diff --git a/osbenchmark/worker_coordinator/runner.py b/osbenchmark/worker_coordinator/runner.py index 98d4e6eb..b1b2100e 100644 --- a/osbenchmark/worker_coordinator/runner.py +++ b/osbenchmark/worker_coordinator/runner.py @@ -1230,17 +1230,6 @@ async def _vector_search_query_with_recall(opensearch, params): Perform vector search and report recall@k , recall@r and time taken to perform recall in ms as meta object. """ - result = { - "weight": 1, - "unit": "ops", - "success": True, - "recall@k": 0, - "recall@1": 0, - "recall@min_score": 0, - "recall@min_score_1": 0, - "recall@max_distance": 0, - "recall@max_distance_1": 0, - } def _is_empty_search_results(content): if content is None: @@ -1263,14 +1252,42 @@ def _get_field_value(content, field_name): return _get_field_value(content["_source"], field_name) return None - def calculate_recall(predictions, neighbors, top_1_recall=False): + def calculate_topk_search_recall(predictions, neighbors, top_k): """ Calculates the recall by comparing top_k neighbors with predictions. recall = Sum of matched neighbors from predictions / total number of neighbors from ground truth Args: predictions: list containing ids of results returned by OpenSearch. neighbors: list containing ids of the actual neighbors for a set of queries - top_1_recall: boolean to calculate recall@1 + top_k: number of top results to check from the neighbors and should be greater than zero + Returns: + Recall between predictions and top k neighbors from ground truth + """ + correct = 0.0 + if neighbors is None: + self.logger.info("No neighbors are provided for recall calculation") + return 0.0 + min_num_of_results = min(top_k, len(neighbors)) + truth_set = neighbors[:min_num_of_results] + for j in range(min_num_of_results): + if j >= len(predictions): + self.logger.info("No more neighbors in prediction to compare against ground truth.\n" + "Total neighbors in prediction: [%d].\n" + "Total neighbors in ground truth: [%d]", len(predictions), min_num_of_results) + break + if predictions[j] in truth_set: + correct += 1.0 + + return correct / min_num_of_results + + def calculate_radial_search_recall(predictions, neighbors, enable_top_1_recall=False): + """ + Calculates the recall by comparing max_distance/min_score threshold neighbors with predictions. + recall = Sum of matched neighbors from predictions / total number of neighbors from ground truth + Args: + predictions: list containing ids of results returned by OpenSearch. + neighbors: list containing ids of the actual neighbors for a set of queries + enable_top_1_recall: boolean to calculate recall@1 Returns: Recall between predictions and top k neighbors from ground truth """ @@ -1287,7 +1304,7 @@ def calculate_recall(predictions, neighbors, top_1_recall=False): self.logger.info("No neighbors are provided for recall calculation") return 1 - if top_1_recall: + if enable_top_1_recall: min_num_of_results = 1 for j in range(min_num_of_results): @@ -1304,6 +1321,28 @@ def calculate_recall(predictions, neighbors, top_1_recall=False): doc_type = params.get("type") response = await self._raw_search(opensearch, doc_type, index, body, request_params, headers=headers) + result = { + "weight": 1, + "unit": "ops", + "success": True, + } + + if params.get("k"): + result.update({ + "recall@k": 0, + "recall@1": 0 + }) + elif params.get("max_distance"): + result.update({ + "recall@max_distance": 0, + "recall@max_distance_1": 0 + }) + elif params.get("min_score"): + result.update({ + "recall@min_score": 0, + "recall@min_score_1": 0 + }) + recall_processing_start = time.perf_counter() if detailed_results: props = parse(response, ["hits.total", "hits.total.value", "hits.total.relation", "timed_out", "took"]) @@ -1331,19 +1370,22 @@ def calculate_recall(predictions, neighbors, top_1_recall=False): continue candidates.append(field_value) neighbors_dataset = params["neighbors"] - recall_threshold = calculate_recall(candidates, neighbors_dataset) - recall_top_1 = calculate_recall(candidates, neighbors_dataset, True) - max_distance = params.get("max_distance") - min_score = params.get("min_score") - if min_score: - result.update({"recall@min_score": recall_threshold}) - result.update({"recall@min_score_1": recall_top_1}) - elif max_distance: - result.update({"recall@max_distance": recall_threshold}) - result.update({"recall@max_distance_1": recall_top_1}) - else: - result.update({"recall@k": recall_threshold}) + + if params.get("k"): + num_neighbors = params.get("k", 1) + recall_top_k = calculate_topk_search_recall(candidates, neighbors_dataset, num_neighbors) + recall_top_1 = calculate_topk_search_recall(candidates, neighbors_dataset, 1) + result.update({"recall@k": recall_top_k}) result.update({"recall@1": recall_top_1}) + else: + recall_threshold = calculate_radial_search_recall(candidates, neighbors_dataset) + recall_top_1 = calculate_radial_search_recall(candidates, neighbors_dataset, True) + if params.get("min_score"): + result.update({"recall@min_score": recall_threshold}) + result.update({"recall@min_score_1": recall_top_1}) + elif params.get("max_distance"): + result.update({"recall@max_distance": recall_threshold}) + result.update({"recall@max_distance_1": recall_top_1}) recall_processing_end = time.perf_counter() recall_processing_time = convert.seconds_to_ms(recall_processing_end - recall_processing_start)