From 2a89497e4cdcf439a44e17b2640a40a81e0b6636 Mon Sep 17 00:00:00 2001 From: Dhrubo Saha Date: Tue, 20 Jun 2023 16:48:34 -0700 Subject: [PATCH] updating docs for model group id (#980) * updating docs for model group id Signed-off-by: Dhrubo Saha fixing the text updated docs Signed-off-by: Dhrubo Saha * addressing comments Signed-off-by: Dhrubo Saha --------- Signed-off-by: Dhrubo Saha --- .../text_embedding_model_examples.md | 82 +++++++++++++++---- 1 file changed, 67 insertions(+), 15 deletions(-) diff --git a/docs/model_serving_framework/text_embedding_model_examples.md b/docs/model_serving_framework/text_embedding_model_examples.md index f7b5d608bf..ee04e11ae8 100644 --- a/docs/model_serving_framework/text_embedding_model_examples.md +++ b/docs/model_serving_framework/text_embedding_model_examples.md @@ -19,8 +19,8 @@ If you want to run some testing models on data node, you can disable this cluste ``` PUT /_cluster/settings { - "persistent" : { - "plugins.ml_commons.only_run_on_ml_node" : false + "persistent" : { + "plugins.ml_commons.only_run_on_ml_node" : false } } ``` @@ -32,8 +32,8 @@ For testing purpose, you can set `plugins.ml_commons.native_memory_threshold` as ``` PUT _cluster/settings { - "persistent" : { - "plugins.ml_commons.native_memory_threshold" : 100 + "persistent" : { + "plugins.ml_commons.native_memory_threshold" : 100 } } ``` @@ -49,23 +49,41 @@ opensearch-py-ml code: [sentencetransformermodel.py#save_as_pt](https://github.c Sentence transformer model already includes post-processing logic. So no need to specify `pooling_mode`/`normalize_result` when upload model. +From 2.6 release we are supporting to register pre-trained models. +And from 2.8, we need model group id to register model. More details about model group [here](../model_access_control.md) + +- create a model group: +``` +POST /_plugins/_ml/model_groups/_register +{ + "name": "test_model_group_public", + "description": "This is a public model group" +} +``` + +# Sample response + +``` +{ + "model_group_id": "7IjOsYgBFp6IJxCceZ1-", + "status": "CREATED" +} +``` + +Now we can use that model group id to register model. + - Step 1: upload model. This step will save model to model index. ``` # Sample request -POST /_plugins/_ml/models/_upload +POST /_plugins/_ml/models/_register { - "name": "sentence-transformers/all-MiniLM-L6-v2", - "version": "1.0.0", - "description": "test model", - "model_format": "TORCH_SCRIPT", - "model_config": { - "model_type": "bert", - "embedding_dimension": 384, - "framework_type": "sentence_transformers" - }, - "url": "https://github.com/opensearch-project/ml-commons/raw/2.x/ml-algorithms/src/test/resources/org/opensearch/ml/engine/algorithms/text_embedding/all-MiniLM-L6-v2_torchscript_sentence-transformer.zip?raw=true" + "name": "huggingface/sentence-transformers/all-MiniLM-L12-v2", + "version": "1.0.1", + "model_format": "TORCH_SCRIPT" + "model_group_id": "7IjOsYgBFp6IJxCceZ1-" } + # Sample response { "task_id": "zgla5YUB1qmVrJFlwzW-", @@ -93,6 +111,40 @@ GET /_plugins/_ml/tasks/zgla5YUB1qmVrJFlwzW- "is_async": true } ``` + +We can also register model from URL. To do that we need to update the following cluster settings: + +``` +PUT _cluster/settings +{ + "persistent" : { + "plugins.ml_commons.allow_registering_model_via_url" : true + } +} +``` + +Now we can register model using URL upload: + +``` +POST /_plugins/_ml/models/_register +{ + "name": "sentence-transformers/all-MiniLM-L6-v2", + "version": "1.0.1", + "description": "This is a sentence-transformers model: It maps sentences & paragraphs to a 384 dimensional dense vector space and can be used for tasks like clustering or semantic search.", + "model_task_type": "TEXT_EMBEDDING", + "model_format": "TORCH_SCRIPT", + "model_content_hash_value": "c15f0d2e62d872be5b5bc6c84d2e0f4921541e29fefbef51d59cc10a8ae30e0f", + "model_config": { + "model_type": "bert", + "embedding_dimension": 384, + "framework_type": "sentence_transformers", + "all_config": "{\"_name_or_path\":\"nreimers/MiniLM-L6-H384-uncased\",\"architectures\":[\"BertModel\"],\"attention_probs_dropout_prob\":0.1,\"gradient_checkpointing\":false,\"hidden_act\":\"gelu\",\"hidden_dropout_prob\":0.1,\"hidden_size\":384,\"initializer_range\":0.02,\"intermediate_size\":1536,\"layer_norm_eps\":1e-12,\"max_position_embeddings\":512,\"model_type\":\"bert\",\"num_attention_heads\":12,\"num_hidden_layers\":6,\"pad_token_id\":0,\"position_embedding_type\":\"absolute\",\"transformers_version\":\"4.8.2\",\"type_vocab_size\":2,\"use_cache\":true,\"vocab_size\":30522}" + }, + "model_group_id": "7IjOsYgBFp6IJxCceZ1-", + "url": "https://artifacts.opensearch.org/models/ml-models/huggingface/sentence-transformers/all-MiniLM-L6-v2/1.0.1/torch_script/sentence-transformers_all-MiniLM-L6-v2-1.0.1-torch_script.zip" +} +``` + - Step 2: deploy/load model. This step will read model content from index and deploy to node. ```