-
Notifications
You must be signed in to change notification settings - Fork 441
/
Copy pathperftest.c
918 lines (759 loc) · 26.8 KB
/
perftest.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
/**
* Copyright (c) NVIDIA CORPORATION & AFFILIATES, 2001-2024. ALL RIGHTS RESERVED.
* Copyright (C) The University of Tennessee and The University
* of Tennessee Research Foundation. 2015. ALL RIGHTS RESERVED.
* Copyright (C) UT-Battelle, LLC. 2015. ALL RIGHTS RESERVED.
* Copyright (C) ARM Ltd. 2017-2021. ALL RIGHTS RESERVED.
*
* See file LICENSE for terms.
*/
#ifdef HAVE_CONFIG_H
# include "config.h"
#endif
#include "perftest.h"
#include <ucs/sys/string.h>
#include <ucs/sys/sys.h>
#include <ucs/sys/sock.h>
#include <ucs/debug/log.h>
#include <ucs/sys/iovec.inl>
#include <sys/socket.h>
#include <arpa/inet.h>
#include <stdlib.h>
#include <unistd.h>
#include <netdb.h>
#include <sys/poll.h>
test_type_t tests[] = {
{"am_lat", UCX_PERF_API_UCT, UCX_PERF_CMD_AM, UCX_PERF_TEST_TYPE_PINGPONG,
"active message latency", "latency", 1},
{"put_lat", UCX_PERF_API_UCT, UCX_PERF_CMD_PUT, UCX_PERF_TEST_TYPE_PINGPONG,
"put latency", "latency", 1},
{"add_lat", UCX_PERF_API_UCT, UCX_PERF_CMD_ADD, UCX_PERF_TEST_TYPE_PINGPONG,
"atomic add latency", "latency", 1},
{"get", UCX_PERF_API_UCT, UCX_PERF_CMD_GET, UCX_PERF_TEST_TYPE_STREAM_UNI,
"get latency / bandwidth / message rate", "latency", 1},
{"fadd", UCX_PERF_API_UCT, UCX_PERF_CMD_FADD, UCX_PERF_TEST_TYPE_STREAM_UNI,
"atomic fetch-and-add latency / rate", "latency", 1},
{"swap", UCX_PERF_API_UCT, UCX_PERF_CMD_SWAP, UCX_PERF_TEST_TYPE_STREAM_UNI,
"atomic swap latency / rate", "latency", 1},
{"cswap", UCX_PERF_API_UCT, UCX_PERF_CMD_CSWAP, UCX_PERF_TEST_TYPE_STREAM_UNI,
"atomic compare-and-swap latency / rate", "latency", 1},
{"am_bw", UCX_PERF_API_UCT, UCX_PERF_CMD_AM, UCX_PERF_TEST_TYPE_STREAM_UNI,
"active message bandwidth / message rate", "overhead", 1},
{"put_bw", UCX_PERF_API_UCT, UCX_PERF_CMD_PUT, UCX_PERF_TEST_TYPE_STREAM_UNI,
"put bandwidth / message rate", "overhead", 32},
{"get_bw", UCX_PERF_API_UCT, UCX_PERF_CMD_GET, UCX_PERF_TEST_TYPE_STREAM_UNI,
"get bandwidth / message rate", "overhead", 32},
{"add_mr", UCX_PERF_API_UCT, UCX_PERF_CMD_ADD, UCX_PERF_TEST_TYPE_STREAM_UNI,
"atomic add message rate", "overhead", 1},
{"tag_lat", UCX_PERF_API_UCP, UCX_PERF_CMD_TAG, UCX_PERF_TEST_TYPE_PINGPONG,
"tag match latency", "latency", 1},
{"tag_bw", UCX_PERF_API_UCP, UCX_PERF_CMD_TAG, UCX_PERF_TEST_TYPE_STREAM_UNI,
"tag match bandwidth", "overhead", 32},
{"tag_sync_lat", UCX_PERF_API_UCP, UCX_PERF_CMD_TAG_SYNC, UCX_PERF_TEST_TYPE_PINGPONG,
"tag sync match latency", "latency", 1},
{"tag_sync_bw", UCX_PERF_API_UCP, UCX_PERF_CMD_TAG_SYNC, UCX_PERF_TEST_TYPE_STREAM_UNI,
"tag sync match bandwidth", "overhead", 32},
{"ucp_put_lat", UCX_PERF_API_UCP, UCX_PERF_CMD_PUT, UCX_PERF_TEST_TYPE_PINGPONG,
"put latency", "latency", 1},
{"ucp_put_bw", UCX_PERF_API_UCP, UCX_PERF_CMD_PUT, UCX_PERF_TEST_TYPE_STREAM_UNI,
"put bandwidth", "overhead", 32},
{"ucp_get", UCX_PERF_API_UCP, UCX_PERF_CMD_GET, UCX_PERF_TEST_TYPE_STREAM_UNI,
"get latency / bandwidth / message rate", "latency", 1},
{"ucp_add", UCX_PERF_API_UCP, UCX_PERF_CMD_ADD, UCX_PERF_TEST_TYPE_STREAM_UNI,
"atomic add bandwidth / message rate", "overhead", 1},
{"ucp_fadd", UCX_PERF_API_UCP, UCX_PERF_CMD_FADD, UCX_PERF_TEST_TYPE_STREAM_UNI,
"atomic fetch-and-add latency / bandwidth / rate", "latency", 1},
{"ucp_swap", UCX_PERF_API_UCP, UCX_PERF_CMD_SWAP, UCX_PERF_TEST_TYPE_STREAM_UNI,
"atomic swap latency / bandwidth / rate", "latency", 1},
{"ucp_cswap", UCX_PERF_API_UCP, UCX_PERF_CMD_CSWAP, UCX_PERF_TEST_TYPE_STREAM_UNI,
"atomic compare-and-swap latency / bandwidth / rate", "latency", 1},
{"stream_bw", UCX_PERF_API_UCP, UCX_PERF_CMD_STREAM, UCX_PERF_TEST_TYPE_STREAM_UNI,
"stream bandwidth", "overhead", 1},
{"stream_lat", UCX_PERF_API_UCP, UCX_PERF_CMD_STREAM, UCX_PERF_TEST_TYPE_PINGPONG,
"stream latency", "latency", 1},
{"ucp_am_lat", UCX_PERF_API_UCP, UCX_PERF_CMD_AM, UCX_PERF_TEST_TYPE_PINGPONG,
"am latency", "latency", 1},
{"ucp_am_bw", UCX_PERF_API_UCP, UCX_PERF_CMD_AM, UCX_PERF_TEST_TYPE_STREAM_UNI,
"am bandwidth / message rate", "overhead", 32},
{NULL}
};
static int sock_io(int sock, ssize_t (*sock_call)(int, void *, size_t, int),
int poll_events, void *data, size_t size,
void (*progress)(void *arg), void *arg, const char *name)
{
size_t total = 0;
struct pollfd pfd;
int ret;
while (total < size) {
pfd.fd = sock;
pfd.events = poll_events;
pfd.revents = 0;
ret = poll(&pfd, 1, 1); /* poll for 1ms */
if (ret > 0) {
ucs_assert(ret == 1);
ucs_assert(pfd.revents & poll_events);
ret = sock_call(sock, (char*)data + total, size - total, 0);
if ((ret == 0) && (poll_events & POLLIN)) {
ucs_error("%s() remote closed connection", name);
return -1;
}
if (ret < 0) {
ucs_error("%s() failed: %m", name);
return -1;
}
total += ret;
} else if ((ret < 0) && (errno != EINTR)) {
ucs_error("poll(fd=%d) failed: %m", sock);
return -1;
}
/* progress user context */
if (progress != NULL) {
progress(arg);
}
}
return 0;
}
static int safe_send(int sock, void *data, size_t size,
void (*progress)(void *arg), void *arg)
{
typedef ssize_t (*sock_call)(int, void *, size_t, int);
ucs_assert(sock >= 0);
return sock_io(sock, (sock_call)send, POLLOUT, data, size, progress, arg, "send");
}
static int safe_recv(int sock, void *data, size_t size,
void (*progress)(void *arg), void *arg)
{
ucs_assert(sock >= 0);
return sock_io(sock, recv, POLLIN, data, size, progress, arg, "recv");
}
ucs_status_t init_test_params(perftest_params_t *params)
{
static const struct sockaddr_storage empty_addr = {};
memset(params, 0, sizeof(*params));
params->super.api = UCX_PERF_API_LAST;
params->super.command = UCX_PERF_CMD_LAST;
params->super.test_type = UCX_PERF_TEST_TYPE_LAST;
params->super.thread_mode = UCS_THREAD_MODE_SERIALIZED;
params->super.thread_count = 1;
params->super.async_mode = UCS_ASYNC_THREAD_LOCK_TYPE;
params->super.wait_mode = UCX_PERF_WAIT_MODE_LAST;
params->super.max_outstanding = 0;
params->super.warmup_iter = 10000;
params->super.warmup_time = 100e-3;
params->super.alignment = ucs_get_page_size();
params->super.max_iter = 1000000l;
params->super.max_time = 0.0;
params->super.report_interval = 1.0;
params->super.percentile_rank = 50.0;
params->super.flags = UCX_PERF_TEST_FLAG_VERBOSE;
params->super.uct.fc_window = UCT_PERF_TEST_MAX_FC_WINDOW;
params->super.uct.data_layout = UCT_PERF_DATA_LAYOUT_SHORT;
params->super.uct.am_hdr_size = 8;
params->super.send_mem_type = UCS_MEMORY_TYPE_HOST;
params->super.recv_mem_type = UCS_MEMORY_TYPE_HOST;
params->super.msg_size_cnt = 1;
params->super.iov_stride = 0;
params->super.ucp.send_datatype = UCP_PERF_DATATYPE_CONTIG;
params->super.ucp.recv_datatype = UCP_PERF_DATATYPE_CONTIG;
params->super.ucp.am_hdr_size = 0;
params->super.ucp.is_daemon_mode = 0;
params->super.ucp.dmn_local_addr = empty_addr;
params->super.ucp.dmn_remote_addr = empty_addr;
strcpy(params->super.uct.dev_name, TL_RESOURCE_NAME_NONE);
strcpy(params->super.uct.tl_name, TL_RESOURCE_NAME_NONE);
params->super.msg_size_list = calloc(params->super.msg_size_cnt,
sizeof(*params->super.msg_size_list));
if (params->super.msg_size_list == NULL) {
return UCS_ERR_NO_MEMORY;
}
params->super.msg_size_list[0] = 8;
params->test_id = TEST_ID_UNDEFINED;
return UCS_OK;
}
static unsigned sock_rte_group_size(void *rte_group)
{
sock_rte_group_t *group = rte_group;
return group->size;
}
static unsigned sock_rte_group_index(void *rte_group)
{
sock_rte_group_t *group = rte_group;
return group->is_server ? 0 : 1;
}
static void sock_rte_barrier(void *rte_group, void (*progress)(void *arg),
void *arg)
{
#if _OPENMP
# pragma omp barrier
# pragma omp master
#endif
{
sock_rte_group_t *group = rte_group;
if (group->size > 1) {
const unsigned magic = 0xdeadbeef;
unsigned snc;
snc = magic;
safe_send(group->sendfd, &snc, sizeof(unsigned), progress, arg);
snc = 0;
if (safe_recv(group->recvfd, &snc, sizeof(unsigned), progress, arg) == 0) {
ucs_assert(snc == magic);
} else {
ucs_error("sock: rte barrier remote peer failure");
exit(EXIT_FAILURE);
}
}
}
#if _OPENMP
# pragma omp barrier
#endif
}
static void sock_rte_post_vec(void *rte_group, const struct iovec *iovec,
int iovcnt, void **req)
{
sock_rte_group_t *group = rte_group;
size_t size = ucs_iovec_total_length(iovec, iovcnt);
int i;
safe_send(group->sendfd, &size, sizeof(size), NULL, NULL);
for (i = 0; i < iovcnt; ++i) {
safe_send(group->sendfd, iovec[i].iov_base, iovec[i].iov_len, NULL,
NULL);
}
}
static void sock_rte_recv(void *rte_group, unsigned src, void *buffer,
size_t max, void *req)
{
sock_rte_group_t *group = rte_group;
size_t size = 0;
int ret;
if (src != group->peer) {
return;
}
ret = safe_recv(group->recvfd, &size, sizeof(size), NULL, NULL);
if (ret != 0) {
goto err;
}
ucs_assert_always(size <= max);
ret = safe_recv(group->recvfd, buffer, size, NULL, NULL);
if (ret != 0) {
goto err;
}
return;
err:
ucs_error("sock: rte recv: remote peer failure");
exit(EXIT_FAILURE);
}
static ucs_status_t sock_rte_setup(void *arg);
static void sock_rte_cleanup(void *arg);
static ucx_perf_rte_t sock_rte = {
.setup = sock_rte_setup,
.cleanup = sock_rte_cleanup,
.group_size = sock_rte_group_size,
.group_index = sock_rte_group_index,
.barrier = sock_rte_barrier,
.post_vec = sock_rte_post_vec,
.recv = sock_rte_recv,
.exchange_vec = (ucx_perf_rte_exchange_vec_func_t)ucs_empty_function,
};
static ucs_status_t setup_sock_rte_loopback(struct perftest_context *ctx)
{
int connfds[2];
int ret;
ctx->flags |= TEST_FLAG_PRINT_TEST | TEST_FLAG_PRINT_RESULTS;
ret = socketpair(AF_UNIX, SOCK_STREAM, 0, connfds);
if (ret < 0) {
ucs_error("socketpair() failed: %m");
return UCS_ERR_IO_ERROR;
}
ctx->sock_rte_group.peer = 0;
ctx->sock_rte_group.size = 1;
ctx->sock_rte_group.is_server = 1;
ctx->sock_rte_group.sendfd = connfds[0];
ctx->sock_rte_group.recvfd = connfds[1];
return UCS_OK;
}
static ucs_status_t setup_sock_rte_p2p(struct perftest_context *ctx)
{
int optval = 1;
int sockfd = -1;
char addr_str[UCS_SOCKADDR_STRING_LEN];
struct sockaddr_storage client_addr;
socklen_t client_addr_len;
int connfd;
struct addrinfo hints, *res, *t;
ucs_status_t status;
int ret;
char service[8];
char err_str[64];
perftest_params_t peer_params;
ucs_snprintf_safe(service, sizeof(service), "%u", ctx->port);
memset(&hints, 0, sizeof(hints));
hints.ai_flags = (ctx->server_addr == NULL) ? AI_PASSIVE : 0;
hints.ai_family = ctx->af;
hints.ai_socktype = SOCK_STREAM;
ret = getaddrinfo(ctx->server_addr, service, &hints, &res);
if (ret < 0) {
ucs_error("getaddrinfo(server:%s, port:%s) error: [%s]",
ctx->server_addr, service, gai_strerror(ret));
status = UCS_ERR_IO_ERROR;
goto out;
}
if (res == NULL) {
snprintf(err_str, 64, "getaddrinfo() returned empty list");
}
for (t = res; t != NULL; t = t->ai_next) {
sockfd = socket(t->ai_family, t->ai_socktype, t->ai_protocol);
if (sockfd < 0) {
snprintf(err_str, 64, "socket() failed: %m");
continue;
}
if (ctx->server_addr != NULL) {
if (connect(sockfd, t->ai_addr, t->ai_addrlen) == 0) {
break;
}
snprintf(err_str, 64, "connect() failed: %m");
} else {
status = ucs_socket_setopt(sockfd, SOL_SOCKET, SO_REUSEADDR,
&optval, sizeof(optval));
if (status != UCS_OK) {
status = UCS_ERR_IO_ERROR;
goto err_close_sockfd;
}
if (bind(sockfd, t->ai_addr, t->ai_addrlen) == 0) {
ret = listen(sockfd, 10);
if (ret < 0) {
ucs_error("listen() failed: %m");
status = UCS_ERR_IO_ERROR;
goto err_close_sockfd;
}
printf("Waiting for connection...\n");
/* Accept next connection */
client_addr_len = sizeof(client_addr);
connfd = accept(sockfd, (struct sockaddr*)&client_addr,
&client_addr_len);
if (connfd < 0) {
ucs_error("accept() failed: %m");
status = UCS_ERR_IO_ERROR;
goto err_close_sockfd;
}
ucs_sockaddr_str((struct sockaddr*)&client_addr, addr_str,
sizeof(addr_str));
printf("Accepted connection from %s\n", addr_str);
close(sockfd);
break;
}
snprintf(err_str, 64, "bind() failed: %m");
}
close(sockfd);
sockfd = -1;
}
if (sockfd < 0) {
ucs_error("%s failed. %s",
(ctx->server_addr != NULL) ? "client" : "server", err_str);
status = UCS_ERR_IO_ERROR;
goto out_free_res;
}
if (ctx->server_addr == NULL) {
ret = safe_recv(connfd, &peer_params, sizeof(peer_params), NULL, NULL);
if (ret) {
status = UCS_ERR_IO_ERROR;
goto err_close_connfd;
}
if (peer_params.super.msg_size_cnt != 0) {
peer_params.super.msg_size_list =
calloc(ctx->params.super.msg_size_cnt,
sizeof(*ctx->params.super.msg_size_list));
if (peer_params.super.msg_size_list == NULL) {
status = UCS_ERR_NO_MEMORY;
goto err_close_connfd;
}
ret = safe_recv(connfd, peer_params.super.msg_size_list,
sizeof(*peer_params.super.msg_size_list) *
peer_params.super.msg_size_cnt,
NULL, NULL);
if (ret) {
perftest_params_release_msg_size_list(&peer_params);
status = UCS_ERR_IO_ERROR;
goto err_close_connfd;
}
}
status = perftest_params_merge(&ctx->params, &peer_params);
perftest_params_release_msg_size_list(&peer_params);
if (status != UCS_OK) {
goto err_close_connfd;
}
ctx->sock_rte_group.sendfd = connfd;
ctx->sock_rte_group.recvfd = connfd;
ctx->sock_rte_group.peer = 1;
ctx->sock_rte_group.is_server = 1;
} else {
safe_send(sockfd, &ctx->params, sizeof(ctx->params), NULL, NULL);
if (ctx->params.super.msg_size_cnt != 0) {
safe_send(sockfd, ctx->params.super.msg_size_list,
sizeof(*ctx->params.super.msg_size_list) *
ctx->params.super.msg_size_cnt,
NULL, NULL);
}
ctx->sock_rte_group.sendfd = sockfd;
ctx->sock_rte_group.recvfd = sockfd;
ctx->sock_rte_group.peer = 0;
ctx->sock_rte_group.is_server = 0;
}
ctx->sock_rte_group.size = 2;
if (ctx->sock_rte_group.is_server) {
ctx->flags |= TEST_FLAG_PRINT_TEST;
} else {
ctx->flags |= TEST_FLAG_PRINT_RESULTS;
}
status = UCS_OK;
goto out_free_res;
err_close_connfd:
ucs_close_fd(&connfd);
goto out_free_res;
err_close_sockfd:
ucs_close_fd(&sockfd);
out_free_res:
freeaddrinfo(res);
out:
return status;
}
static ucs_status_t sock_rte_setup(void *arg)
{
struct perftest_context *ctx = arg;
ucs_status_t status;
if (ctx->params.super.flags & UCX_PERF_TEST_FLAG_LOOPBACK) {
status = setup_sock_rte_loopback(ctx);
} else {
status = setup_sock_rte_p2p(ctx);
}
if (status != UCS_OK) {
return status;
}
ctx->params.super.rte_group = &ctx->sock_rte_group;
ctx->params.super.rte = &sock_rte;
return UCS_OK;
}
static void sock_rte_cleanup(void *arg)
{
struct perftest_context *ctx = arg;
sock_rte_group_t *rte_group = &ctx->sock_rte_group;
close(rte_group->sendfd);
if (rte_group->sendfd != rte_group->recvfd) {
close(rte_group->recvfd);
}
}
#if defined (HAVE_MPI)
#define MPI_RTE_BSEND_BUFFER_SIZE 4096
static unsigned mpi_rte_group_size(void *rte_group)
{
int size;
MPI_Comm_size(MPI_COMM_WORLD, &size);
return size;
}
static unsigned mpi_rte_group_index(void *rte_group)
{
int rank;
MPI_Comm_rank(MPI_COMM_WORLD, &rank);
return rank;
}
static void mpi_rte_barrier(void *rte_group, void (*progress)(void *arg),
void *arg)
{
int group_size, my_rank, i;
MPI_Request *reqs;
int nreqs = 0;
int dummy;
int flag;
#pragma omp barrier
#pragma omp master
{
/*
* Naive non-blocking barrier implementation over send/recv, to call user
* progress while waiting for completion.
* Not using MPI_Ibarrier to be compatible with MPI-1.
*/
MPI_Comm_rank(MPI_COMM_WORLD, &my_rank);
MPI_Comm_size(MPI_COMM_WORLD, &group_size);
/* allocate maximal possible number of requests */
reqs = (MPI_Request*)alloca(sizeof(*reqs) * group_size);
if (my_rank == 0) {
/* root gathers "ping" from all other ranks */
for (i = 1; i < group_size; ++i) {
MPI_Irecv(&dummy, 0, MPI_INT,
i /* source */,
1 /* tag */,
MPI_COMM_WORLD,
&reqs[nreqs++]);
}
} else {
/* every non-root rank sends "ping" and waits for "pong" */
MPI_Send(&dummy, 0, MPI_INT,
0 /* dest */,
1 /* tag */,
MPI_COMM_WORLD);
MPI_Irecv(&dummy, 0, MPI_INT,
0 /* source */,
2 /* tag */,
MPI_COMM_WORLD,
&reqs[nreqs++]);
}
/* Waiting for receive requests */
do {
MPI_Testall(nreqs, reqs, &flag, MPI_STATUSES_IGNORE);
progress(arg);
} while (!flag);
if (my_rank == 0) {
/* root sends "pong" to all ranks */
for (i = 1; i < group_size; ++i) {
MPI_Send(&dummy, 0, MPI_INT,
i /* dest */,
2 /* tag */,
MPI_COMM_WORLD);
}
}
}
#pragma omp barrier
}
static void mpi_rte_post_vec(void *rte_group, const struct iovec *iovec,
int iovcnt, void **req)
{
size_t total_length = ucs_iovec_total_length(iovec, iovcnt);
int group_size;
int my_rank;
int dest, i;
MPI_Comm_rank(MPI_COMM_WORLD, &my_rank);
MPI_Comm_size(MPI_COMM_WORLD, &group_size);
ucs_assertv_always(total_length <= MPI_RTE_BSEND_BUFFER_SIZE,
"total_length=%zu", total_length);
for (dest = 0; dest < group_size; ++dest) {
if (dest != rte_peer_index(group_size, my_rank)) {
continue;
}
for (i = 0; i < iovcnt; ++i) {
MPI_Bsend(iovec[i].iov_base, iovec[i].iov_len, MPI_BYTE, dest,
i == (iovcnt - 1), /* Send last iov with tag == 1 */
MPI_COMM_WORLD);
}
}
*req = (void*)(uintptr_t)1;
}
static void mpi_rte_recv(void *rte_group, unsigned src, void *buffer, size_t max,
void *req)
{
MPI_Status status;
int my_rank, size;
size_t offset;
int count;
MPI_Comm_rank(MPI_COMM_WORLD, &my_rank);
MPI_Comm_size(MPI_COMM_WORLD, &size);
if (src != rte_peer_index(size, my_rank)) {
return;
}
offset = 0;
do {
ucs_assert_always(offset < max);
MPI_Recv(buffer + offset, max - offset, MPI_BYTE, src, MPI_ANY_TAG,
MPI_COMM_WORLD, &status);
MPI_Get_count(&status, MPI_BYTE, &count);
offset += count;
} while (status.MPI_TAG != 1);
}
static ucs_status_t mpi_rte_setup(void *arg);
static void mpi_rte_cleanup(void *arg);
static ucx_perf_rte_t mpi_rte = {
.setup = mpi_rte_setup,
.cleanup = mpi_rte_cleanup,
.group_size = mpi_rte_group_size,
.group_index = mpi_rte_group_index,
.barrier = mpi_rte_barrier,
.post_vec = mpi_rte_post_vec,
.recv = mpi_rte_recv,
.exchange_vec = (void*)ucs_empty_function,
};
static ucs_status_t mpi_rte_setup(void *arg)
{
struct perftest_context *ctx = arg;
int size, rank;
void *buffer;
if (!ctx->mpi) {
return UCS_ERR_UNSUPPORTED;
}
ucs_trace_func("");
MPI_Comm_size(MPI_COMM_WORLD, &size);
if ((ctx->params.super.flags & UCX_PERF_TEST_FLAG_LOOPBACK) &&
(size != 1)) {
ucs_error("This test should be run with 1 process "
"in loopback case (actual: %d)", size);
return UCS_ERR_INVALID_PARAM;
}
if (!(ctx->params.super.flags & UCX_PERF_TEST_FLAG_LOOPBACK) &&
(size != 2)) {
ucs_error("This test should be run with exactly 2 processes "
"in p2p case (actual: %d)", size);
return UCS_ERR_INVALID_PARAM;
}
MPI_Comm_rank(MPI_COMM_WORLD, &rank);
buffer = calloc(1, MPI_RTE_BSEND_BUFFER_SIZE);
if (buffer == NULL) {
ucs_error("failed to allocate memory for MPI_Buffer_attach");
return UCS_ERR_NO_MEMORY;
}
MPI_Buffer_attach(buffer, MPI_RTE_BSEND_BUFFER_SIZE);
/* Let the last rank print the results */
if (rank == (size - 1)) {
ctx->flags |= TEST_FLAG_PRINT_RESULTS;
}
ctx->params.super.rte_group = NULL;
ctx->params.super.rte = &mpi_rte;
return UCS_OK;
}
static void mpi_rte_cleanup(void *UCS_V_UNUSED arg)
{
void *buffer;
int size;
MPI_Buffer_detach(&buffer, &size);
ucs_assert(buffer != NULL);
ucs_assertv(size == MPI_RTE_BSEND_BUFFER_SIZE, "size=%d", size);
free(buffer);
}
#endif /* defined (HAVE_MPI) */
static ucs_status_t check_system(struct perftest_context *ctx)
{
ucs_sys_cpuset_t cpuset;
unsigned i, count, nr_cpus;
int ret;
ucs_trace_func("");
ret = ucs_sys_get_num_cpus();
if (ret < 0) {
return UCS_ERR_INVALID_PARAM;
}
nr_cpus = ret;
memset(&cpuset, 0, sizeof(cpuset));
if (ctx->flags & TEST_FLAG_SET_AFFINITY) {
for (i = 0; i < ctx->num_cpus; i++) {
if (ctx->cpus[i] >= nr_cpus) {
ucs_error("cpu (%u) out of range [0..%u]", ctx->cpus[i],
nr_cpus - 1);
return UCS_ERR_INVALID_PARAM;
}
}
for (i = 0; i < ctx->num_cpus; i++) {
CPU_SET(ctx->cpus[i], &cpuset);
}
ret = ucs_sys_setaffinity(&cpuset);
if (ret) {
ucs_warn("sched_setaffinity() failed: %m");
return UCS_ERR_INVALID_PARAM;
}
} else {
ret = ucs_sys_getaffinity(&cpuset);
if (ret) {
ucs_warn("sched_getaffinity() failed: %m");
return UCS_ERR_INVALID_PARAM;
}
count = 0;
for (i = 0; i < CPU_SETSIZE; ++i) {
if (CPU_ISSET(i, &cpuset)) {
++count;
}
}
if (count > 2) {
ucs_warn("CPU affinity is not set (bound to %u cpus)."
" Performance may be impacted.", count);
}
}
return UCS_OK;
}
static void ctx_free(struct perftest_context *ctx)
{
free(ctx->params.super.msg_size_list);
}
UCS_LIST_HEAD(rte_list);
static void initialize_plugins(void)
{
#if defined (HAVE_MPI)
ucs_list_add_tail(&rte_list, &mpi_rte.list);
#endif
ucs_list_add_tail(&rte_list, &sock_rte.list);
}
static ucs_status_t setup_rte(struct perftest_context *ctx)
{
ucs_status_t status;
ucx_perf_rte_t *entry;
ucs_list_for_each(entry, &rte_list, list) {
status = entry->setup(ctx);
if (status != UCS_ERR_UNSUPPORTED) {
return status;
}
}
ucs_error("No supported RTE found");
return UCS_ERR_UNSUPPORTED;
}
static void cleanup_rte(struct perftest_context *ctx)
{
ctx->params.super.rte->cleanup(ctx);
}
int main(int argc, char **argv)
{
struct perftest_context ctx;
ucs_status_t status;
int mpi_initialized;
int ret;
#ifdef HAVE_MPI
int provided;
mpi_initialized = !isatty(0) &&
/* Using MPI_THREAD_FUNNELED since ucx_perftest supports
* using multiple threads when only the main one makes
* MPI calls (which is also suitable for a single threaded
* run).
* MPI_THREAD_FUNNELED:
* The process may be multi-threaded, but only the main
* thread will make MPI calls (all MPI calls are funneled
* to the main thread). */
(MPI_Init_thread(&argc, &argv, MPI_THREAD_FUNNELED, &provided) == 0);
if (mpi_initialized && (provided != MPI_THREAD_FUNNELED)) {
printf("MPI_Init_thread failed to set MPI_THREAD_FUNNELED. (provided = %d)\n",
provided);
ret = -1;
goto out;
}
#else
mpi_initialized = 0;
#endif
initialize_plugins();
/* Parse command line */
status = parse_opts(&ctx, mpi_initialized, argc, argv);
if (status != UCS_OK) {
ret = (status == UCS_ERR_CANCELED) ? 0 : -127;
goto out;
}
status = check_system(&ctx);
if (status != UCS_OK) {
ret = -1;
goto out_msg_size_list;
}
status = setup_rte(&ctx);
if (status != UCS_OK) {
ucs_error("failed to setup RTE transport: %s",
ucs_status_string(status));
ret = -1;
goto out_msg_size_list;
}
/* Run the test */
status = run_test(&ctx);
if (status != UCS_OK) {
ret = -1;
goto out_cleanup_rte;
}
ret = 0;
out_cleanup_rte:
cleanup_rte(&ctx);
out_msg_size_list:
ctx_free(&ctx);
out:
if (mpi_initialized) {
#ifdef HAVE_MPI
MPI_Finalize();
#endif
}
return ret;
}