

Dask task stream with UCX-Py

Dask task stream with Python sockets

(Red is communication)

(Red is communication)

<ANVIDIA.

5

UCX-Py

TCP_SOCKCM/UCX 1.11+ support

Improved endpoint error handling

Improved stability for InfiniBand devices

Support for Active Messages

Support for RMA operations

Support for IP-less setups (without a UCX Listener)

Separate UCX-Py Core and Asynchronous APIs — Code cleanup
Improved Documentation

Simplified Configuration for InfiniBand (dask-cuda)

6

NVIDIA.

UCX-Py — Progress 2021

Introduced UCX 1.10
Many bugs still existed prior to 1.11
Some features were missing, compared to old implementation
Common use case: NVLink (intranode) + TCP (internode)
O

O

TCP: very important for UCX-Py users

7 NVIDIA.

https://dask.org/
https://developer.nvidia.com/morpheus-cybersecurity

UCX-Py — Progress 2021

Error callbacks can be registered for each endpoint

Prior to UCX 1.11 some transports didn't support them (e.g., cuda_ipc)
May be used to track errors as well as closed connections

Previously UCX-Py implemented its own connection closing mechanism

Error callbacks are more versatile — no hangs due to disconnected
endpoint

Default in UCX-Py (when UCX 1.11+ is used)

8

NVIDIA.

UCX-Py — Progress 2021

Provide more familiar interface for Python users
Avoid unnecessary tag-matching overhead
Metadata (size, memory type) can be packed into the message
User can register allocator for received messages
Zero-copy conversion possible for allocators supporting
© array interface

O cuda array interface

o Python buffer protocol

9

NVIDIA.

UCX-Py — Progress 2021

Server

Client

async def server (ep):
buffer -> array inteface / _ cuda array interface

msg = numpy.zeros(lﬁOOO, dtype='£f8")

send tag message
await ep.send (msqg)

async def client (ep):
buffer -> array inteface

/ __cuda array interface
tag msg = numpy.empty (10000, dtype='£f8")

Must match sender

receive tag message into tag msg
await ep.recv(tag msq)

NVIDIA.

UCX-Py — Progress 2021

Active Messages Example

Server

Client

async def server (ep):
buffer -> array inteface / _ cuda array interface
msg = numpy.zeros (10000, dtype='£f8")

send tag message
await ep.send (msqg)

send active message
await ep.am send (msqg)

async def client (ep):

buffer -> array inteface / _ cuda array interface _
tag msg = numpy.empty (10000, dtype='£f8") # Must match sender

receive tag message into tag msg
await ep.recv(tag msq)

ucp.register am allocator(

lambda n: numpy.empty(n, dtype='ul'), 'host'
)
ucp.register am allocator (

lambda n: cupy.empty(n, dtype='ul'), 'cuda'

receive active message, no pre-allocation or prior knowledge
of size/memory type required
am _msg = await ep.am recv ()

11 <ANVIDIA.

UCX-Py — Progress 2021

Enables direct access to local Python memory by a remote peer
Extended by UCXIO, a class simulating Python streams over UCX RMA
Only supported in core API at the moment

Contributed by Matt Baker, ORNL

12 NVIDIA.

UCX-Py — Progress 2021

UCX worker address can be queried
Address can be serialized as a byte-string

Byte-string can be distributed (via DNS SRV record, shared filesystem,
etc.)

Remote processes can establish connections using that address
No need for an IP address to be assigned

o When no IP address is assigned, requires InfiniBand or another
capable interconnect

No listener is needed

13 NVIDIA.

UCX-Py — Progress 2021

Separation of Core and Asynchronous APIs has been consolidated
No more Core—Asynchronous APl dependency
Better Cython code organization into multiple files

Cython code still has a "main” file including all other files to keep binary
to a single shared library file

14 NVIDIA.

UCX-Py — Progress 2021

Added docker-specific documentation on NVLink

More information on common OS limits, such as maximum file descriptors
and connections open

Moved Dask docs with more complete examples to

15 NVIDIA.

https://docs.rapids.ai/api/dask-cuda/nightly/ucx.html

UCX-Py — Progress 2021

Included reference Docker container

Helps introduce all UCX-Py requirements for new users
Used as well as reference for application deployment
Allows running all tests and benchmarks

Currently limited to basic memory and transports only (no CUDA or
MOFED)

16 NVIDIA.

UCX-Py — Progress 2021

Simplified Cl capabilities running nightly
Multiple UCX versions tests
Running on an NVIDIA DGX-1

o Supports CUDA, NVLink, InfiniBand

Allowed us to quickly notice functionality and
performance regressions

Bandwidth (GB/s)

8 8 88

Bandwidth (GB/s)
N s

UCX-Py Core - AM Transfer API - cupy - Transport CUDA_IPC_NV2

T

August Sepl mber

UCX-Py Core - AM Transfer API - cupy - Transport RC

?\ IT“

<2 NVIDIA.

Dask-CUDA

Mapping of CUDA«InfiniBand devices is totally done by UCX

Considerable code simplification — no more libhwloc required in UCX-Py
Allows proper identification in non-baremetal systems (e.g., cloud)

Does not require users to indicate InfiniBand auto/manual device mapping

RDMACM working — required for large-scale clusters

18

NVIDIA.

UCX-Py — Progress 2021

e Got delayed (again) in 2021

e Effort to add UCX-Py tests into OpenUCX Cl started ()
o Cl currently lacks CUDA support

e Once Cl limitations are resolved, upstreaming will be done in order:
o Core library (Cython + C code)
o Asynchronous (high-level) library

o Packaging (PyPIl, conda)

19 NVIDIA.

https://github.com/openucx/ucx/pull/7412

UCX-Py — 2022

Multi-threading support
Improvements on small message transfers (< 1MB), up to 5x slower today
Remove the obligation to specify UCX_TLS for applications (e.g., Dask)

o Today a CUDA context is necessary prior to UCX initialization for
CUDA~IB GPUDirectRDMA

Please reach out to us if you have any requests

©)

Contributors welcome and encouraged!

20 NVIDIA.

https://github.com/rapidsai/ucx-py

. //‘x" -
Q. ~ = ~ V~

THANK YOU AR S . SN

\ N ! { v‘ =\
. \ y } 7 4 Ve
AV G \

o
- _ 4
N

Peteg Entschev (NVIDIA}, pentschev@nvidia.com

<A NVIDIA. X A

mailto:pentschev@nvidia.com

