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UCX-Py

Python interface for UCX

Provides sync and async APIs

Simple replacement for Python communications (e.g., sockets)
Targeted at library and framework developers

No low-level communications, UCX or C knowledge required

Made available to users (e.g., data scientists) via frameworks such as Dask
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Using UCX-Py

Send/Receive with CuPy

Server

async def server (ep):
# allocate buffer and receive tag message
arr = cupy.empty (10000, dtype='ul')
await ep.recv(arr)

# send data back via tag message
await ep.send(arr)

await ep.close()
1lf.close ()

async def main() :
global 1f
1f = ucp.create_listener(server, port=12345)

while not 1f.closed():
await asyncio.sleep(0.1)

Client

async def client():

host = ucp.get address (ifname='ethO") # get address for eth0

ep = await ucp.create endpoint (host, port=12345)

msg = cupy.zeros (10000, dtype='ul') # data to send
await ep.send (msqg) # send tag message

# receive tag response

resp = cupy.empty like (msg)

await ep.recv(resp) # receive the echo
cupy.testing.assert array equal (msg, resp)
await ep.close()
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Server

Using UCX-Py

Client

async def server (ep):

# buffer ->  array inteface / _ cuda array interface

msg = numpy.zeros(lﬁOOO, dtype='£f8")

# send tag message
await ep.send (msqg)

async def client (ep):
# buffer ->  array inteface

# receive tag message into tag msg
await ep.recv(tag msq)

tag msg = numpy.empty(10000,_atype:'f8W

/ ___cuda array interface _

# Must match sender
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RAPIDS GPU-BDB

UCX-Py in Dask

e Lt Ll sl ikt rell s L

- et e
l; nr.'lihn'k.‘.“ulll"u'ﬁn‘.lvd. |x

Dask task stream with UCX-Py

Dask task stream with Python sockets

(Red is communication)

(Red is communication)
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UCX-Py

TCP_SOCKCM/UCX 1.11+ support

Improved endpoint error handling

Improved stability for InfiniBand devices

Support for Active Messages

Support for RMA operations

Support for IP-less setups (without a UCX Listener)

Separate UCX-Py Core and Asynchronous APIs — Code cleanup
Improved Documentation

Simplified Configuration for InfiniBand (dask-cuda)

6

NVIDIA.



UCX-Py — Progress 2021

Introduced UCX 1.10
Many bugs still existed prior to 1.11
Some features were missing, compared to old implementation
Common use case: NVLink (intranode) + TCP (internode)
O

O

TCP: very important for UCX-Py users
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https://dask.org/
https://developer.nvidia.com/morpheus-cybersecurity

UCX-Py — Progress 2021

Error callbacks can be registered for each endpoint

Prior to UCX 1.11 some transports didn't support them (e.g., cuda_ipc)
May be used to track errors as well as closed connections

Previously UCX-Py implemented its own connection closing mechanism

Error callbacks are more versatile — no hangs due to disconnected
endpoint

Default in UCX-Py (when UCX 1.11+ is used)

8

NVIDIA.



UCX-Py — Progress 2021

Provide more familiar interface for Python users
Avoid unnecessary tag-matching overhead
Metadata (size, memory type) can be packed into the message
User can register allocator for received messages
Zero-copy conversion possible for allocators supporting
©  array interface

O cuda array interface

o Python buffer protocol
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UCX-Py — Progress 2021

Server

Client

async def server (ep):
# buffer ->  array inteface / _ cuda array interface

msg = numpy.zeros(lﬁOOO, dtype='£f8")

# send tag message
await ep.send (msqg)

async def client (ep):
# buffer ->  array inteface

/ __cuda array interface
tag msg = numpy.empty (10000, dtype='£f8")

# Must match sender

# receive tag message into tag msg
await ep.recv(tag msq)

NVIDIA.



UCX-Py — Progress 2021

Active Messages Example

Server

Client

async def server (ep):
# buffer ->  array inteface / _ cuda array interface
msg = numpy.zeros (10000, dtype='£f8")

# send tag message
await ep.send (msqg)

# send active message
await ep.am send (msqg)

async def client (ep):

# buffer ->  array inteface / _ cuda array interface _
tag msg = numpy.empty (10000, dtype='£f8") # Must match sender

# receive tag message into tag msg
await ep.recv(tag msq)

ucp.register am allocator(

lambda n: numpy.empty(n, dtype='ul'), 'host'
)
ucp.register am allocator (

lambda n: cupy.empty(n, dtype='ul'), 'cuda'

# receive active message, no pre-allocation or prior knowledge
# of size/memory type required
am _msg = await ep.am recv ()
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UCX-Py — Progress 2021

Enables direct access to local Python memory by a remote peer
Extended by UCXIO, a class simulating Python streams over UCX RMA
Only supported in core API at the moment

Contributed by Matt Baker, ORNL
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UCX-Py — Progress 2021

UCX worker address can be queried
Address can be serialized as a byte-string

Byte-string can be distributed (via DNS SRV record, shared filesystem,
etc.)

Remote processes can establish connections using that address
No need for an IP address to be assigned

o When no IP address is assigned, requires InfiniBand or another
capable interconnect

No listener is needed
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UCX-Py — Progress 2021

Separation of Core and Asynchronous APIs has been consolidated
No more Core—Asynchronous APl dependency
Better Cython code organization into multiple files

Cython code still has a "main” file including all other files to keep binary
to a single shared library file
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UCX-Py — Progress 2021

Added docker-specific documentation on NVLink

More information on common OS limits, such as maximum file descriptors
and connections open

Moved Dask docs with more complete examples to
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https://docs.rapids.ai/api/dask-cuda/nightly/ucx.html

UCX-Py — Progress 2021

Included reference Docker container

Helps introduce all UCX-Py requirements for new users
Used as well as reference for application deployment
Allows running all tests and benchmarks

Currently limited to basic memory and transports only (no CUDA or
MOFED)
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UCX-Py — Progress 2021

Simplified Cl capabilities running nightly
Multiple UCX versions tests
Running on an NVIDIA DGX-1

o Supports CUDA, NVLink, InfiniBand

Allowed us to quickly notice functionality and
performance regressions

Bandwidth (GB/s)
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Dask-CUDA

Mapping of CUDA«InfiniBand devices is totally done by UCX

Considerable code simplification — no more libhwloc required in UCX-Py
Allows proper identification in non-baremetal systems (e.g., cloud)

Does not require users to indicate InfiniBand auto/manual device mapping

RDMACM working — required for large-scale clusters
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UCX-Py — Progress 2021

e Got delayed (again) in 2021

e Effort to add UCX-Py tests into OpenUCX Cl started ( )
o Cl currently lacks CUDA support

e Once Cl limitations are resolved, upstreaming will be done in order:
o Core library (Cython + C code)
o Asynchronous (high-level) library

o Packaging (PyPIl, conda)
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https://github.com/openucx/ucx/pull/7412

UCX-Py — 2022

Multi-threading support
Improvements on small message transfers (< 1MB), up to 5x slower today
Remove the obligation to specify UCX_TLS for applications (e.g., Dask)

o Today a CUDA context is necessary prior to UCX initialization for
CUDA~IB GPUDirectRDMA

Please reach out to us if you have any requests

©)

Contributors welcome and encouraged!
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https://github.com/rapidsai/ucx-py
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