
Manjunath Gorentla Venkata, Valentin Petrov, Sergey Lebedev, Ferrol Aderholdt

On behalf of UCC WG @ UCF Annual Event, 2021

UCC Overview

© 2021 UCF Consortium 2

Open-source project to provide an API and library implementation of
collective (group) communication operations

© 2021 UCF Consortium 3

Outline

• UCC Design, API and Roadmap

Manju

• UCC Hierarchical Collectives

Valentin

• UCC GPU Collectives

Sergey

• UCC RMA/One-sided Collectives

Ferrol

© 2021 UCF Consortium 4

UCC Design Challenges

§ Unified collective stack for HPC and DL/ML workloads
• Need to support a wide variety of semantics
• Need to optimize for different performance sensitives - latency, bandwidth, throughput
• Need for flexible resource scheduling and ordering model

§ Unified collective stack for software and hardware transports
• Need for complex resource management - scheduling, sharing, and exhaustion
• Need to support multiple semantic differences – reliability, completion

§ Unify parallelism and concurrency
• Concurrency – progress of a collective and the computation
• Parallelism – progress of many independent collectives

§ Unify execution models for CPU, GPU, and DPU collectives
• Two-way execution model – control operations are tightly integrated
- Do active progress, returns values, errors, and callbacks with less overhead

• One-way execution model – control operations are loosely integrated
- passive progress, and handle return values (GPU/DPUs)

© 2021 UCF Consortium 5

UCC Design Principles: Properties desired in the solution

§ Scalability and performance for key use-cases
• Enable efficient implementation for common cases in MPI, OpenSHMEM and AI/ML

§ Extensible
• We cannot possibly cover all the options and features for all use cases
• We need the API and semantics that is modular

§ Opt in-and-out
• If for a certain path some semantic is not applicable, we need a way to opt-out

§ Explicit API and semantics over implicit
• Explicit -> implicit is easier than implicit -> explicit

§ Minimal API surface area
• Lessen the mental load
• A few set of abstractions to understand and go into details when required

§ Other properties are such as the ability to override functionality, programmability, expressing
general and specific functionality are important

© 2021 UCF Consortium 6

UCC’s Solution: Three important concepts

§ Abstractions
• Abstract the resources required for collective operations
• Local: Library, Context, Endpoints, Execution Engine
• Global: Teams

§ Operations
• Defines how to interact with the abstractions
• Create/modify/destroy the resources
• Build, launch and finalize collectives

§ Properties
• Defines how to customize abstractions and operations
• Explicit way to request for optional features, semantics, and optimizations (opt-in or opt-out model)
• Provides an ability to express and request many cross-cutting features
• Properties are preferences expressed by the user of the library and what the library provides is queried

§ Details of concepts
• Code: https://github.com/openucx/ucc
• Slides: https://github.com/manjugv/ucc_wg_public

© 2021 UCF Consortium 7

Concepts

§ Abstractions for Resources

• Collective Library

• Communication Context

• Teams

§ Collective Operations

§ Triggered Operations

© 2021 UCF Consortium 8

UCC Library

Semantics
§ All UCC operations should be invoked between the init and finalize operations.
§ The library can be tailored to match the user requirements
§ The user of the library can be parallel programming models (MPI, PGAS/OpenSHMEM, PyTorch)

or applications
Operations
§ Routines for initializing and finalizing the resources for the library.

§ An object to encapsulate resources related to the group communication operations

© 2021 UCF Consortium 9

Library Init C Interface

© 2021 UCF Consortium 10

Properties: Collectives LIBRARY

§ Thread Model
§ Collective Types
§ Reduction Types
§ Synchronization Types

© 2021 UCF Consortium 11

Properties of library: Thread model

§ UCC_LIB_THREAD_SINGLE:

• The user program cannot be multithreaded

§ UCC_LIB_THREAD_FUNNELED:

• The user program may be multithreaded, however, only one thread should invoke the UCC interfaces

§ UCC_LIB_THREAD_MULTIPLE:

• The user program can be multithreaded, and any any thread may invoke the UCC operations.

© 2021 UCF Consortium 12

Concepts

§ Abstractions for Resources

• Collective Library

• Communication Context

• Teams

§ Collective Operations

§ Triggered Operations

© 2021 UCF Consortium 13

Communication Context (1)

§ An object to encapsulate local resource and express network parallelism

§ Context is created by ucc_context_create()
§ Contexts represents a local resource for group operations - injection queue, and/or network

parallelism
• Example: software injection queues (network endpoints), hardware resources

§ Context can be coupled with threads, processes or tasks
• A single MPI process can have multiple contexts
• A single thread (pthread or OMP thread) can be coupled with multiple contexts

© 2021 UCF Consortium 14

Communication Context (2)

§ An object to encapsulate local resource and express network parallelism

§ Context can be bound to a specific core, socket, or an accelerator

• Provides an ability to express affinity

§ Context can be used to control resource sharing

§ Multiple contexts per team (from same thread) can be supported

• Software and hardware collectives

• Optimize for bandwidth utilization

© 2021 UCF Consortium 15

Context Create C Interface

© 2021 UCF Consortium 16

PROPERTIES OF Context : Context Type

EXCLUSIVE
§ The context participates in a single team

• So resources are exclusive to a single team
§ The libraries can implement it as a lock-free implementation

SHARED
§ The context can participate in multiple teams

• Resources are shared by multiple teams
§ The library might be required to protect critical sections

§ Customize for resource sharing and utilization

© 2021 UCF Consortium 17

Concepts

§ Abstractions for Resources

• Collective Library

• Communication Context

• Teams

§ Collective Operations

§ Triggered Operations

© 2021 UCF Consortium 18

Teams

§ An object to encapsulate the resources required for group operations such as collective
communication operations.

§ Created by processes, threads or tasks by calling ucc_team_create_post()

• A collective operation but no explicit synchronization among the processes or threads

§ Non-blocking operation and only one active call at any given instance.

§ Each process or thread passes local resource object (context)

• Achieve global agreement during the create operation

© 2021 UCF Consortium 19

Team Create Interface

© 2021 UCF Consortium 20

PROPERTIES: Teams

§ Ordering : All team members must invoke
collective in the same order?
• Yes for MPI and No for TensorFlow and

Persistent collectives
§ Outstanding collectives
§ Can help with resource management

§ Should Endpoints be in a contiguous range ?
§ Synchronization Model

• On_Entry, On_Exit, or On_Both – this helps with
global resource allocation

§ Datatype
• Can be customized for contiguous, strided, or

non-contiguous datatypes

© 2021 UCF Consortium 21

Concepts

§ Abstractions for Resources
• Collective Library

• Communication Context

• Teams

§ Collective Operations
§ Triggered Operations

© 2021 UCF Consortium 22

Collective Operations: Building Blocks

© 2021 UCF Consortium 23

Collective Operations: BUILDING BLOCKs (2)

Semantics

§ Collective operations : ucc_collective_init(…) and ucc_collective_init_and_post(…)

§ Local operations: ucc_collective_post, test, and finalize

• Initialize with ucc_collective_init(…)

• Initializes the resources required for a particular collective operation, but does not post the operation

§ Completion

• The test routine provides the status

§ Finalize

• Releases the resources for the collective operation represented by the request

• The post and wait operations are invalid after finalize

© 2021 UCF Consortium 24

Collective Operations: BUILDING BLOCKs (3)

§ Blocking collectives:
• Can be implemented with Init_and_post and test+finalize

§ Persistent Collectives:
• Can be implemented using the building blocks - init, post, test, and finalize

§ Split-Phase
• Can be implemented with Init_and_post and test+finalize

© 2021 UCF Consortium 25

Concepts

§ Abstractions for Resources

• Collective Library

• Communication Context

• Teams

§ Collective Operations

§ Triggered Operations

© 2021 UCF Consortium 26

UCC Execution Engine, Events, and Triggered Operations

Execution Engine
§ It is an execution context that supports event-driven network execution on the CUDA streams,

CPU threads, and DPU threads.
Events
§ Library-generated events
• Examples: Completion of operation, launch of collective

§ User-generated events
• Examples: Compute complete, Data-ready

Triggered Operations
§ Triggered operations enable the posting of operations on an event.
• UCC supports triggering collective operations by library-generated and user-generated events.

§ Team-level customization to enable/disable triggered operations

© 2021 UCF Consortium 27

UCC Events: Interaction between a User Thread and Event-driven UCC

1. Application initializes the collective
operation

2.When the application completes the
compute, it posts the
UCC_EVENT_COMPUTE_COMPLETE
event to the execution engine.

3. The library thread polls the event queue and
triggers the operations that are related to
the compute event.

4. The library posts the
UCC_EVENT_POST_COMPLETE event to
the event queue.

5. On completion of the collective operation,
the library posts
UCC_EVENT_COLLECTIVE_COMPLETE
event to the completion event queue.

App
Communication

Thread

App
Compute
Thread

UCC
Library
Thread

Execution
Engine with Queues

Execute
Collective

UCC_EVENT_COLLECTIVE_COMPLETE

UCC_EVENT_COLLECTIVE_POST

ucc_ee_set_event
(…UCC_EVENT_COMPUTE_COMPLETE)

Compute

ucc_collective_init()

ucc_collective_triggered_post()

1

2

3 4

5

© 2021 UCF Consortium 28

UCC Specification: Interfaces and semantics fully specified

§ Specification available on the UCC GH
§ Specification is ahead of the code now
§ The version 1.0 is agreed by the working

group and merged into the master branch
§ Over 100 pages of detailed information

about the interfaces and semantics
§ Doxygen based documentation
§ Both pdf and html available

© 2021 UCF Consortium 29

UCC Reference Implementation: Component Diagram

© 2021 UCF Consortium 30

UCC: Reference Implementation Status

© 2021 UCF Consortium 31

Integration with HPC and DL Programming Models

§ Open MPI
• Available in Open MPI v4.1 and above
• Support alltoall, broadcast, barrier, allreduce, and allgather collective operations

§ Open MPI/OSHMEM
• Supports OpenSHMEM v1.4 collective operations
• Also enables collective operations based on one-sided RMA operations

§ PyTorch
• Support via third-party plugin : https://github.com/facebookresearch/torch_ucc

https://github.com/facebookresearch/torch_ucc

© 2021 UCF Consortium 32

UCC v1.0 Expected to Release Q4 2021

§ v0.1.0 Early Release (Released Aug 31st,
2021)
• Support for most collectives required by parallel

programming models
• Many algorithms to support various data sizes,

types, and system configurations
• Support for CPU and GPU collectives
• Collectives on basic datatypes
• Testing infrastructure
- Unit tests, profiling, and performance tests

• Support for MPI and PyTorch (via Third-party
plugin)

§ v1.0 Major Release (Expected 2021)
• Hardware collectives - support for SHARP
• Support for more optimized collectives

(hierarchical)
• Support for OpenSHMEM with one-sided

collectives and active sets
• Support for NCCL collectives
• Infrastructure for pipelining, task management ,

and customization (algorithm selection)
• Collectives on generic datatypes (in discussion)
• Incorporate feedback from v0.1.0 release

© 2021 UCF Consortium 33

Contributions are Welcome!

§ What contributions are welcomed ?
• Everything from design, documentation, code, testing infrastructure, code reviews …

§ How to participate ?
• WG Meetings : https://github.com/openucx/ucc/wiki/UCF-Collectives-Working-Group
• GitHUB: https://github.com/openucx/ucc
• Slack channel: Ask for an invite
• Mailing list: ucx-group@elist.ornl.gov

mailto:ucx-group@elist.ornl.gov

© 2021 UCF Consortium 34

UCC Hierarchal Collectives

© 2021 UCF Consortium 35

What is Hierarchical collective

§ UCC Team (communicator) is split into subgroups of processes that can form a topological
hierarchy

§ A collective operation over original UCC team can be then implemented as a combination of
smaller collectives over subgroups

§ Technique is commonly used: ompi/cheetah, hcoll

§ Can be beneficial for latency and bw bound collectives depending on configuration

© 2021 UCF Consortium 36

Example of subgrouping

socket socket

node

socket socket

node

socket socket

node

socket leaderssocket leaderssocket leaders

node leaders

© 2021 UCF Consortium 37

Example of hierarchical Allreduce

reduce reduce reduce reduce reduce reduce

reduce reduce reduce

© 2021 UCF Consortium 38

Example of hierarchical Allreduce

allreduce

© 2021 UCF Consortium 39

Example of hierarchical Allreduce

bcast bcast bcast

bcast bcast bcast bcast bcast bcast

© 2021 UCF Consortium 40

Example Allreduce, 2lvl

§ 2 level hierarchical allreduce applicable to communicators with constant ppn (number of ranks
per node is the same on all nodes)

§ The ranks of communicator are split into groups: NODE_GROUP and NET_GROUP. Each rank
is part of 2 groups.
• NODE_GROUP contains all the ranks of the comm that belong to the same node (host); each rank is assigned a local NODE_RANK (relative to the node group). Size of the NODE_GROUP = ppn
• NET GROUP contains the ranks from all the nodes of the communicator with the same NODE_RANK. Size of the NET_GROUP = nnodes.

• There are total “nnodes” NODE_GROUPS and “ppn” “NET_GROUPS”

§ The algorithm on each process consists of 3 steps: 1. ReduceScatter over NODE_GROUP, 2. Allreduce over NET_GROUP, 3. Allgather over
NODE_GROUP.

© 2021 UCF Consortium 41

UCC: subgrouping

§ src/topo framework
§ Local process_info (bound socket/numa id, pid, hosthash, etc) is imbedded into

ucc_context_address
§ Addr exchange during either ucc_context_create or ucc_team_create
§ Topo structure: sorted array of proc_info
§ Subgroups discovery: purely local procedure
§ Topo initialization is performed “on demand” – when TL/CL reports that “topo” is required
§ CL/HIER – CL responsible for implementation of hierarchical collectives

• Splits the CORE UCC team into subgroups
• Initializes required TL teams per subgroup and constructs score_maps
• Builds collective schedules (ie hierarchical algorithms)

© 2021 UCF Consortium 42

Schedules & Tasks

§ ucc_coll_task_t – is a quantum of work at TL level
• Describes a collective operation over group of

processes.

§ ucc_schedule_t : collection of tasks
connected via event_manager

typedef ucc_status_t
(*ucc_base_coll_init_fn_t)(ucc_base_coll_args_t *coll_args,

ucc_base_team_t *team,
ucc_coll_task_t **task);

typedef struct ucc_coll_task {
ucc_coll_req_t super;
uint32_t flags;
ucc_base_coll_args_t bargs; ucc_base_team_t *team; //CL/TL team pointer
ucc_coll_post_fn_t post;
ucc_coll_triggered_post_fn_t triggered_post;
ucc_coll_finalize_fn_t finalize; ucc_coll_callback_t cb;
ucc_event_manager_t em;
ucc_status_t (*progress)(struct ucc_coll_task *self);
struct ucc_schedule *schedule;
ucc_ee_h ee;
ucc_ev_t *ev;
void *ee_task;
ucc_coll_task_t *triggered_task;
union { /* used for st & locked mt progress queue */

ucc_list_link_t list_elem; /* used for lf mt progress queue */
ucc_lf_queue_elem_t lf_elem;

};
uint8_t n_deps;
uint8_t n_deps_satisfied;
uint8_t n_deps_base;
double start_time; /* timestamp of the start time: either post or triggered_post

*/
uint32_t seq_num;

} ucc_coll_task_t;

typedef enum {
UCC_EVENT_COMPLETED = 0,
UCC_EVENT_SCHEDULE_STARTED,
UCC_EVENT_TASK_STARTED,
UCC_EVENT_ERROR,
UCC_EVENT_LAST

} ucc_event_t;

typedef struct ucc_schedule {
ucc_coll_task_t super;
int n_completed_tasks;
int n_tasks;
ucc_context_t *ctx;
ucc_coll_task_t *tasks[UCC_SCHEDULE_MAX_TASKS];

} ucc_schedule_t;

ucc_status_t ucc_event_manager_notify(ucc_coll_task_t *parent_task,
ucc_event_t event);

void ucc_schedule_add_task(ucc_schedule_t *schedule, ucc_coll_task_t *task);

ucc_status_t ucc_schedule_start(ucc_schedule_t *schedule) {
schedule->n_completed_tasks = 0;
schedule->super.super.status = UCC_INPROGRESS;
return ucc_event_manager_notify(&schedule->super,

UCC_EVENT_SCHEDULE_STARTED);
}

void ucc_event_manager_subscribe(ucc_event_manager_t *em,
ucc_event_t event,
ucc_coll_task_t *task,
ucc_task_event_handler_p handler);

© 2021 UCF Consortium 43

CL/HIER, rab allreduce

ucc_status_t ucc_cl_hier_allreduce_rab_init(ucc_base_coll_args_t *coll_args,
ucc_base_team_t *team,
ucc_coll_task_t **task)

{
ucc_schedule_t *schedule;
ucc_coll_task_t tasks[3];

...
schedule = &ucc_cl_hier_get_schedule(cl_team)->super.super;

...
task[0] = initialize_task_from_node_sbgp_tl(coll_args, TASK_REDUCE);
task[1] = initialize_task_from_node_leaders_sbgp_tl(coll_args, TASK_ALLREDUCE);
task[2] = initialize_task_from_node_sbgp_tl(coll_args, TASK_BCAST);

ucc_event_manager_subscribe(&schedule->super.em, UCC_EVENT_SCHEDULE_STARTED,
tasks[0], ucc_task_start_handler);

for (i = 1; i < n_tasks; i++) {
ucc_event_manager_subscribe(&tasks[i - 1]->em, UCC_EVENT_COMPLETED,

&tasks[i], ucc_task_start_handler);
ucc_schedule_add_task(schedule, tasks[i]);

}
}

static ucc_status_t ucc_cl_hier_allreduce_rab_start(ucc_coll_task_t *task)
{

ucc_schedule_t *schedule = ucc_derived_of(task, ucc_schedule_t);
return ucc_schedule_start(schedule);

}

© 2021 UCF Consortium 44

Runtime example

§ Enable 2 CLs basic and hier (selection
depends on the coll args and uses
score_map)

§ User can specify which TLs can be used at
different subgrouping levels in CL/HIER
• When several TLs are allowed per sbgp

then the selection of task for a schedule is
done using score_map again

§ nnodes=32; ppn=40;
§ mpirun

• -x UCC_CL_HIER_NODE_LEADERS_SBGP_TLS=ucp,sharp
• -x UCC_CL_HIER_TLS=ucp,sharp
• -x UCC_CL_BASIC_TLS=ucp
• -x UCC_CLS=basic,hier
• -np $((nnodes*ppn)) --map-by ppr:$ppn:node --bind-to core

./install/bin/ucc_perftest -c allreduce -b 1 -e 512 -w 5000 -n
10000

msgsize, B CL/BASIC HIER HIER+SHARP

4 15.38 13.48 11.03

8 15.26 14.9 12.03

16 15.24 14.72 11.72

32 16.47 17.65 13.21

64 18.63 16.34 14.32

128 23.75 21.55 18.19

256 25.77 27.92 22.88

512 32.07 34.42 23.81

1024 60.35 33.06 28.49

2048 82.8 37.01 31.88

© 2021 UCF Consortium 45

UCC GPU Collectives

© 2021 UCF Consortium 46

GPU Collectives Concepts

§ Support for GPU memory
• Source or Destination buffer resides on GPU
• Operations with GPU datatypes (float16, bfloat16)
• Reductions using GPU kernel

§ Support for GPU programming model
• Streams and ordered execution
• Events and synchronization

© 2021 UCF Consortium 47

GPU Memory

§ User sets memory type for input and output
buffers or specify
UCC_MEMORY_TYPE_UNKNOWN to do
memory type detection

§ Collective is passed to one of CL/TL that
supports GPU memory through score function

§ TLs might use UCC Memory Component to do
some local operations with memory (memory
type detection, memory allocation, reduction)

§ All TLs in UCC 1.0 supports CUDA memory

© 2021 UCF Consortium 48

UCC Memory Component

§ For each memory type UCC provides
component that implements base set of
operations

§ Components are loaded and initialized at
runtime

© 2021 UCF Consortium 49

CUDA Programming Model with UCC

§ One of the key concept in CUDA programming is CUDA stream
• Operations issued to the same stream will execute in order
• Operations issued to separate stream have no dependency and might execute in any order

§ Collective might be considered as CUDA operation, and it should follow stream semantics

© 2021 UCF Consortium 50

CUDA Programming Model with UCC

§ One of the key concept in CUDA programming is CUDA stream
• Operations issued to the same stream will execute in order
• Operations issued to separate stream have no dependency and might execute in any order

§ Collective might be considered as CUDA operation, and it should follow stream semantics

compute_output_buf
is not ready yet

allreduce still in progress

© 2021 UCF Consortium 51

CUDA Programming Model with UCC

§ UCC API supports CUDA streams as part of
triggered collectives

• CUDA stream is represented by UCC
Execution Engine

• Collective posted to UCC CUDA
Execution Engine effectively issued into
stream

© 2021 UCF Consortium 52

UCC Triggered Post in TLs

§ TL NCCL supports triggered operations with CUDA stream natively

§ TL UCP and TL SHARP requires additional logic to guarantee correct execution order

• Input dependency – start collective only after all previously submitted stream work is done

• Output dependency – mark stream busy while collective is in progress

• Issue all CUDA work to stream when return from non-blocking UCC function

© 2021 UCF Consortium 53

UCC Triggered Task

ucc_collective_taskucc_collective_init()

ucc_collective_finalize()

ucc_collective_triggered_post()

CUDA Stream

ucc_trigger_task

cuda_kernel
cuda_kernel<<<32,32, 0 strm >>>() start kernel

start kernel

trigger complete

coll complete

allreduce_start

allreduce_finish

© 2021 UCF Consortium 54

Future work

§ UCC TL CUDA
§ GPU topology aware
§ Use of CUDA primitives for communication between peers on local node
§ Support for allreduce and reduce_scatter for ucc_triggered_post
§ TL/CUDA: implement tl cuda by Sergei-Lebedev · Pull Request #336 · openucx/ucc (github.com)

https://github.com/openucx/ucc/pull/336

© 2021 UCF Consortium 55

UCC One-sided/RMA Collectives

© 2021 UCF Consortium 56

One-sided Collectives

§ One-sided collectives leverage one-sided RMA operations to perform collectives over a UCC
team
• Allows for loose synchronization on collective start and completion
• Directly maps operations to hardware primitives

§ Relationship to PGAS programming models
• Focus on OpenSHMEM

© 2021 UCF Consortium 57

Mapping from the Model to UCC: Memory Segments

§ Directly map pre-allocated memory from
user to UCC Context
• Additional UCC Context parameter:

ucc_mem_map_params_t
• E.g., OpenSHMEM’s Symmetric heap

§ ucc_mem_map_t
• Binds user allocated memory to a UCC

Context
• Memory usable by multiple UCC Teams

with shared context

§ One-sided collectives operate on user
provided buffers

© 2021 UCF Consortium 58

Example: UCC Context Creation with Memory Parameters

§ Example assumes 3 memory
segments
• Following OpenSHMEM memory model

with an additional heap for atomics

Additional Parameters

© 2021 UCF Consortium 59

Calling One-sided Algorithm

§ One-sided collectives require scratch
synchronization buffer for completion semantics
• Two methods of allocating:

1. User allocated buffer passed as argument to collective
2. Team-based buffer allocated by UCC

§ User allocated buffers:
• On UCC Team creation, pass

UCC_TEAM_FLAG_COLL_WORK_BUFFER flag
• Additional UCC context query option:

UCC_CONTEXT_ATTR_FIELD_WORK_BUFFER_SIZE
• Returns size required for UCC one-sided collectives

§ Example Algorithm: Preliminary A2A algorithm
(PR #323)
• Basic algorithm (see right)

for each rank in team:
put(src, dest[myrank * size], rank)
atomic_inc(work_buffer, rank)

wait until completion

© 2021 UCF Consortium 60

Example Call of One-sided A2A

§ Call for invoking one-sided A2A
• Env. Variable: UCC_TL_UCP_TUNE=alltoall:0-inf:@1

Thank You

