From 3b5a281ff0da661e2f133919ad85f9d89b7b7f80 Mon Sep 17 00:00:00 2001 From: Fanit Kolchina Date: Thu, 19 Oct 2023 16:09:19 -0400 Subject: [PATCH] Fix conversational search formatting Signed-off-by: Fanit Kolchina --- _ml-commons-plugin/conversational-search.md | 129 ++++++++++---------- 1 file changed, 64 insertions(+), 65 deletions(-) diff --git a/_ml-commons-plugin/conversational-search.md b/_ml-commons-plugin/conversational-search.md index 676f19aca9..b56c29bf48 100644 --- a/_ml-commons-plugin/conversational-search.md +++ b/_ml-commons-plugin/conversational-search.md @@ -40,7 +40,6 @@ In the `conversation-meta` index, you can customize the `name` field to make it } } ``` -{% include copy-curl.html %} ### `conversation-interactions` index @@ -73,7 +72,6 @@ The `conversation-interactions` index creates a clean interaction abstraction an } } ``` -{% include copy-curl.html %} ## Working with conversations and interactions @@ -169,7 +167,7 @@ The Memory API responds with the most recent conversation, as indicated in the ` If there are fewer conversations than the number set in `max_results`, the response only returns the number of conversations that exist. Lastly, `next_token` provides an ordered position of the sorted list of conversations. When a conversation is added between subsequent GET conversation calls, one of the listed conversations will be duplicated in the results, for example: -```json +```plaintext GetConversations -> [BCD]EFGH CreateConversation -> ABCDEFGH GetConversations(next_token=3) -> ABC[DEF]GH @@ -249,73 +247,74 @@ Use the following steps to set up an HTTP connector using the OpenAI GPT 3.5 mod 1. Use the Connector API to create the HTTP connector: - ```json - POST /_plugins/_ml/connectors/_create - { - "name": "OpenAI Chat Connector", - "description": "The connector to public OpenAI model service for GPT 3.5", - "version": 2, - "protocol": "http", - "parameters": { - "endpoint": "[api.openai.com](http://api.openai.com/)", - "model": "gpt-3.5-turbo", - "temperature": 0 + ```json + POST /_plugins/_ml/connectors/_create + { + "name": "OpenAI Chat Connector", + "description": "The connector to public OpenAI model service for GPT 3.5", + "version": 2, + "protocol": "http", + "parameters": { + "endpoint": "[api.openai.com](http://api.openai.com/)", + "model": "gpt-3.5-turbo", + "temperature": 0 + }, + "credential": { + "openAI_key": "" }, - "credential": { - "openAI_key": "" - }, - "actions": [ - { - "action_type": "predict", - "method": "POST", - "url": "[https://$](https://%24/){parameters.endpoint}/v1/chat/completions", - "headers": { - "Authorization": "Bearer ${credential.openAI_key}" - }, - "request_body": "{ \"model\": \"${parameters.model}\", \"messages\": ${parameters.messages}, \"temperature\": $ {parameters.temperature} }" - } - ] - } - ``` - -2. Create a new model group for the connected model. You'll use the `model_group_id` returned by the Register API to register the model: - - ```json - POST /_plugins/_ml/model_group/_register - { - "name": "public_model_group", - "description": "This is a public model group" - } - ``` - {% include copy-curl.html %} - -3. Register and deploy the model using the `connector_id` from the Connector API response in Step 1 and the `model_group_id` returned in Step 2: - - ```json - POST /_plugins/_ml/models/_register - { - "name": "openAI-gpt-3.5-turbo", - "function_name": "remote", - "model_group_id": "fp-hSYoBu0R6vVqGMnM1", - "description": "test model", - "connector_id": "f5-iSYoBu0R6vVqGI3PA" - } - ``` - {% include copy-curl.html %} + "actions": [ + { + "action_type": "predict", + "method": "POST", + "url": "[https://$](https://%24/){parameters.endpoint}/v1/chat/completions", + "headers": { + "Authorization": "Bearer ${credential.openAI_key}" + }, + "request_body": "{ \"model\": \"${parameters.model}\", \"messages\": ${parameters.messages}, \"temperature\": $ {parameters.temperature} }" + } + ] + } + ``` + {% include copy-curl.html %} + +1. Create a new model group for the connected model. You'll use the `model_group_id` returned by the Register API to register the model: + + ```json + POST /_plugins/_ml/model_group/_register + { + "name": "public_model_group", + "description": "This is a public model group" + } + ``` + {% include copy-curl.html %} + +1. Register and deploy the model using the `connector_id` from the Connector API response in Step 1 and the `model_group_id` returned in Step 2: + + ```json + POST /_plugins/_ml/models/_register + { + "name": "openAI-gpt-3.5-turbo", + "function_name": "remote", + "model_group_id": "fp-hSYoBu0R6vVqGMnM1", + "description": "test model", + "connector_id": "f5-iSYoBu0R6vVqGI3PA" + } + ``` + {% include copy-curl.html %} -4. With the model registered, use the `task_id` returned in the registration response to get the `model_id`. You'll use the `model_id` to deploy the model to OpenSearch: +1. With the model registered, use the `task_id` returned in the registration response to get the `model_id`. You'll use the `model_id` to deploy the model to OpenSearch: - ```json - GET /_plugins/_ml/tasks/ - ``` - {% include copy-curl.html %} + ```json + GET /_plugins/_ml/tasks/ + ``` + {% include copy-curl.html %} -5. Using the `model_id` from step 4, deploy the model: +1. Using the `model_id` from step 4, deploy the model: - ```json - POST /_plugins/_ml/models//_deploy - ``` - {% include copy-curl.html %} + ```json + POST /_plugins/_ml/models//_deploy + ``` + {% include copy-curl.html %} ### Setting up the pipeline