
Towards a matrix-oriented strided interface
in OpenSHMEM

Jeff Hammond

Extreme Scalability Group & Parallel Computing Lab
Intel Corporation (Portland, OR)

7 October 2014

Jeff Hammond OUG’14



Jeff Hammond OUG’14



Extreme Scalability Group Disclaimer

I work in Intel Labs and therefore don’t know anything about
Intel products.

I work for Intel, but I am not an official spokesman for Intel.
Hence anything I say are my words, not Intel’s. Furthermore, I
do not speak for my collaborators, whether they be inside or
outside Intel.

You may or may not be able to reproduce any performance
numbers I report.

Performance numbers for non-Intel platforms were obtained
by non-Intel people.

Hanlon’s Razor.

Jeff Hammond OUG’14



Types of regular/direct data

Contiguous

Element Strided

Block Strided

Indexed

Jeff Hammond OUG’14



Data types in APIs

Contiguous - MPI, SHMEM, ARMCI, etc.

Element Strided - MPI, SHMEM, ARMCI, etc.

Block Strided - MPI, SHMEM, ARMCI, etc.

Indexed - MPI, SHMEM, ARMCI, etc.

Where does it make sense to stop?

Why does SHMEM have element strided?

Jeff Hammond OUG’14



Hardware considerations

Contiguous - Obvious.

Element Strided - Sub-packet elements bad.

Block Strided - Amortize call overhead.

Indexed - Where to stop with descriptors?

If SHMEM message-rate is high enough, all we need
to do is exceed packet size.

Except we have to wait on local completion
for every call. . .

Jeff Hammond OUG’14



Datatypes vs. nonblocking

Nonblocking SHMEM Put and Get would seriously
improve the situation, but one still has
O(NMIN(rows,cols)) function calls for a submatrix.

Some networks (e.g. Cray Aries) don’t let us inject
an arbitrary number of nonblocking operations
without a synchronization call.

Linear algebra entails a particular data semantic
that deserves first-class treatment in the API.

Runtime systems can do more with more. . .

Jeff Hammond OUG’14



Global Arrays - (sub)matrices are first-class objects

Jeff Hammond OUG’14



Submatrix communication

Algorithmic block size may
not match data block size.

Data access pattern may
change over the lifetime of
object.

If embedding complex data
in a matrix, may want only
one component.

Jeff Hammond OUG’14



ScaLAPACK block cyclic

Jeff Hammond OUG’14



Submatrix as many contiguous chunks

Map subarray to vector of
contiguous vectors.

O(Nrows) function calls.

Block until buffer accessible
→ bad for Get.

This method far more
reasonable with nonblocking.

Efficient for Ncols>Nrows .

shmem_<T>_put	  

shmem_<T>_put	  

shmem_<T>_put	  

shmem_<T>_put	  

shmem_<T>_put	  

Jeff Hammond OUG’14



Submatrix as many strided vectors

Map subarray to vector of
strided vectors.

O(Ncols) function calls.

Blocking bad here too.

Strided touches same cache
line repeatedly.

Efficient for Ncols<Nrows?

shm
em

_<T>_iput	  

shm
em

_<T>_iput	  

shm
em

_<T>_iput	  

shm
em

_<T>_iput	  

Jeff Hammond OUG’14



Submatrix communication

One blocking function call.

Runtime knows everything
about data transfer.

Maps directly to dense linear
algebra semantics.

shm
em

_<T>_aput	  

Jeff Hammond OUG’14



Reference implementation

void shmemx_double_aput(double * dest, const double * src,

ptrdiff_t dstr, ptrdiff_t sstr,

size_t blksz, size_t blkct, int pe)

{

double *dtmp = dest;

const double *stmp = src;

if (blksz<blkct) /* may require tuning */ {

for (size_t i=0; i<blksz; i++) {

shmem_double_iput(dtmp, stmp, dstr, sstr, blkct, pe);

dtmp++; stmp++;

}

} else {

for (size_t i=0; i<blkct; i++) {

shmem_double_put(dtmp, stmp, blksz, pe);

dtmp += dstr; stmp += sstr;

}

}

}

Jeff Hammond OUG’14



Optimized implementation

void shmemx_double_aput(double * dest, const double * src,

ptrdiff_t dstr, ptrdiff_t sstr,

size_t blksz, size_t blkct, int pe)

{

int maxnbi = DMAPP_DEF_OUTSTANDING_NONBLOCKING/2;

double *dtmp = dest;

const double *stmp = src;

/* skipping iput implementation */

for (size_t i=0; i<blkct; i++) {

dmapp_put_nbi(dtmp, _sheap, pe, (double*)stmp,

blksz, DMAPP_QW);

if (i && i%maxnbi==0) dmapp_gsync_wait();

dtmp += dstr; stmp += sstr;

}

if (blkct%maxnbi!=0) dmapp_gsync_wait();

}

Jeff Hammond OUG’14



Other optimized implementations

Sreeram Potluri and I wrote a highly optimized
implementation for IBMr Blue Gene/P∗ in DCMF∗ that
packed up to packet granularity (active-message
unpacking) and otherwise injected directly.

PAMI∗ (Blue Gene/Q∗, PERCS∗) has a datatype engine
that can in theory map to network DMA scatter-gather.

Surely there is something for InfiniBandr. . .

OSHMPI (MPI-3 RMA as conduit) maps directly to
subarray type.

Any one-sided API that has nonblocking should benefit.

∗Other names and brands may be claimed as the property of
others.

Jeff Hammond OUG’14



Performance Results

The performance improvement over a straightforward
implementation on Blue Gene/P was huge. We never
compared against SHMEM-like implementation and the
hardware is all scrap now /
Crayr XC30 tests at small scale show modest
improvement. For small jobs (especially within an Aries
quartet) without any contention, the benefit of
nonblocking is not too large.

It will be a lot easier to gather performance data by mapping
ARMCI to OpenSHMEM since we already have all the
performance benchmarks oriented at Global Arrays usage.

Jeff Hammond OUG’14



Acknowledgements

Jim Dinan (Intel) for an uncountable number of
discussions of one-sided in SHMEM, ARMCI. . .

This research used resources of the National Energy
Research Scientific Computing Center, a DOE

Office of Science User Facility supported by the
Office of Science of the U.S. Department of Energy

under Contract No. DE-AC02-05CH11231.

Jeff Hammond OUG’14


