
README.pdf

1. Purpose:
This is a lambda helpful function to help the customers to conduct auto-deploy model when the
models are undeployed in a node, for example, when adding a new node and the model is not
deployed to the new node yet. This helpful lambda function can be added with a trigger to run
auto deployment in a schedule.

2. About the zip file:
In the zip file, please note that the lambda_function.py is the main file to run in the lambda job,
the other folders are imported packages. Those are dependencies for the lambda_function.py
to run successfully.

3. Set-up Steps by Steps:
3.1 Create IAM role to give lambda access to OpenSearch

3.1.1 Use the following Custom trust policy to create an AWS IAM Role

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Principal": {
 "Service": "lambda.amazonaws.com"
 },
 "Action": "sts:AssumeRole"
 }
]

 }

https://us-east-1.console.aws.amazon.com/iam/home?region=us-east-1#/roles

3.1.2 Add AmazonOpenSearchServiceFullAcess

3.1.3 After creating the new IAM role, please save the role ARN for later config.

3.1.4 Map role to backend role with all_access
Navigate to the OpenSearch Dashboard -> Security -> Roles, find all_access role, click
on all_access. Navigate to Mapped users -> Managed Mappings

Map the admin role with the new IAM role created in 3.1.2 step.

3.2 Create a new AWS lambda function:
In `create function’ config, choose RunTime as Python 3.8 and choose use existing
role, click on the role name that you created previous in 3.1.2, leave the rest of the
default setting, then click “Create Function”

3.3 Upload the zipfile
On the new function page, click `Upload from` in the Code Tap, choose the provided
zip file.

https://us-east-1.console.aws.amazon.com/lambda/home?region=us-east-1#/create/function

3.4 Testing
Now you can see the that the lambda_function.py in the Code source window. Click
on Test Tab. Please put the model_id into ModelIdList that you would like to conduct
auto model deployment, input the AOS endpoint which you can find out from AOS
domain config and input the lambda role arn that you created in previous 3.1.2. Click
“Test” to run auto model deployment.

{
 "ModelIdList": [
 "<model_id1>",
 "<model_id2>","
],
 "ResourceProperties": {
 "AOSEndpoint": "<AOSEndPoint>",
 "AOSRoleArn": "<RoleARN>"
 }
}

 3.4.1 Test Success
Please make sure the test success before adding trigger. The sample success
outcome is similar to this.

3.4.2 If lambda timeout, set Timeout to longer timeframe, maximum can be 15
minutes.

3.5 Add trigger to schedule the auto model deployment schedule

3.5.1 in trigger config page, choose EventBridge and create new rule, choose the rule
type to be schedule expression, and put on cron expression, for example, to run
every 10 minutes during weekdays, e.g cron(0/10 * ? * MON-FRI *), please refer to the Cron
expressions reference to config different schedules.

https://docs.aws.amazon.com/eventbridge/latest/userguide/eb-cron-expressions.html
https://docs.aws.amazon.com/eventbridge/latest/userguide/eb-cron-expressions.html

Now, the auto deployment lambda job is detecting undeployed models from your provided
model list and conduct auto-deployment in a schedule.

