From a6a1f834e89be4cb55d6412d62049a125348136d Mon Sep 17 00:00:00 2001 From: Fanit Kolchina Date: Mon, 3 Jul 2023 13:46:50 -0400 Subject: [PATCH 01/11] Add k-NN Faiss filtering documentation Signed-off-by: Fanit Kolchina --- _search-plugins/knn/filter-search-knn.md | 21 ++++++++++++--------- 1 file changed, 12 insertions(+), 9 deletions(-) diff --git a/_search-plugins/knn/filter-search-knn.md b/_search-plugins/knn/filter-search-knn.md index f5ef9a412c..2b8acd1453 100644 --- a/_search-plugins/knn/filter-search-knn.md +++ b/_search-plugins/knn/filter-search-knn.md @@ -13,9 +13,12 @@ To refine k-NN results, you can filter a k-NN search using one of the following - [Scoring script filter](#scoring-script-filter): This approach involves pre-filtering a document set and then running an exact k-NN search on the filtered subset. It does not scale for large filtered subsets. -- [Boolean filter](#boolean-filter-with-ann-search): This approach runs an [approximate nearest neighbor (ANN)]({{site.url}}{{site.baseurl}}/search-plugins/knn/approximate-knn) search and then applies a filter to the results. Because of post-filtering, it may return significantly fewer than `k` results for a restrictive filter. +- [Boolean filter](#boolean-filter-with-ann-search): This approach runs an [approximate nearest neighbor (ANN)]({{site.url}}{{site.baseurl}}/search-plugins/knn/approximate-knn/) search and then applies a filter to the results. Because of post-filtering, it may return significantly fewer than `k` results for a restrictive filter. -- [Lucene k-NN filter](#using-a-lucene-k-nn-filter): This approach applies filtering _during_ the k-NN search, as opposed to before or after the k-NN search, which ensures that `k` results are returned. You can only use this method with the Hierarchical Navigable Small World (HNSW) algorithm implemented by the Lucene search engine in k-NN plugin versions 2.4 and later. +- [Filtering during k-NN search](#filtering-during-k-nn-search): This approach applies filtering _during_ the k-NN search, as opposed to before or after the k-NN search, which ensures that `k` results are returned. + + Filtering during k-NN search is supported only with the Hierarchical Navigable Small World (HNSW) algorithm implemented by the Lucene search engine (k-NN plugin versions 2.4 and later) or by the Faiss search engine (k-NN plugin versions 2.9 or later). + {: .note} ## Filtered search optimization @@ -30,11 +33,11 @@ Once you've estimated the number of documents in your index, the restrictiveness | Number of documents in an index | Percentage of documents the filter returns | k | Filtering method to use for higher recall | Filtering method to use for lower latency | | :-- | :-- | :-- | :-- | :-- | | 10M | 2.5 | 100 | Scoring script | Scoring script | -| 10M | 38 | 100 | Lucene filter | Boolean filter | -| 10M | 80 | 100 | Scoring script | Lucene filter | -| 1M | 2.5 | 100 | Lucene filter | Scoring script | -| 1M | 38 | 100 | Lucene filter | Lucene filter/scoring script | -| 1M | 80 | 100 | Boolean filter | Lucene filter | +| 10M | 38 | 100 |Filtering during k-NN search | Boolean filter | +| 10M | 80 | 100 | Scoring script |Filtering during k-NN search | +| 1M | 2.5 | 100 |Filtering during k-NN search | Scoring script | +| 1M | 38 | 100 |Filtering during k-NN search |Filtering during k-NN search/scoring script | +| 1M | 80 | 100 | Boolean filter |Filtering during k-NN search | ## Scoring script filter @@ -213,7 +216,7 @@ The following flow chart outlines the Lucene algorithm. For more information about the Lucene filtering implementation and the underlying `KnnVectorQuery`, see the [Apache Lucene documentation](https://issues.apache.org/jira/browse/LUCENE-10382). -## Using a Lucene k-NN filter +## Filtering during k-NN search Consider a dataset that includes 12 documents containing hotel information. The following image shows all hotels on an xy coordinate plane by location. Additionally, the points for hotels that have a rating between 8 and 10, inclusive, are depicted with orange dots, and hotels that provide parking are depicted with green circles. The search point is colored in red: @@ -223,7 +226,7 @@ In this example, you will create an index and search for the three hotels with h ### Step 1: Create a new index -Before you can run a k-NN search with a filter, you need to create an index with a `knn_vector` field. For this field, you need to specify `lucene` as the engine and `hnsw` as the `method` in the mapping. +Before you can run a k-NN search with a filter, you need to create an index with a `knn_vector` field. For this field, you need to specify `lucene` or `faiss` as the engine and `hnsw` as the `method` in the mapping. The following request creates a new index called `hotels-index` with a `knn-filter` field called `location`: From a76c5cb1190af8e386704e9b58f48403c6d32605 Mon Sep 17 00:00:00 2001 From: Fanit Kolchina Date: Thu, 6 Jul 2023 16:44:35 -0400 Subject: [PATCH 02/11] Move the note Signed-off-by: Fanit Kolchina --- _search-plugins/knn/filter-search-knn.md | 4 ++-- 1 file changed, 2 insertions(+), 2 deletions(-) diff --git a/_search-plugins/knn/filter-search-knn.md b/_search-plugins/knn/filter-search-knn.md index 606cdfb58b..11aa85e613 100644 --- a/_search-plugins/knn/filter-search-knn.md +++ b/_search-plugins/knn/filter-search-knn.md @@ -20,6 +20,8 @@ To refine k-NN results, you can filter a k-NN search using one of the following Filtering during k-NN search is supported only with the Hierarchical Navigable Small World (HNSW) algorithm implemented by the Lucene search engine (k-NN plugin versions 2.4 and later) or by the Faiss search engine (k-NN plugin versions 2.9 or later). {: .note} +The location of the `filter` clause matters when it's used with a k-NN query clause. If the `filter` clause is outside the k-NN query clause, it must be a leaf clause. In this case, the filter is applied after the k-NN search and works exactly like the `post_filter` keyword. If the `filter` clause is within the k-NN query clause, it works as a hybrid of pre- and post-filtering (this option is only supported for the `lucene` and `faiss` search engines). +{: .note} ## Filtered search optimization @@ -201,8 +203,6 @@ The response includes documents containing the matching hotels: } ``` -The location of the `filter` clause matters when it's used with a k-NN query clause. If the `filter` clause is outside the k-NN query clause, it must be a leaf clause. In this case, the filter is applied after the k-NN search and works exactly like the `post_filter` keyword. If the `filter` clause is within the k-NN query clause, it works as a hybrid of pre- and post-filtering (this option is only supported for the Lucene search engine). - ## Lucene k-NN filter implementation k-NN plugin version 2.2 introduced support for running k-NN searches with the Lucene engine using HNSW graphs. Starting with version 2.4, which is based on Lucene version 9.4, you can use Lucene filters for k-NN searches. From 1d0eb6c7dfc306cd5ed47aa4c982301be86640bf Mon Sep 17 00:00:00 2001 From: Fanit Kolchina Date: Fri, 7 Jul 2023 12:49:01 -0400 Subject: [PATCH 03/11] Add faiss and a filter table Signed-off-by: Fanit Kolchina --- _search-plugins/knn/filter-search-knn.md | 411 +++++++++++++---------- 1 file changed, 235 insertions(+), 176 deletions(-) diff --git a/_search-plugins/knn/filter-search-knn.md b/_search-plugins/knn/filter-search-knn.md index 11aa85e613..fd32ec68b7 100644 --- a/_search-plugins/knn/filter-search-knn.md +++ b/_search-plugins/knn/filter-search-knn.md @@ -11,17 +11,21 @@ has_math: true To refine k-NN results, you can filter a k-NN search using one of the following methods: -- [Scoring script filter](#scoring-script-filter): This approach involves pre-filtering a document set and then running an exact k-NN search on the filtered subset. It does not scale for large filtered subsets. +- [Efficient k-NN filtering](#efficient-k-nn-filtering): This approach applies filtering _during_ the k-NN search, as opposed to before or after the k-NN search, which ensures that `k` results are returned. This approach is supported by the following search engines: + - Hierarchical Navigable Small World (HNSW) algorithm implemented by the Lucene search engine (k-NN plugin versions 2.4 and later) + - Faiss search engine (k-NN plugin versions 2.9 or later) - [Boolean filter](#boolean-filter-with-ann-search): This approach runs an [approximate nearest neighbor (ANN)]({{site.url}}{{site.baseurl}}/search-plugins/knn/approximate-knn/) search and then applies a filter to the results. Because of post-filtering, it may return significantly fewer than `k` results for a restrictive filter. -- [Filtering during k-NN search](#filtering-during-k-nn-search): This approach applies filtering _during_ the k-NN search, as opposed to before or after the k-NN search, which ensures that `k` results are returned. +- [Scoring script filter](#scoring-script-filter): This approach involves pre-filtering a document set and then running an exact k-NN search on the filtered subset. It does not scale for large filtered subsets. - Filtering during k-NN search is supported only with the Hierarchical Navigable Small World (HNSW) algorithm implemented by the Lucene search engine (k-NN plugin versions 2.4 and later) or by the Faiss search engine (k-NN plugin versions 2.9 or later). - {: .note} +The following table summarizes the preceding filtering use cases. -The location of the `filter` clause matters when it's used with a k-NN query clause. If the `filter` clause is outside the k-NN query clause, it must be a leaf clause. In this case, the filter is applied after the k-NN search and works exactly like the `post_filter` keyword. If the `filter` clause is within the k-NN query clause, it works as a hybrid of pre- and post-filtering (this option is only supported for the `lucene` and `faiss` search engines). -{: .note} +Filter | When the filter is applied | Type of search | Supported engines and methods | Where to place the `filter` clause +:--- | :--- | :--- | :--- +Efficient k-NN filtering | During search (a hybrid of pre- and post-filtering) | Approximate | - `lucene` (`hnsw`)
- `faiss` (`hnsw`, `ivf`) | Inside the k-NN query clause. +Boolean filter | After search (post-filtering, works exactly like the `post_filter` keyword) | Approximate | -`lucene`
- `nmslib`
- `faiss` | Outside the k-NN query clause. Must be a leaf clause. +Scoring script filter | Before search (pre-filtering) | Exact | N/A | Inside the script score query clause. ## Filtered search optimization @@ -33,177 +37,22 @@ Depending on your dataset and use case, you might be more interested in maximizi Once you've estimated the number of documents in your index, the restrictiveness of your filter, and the desired number of nearest neighbors, use the following table to choose a filtering method that optimizes for recall or latency. + + | Number of documents in an index | Percentage of documents the filter returns | k | Filtering method to use for higher recall | Filtering method to use for lower latency | | :-- | :-- | :-- | :-- | :-- | | 10M | 2.5 | 100 | Scoring script | Scoring script | -| 10M | 38 | 100 |Filtering during k-NN search | Boolean filter | -| 10M | 80 | 100 | Scoring script |Filtering during k-NN search | -| 1M | 2.5 | 100 |Filtering during k-NN search | Scoring script | -| 1M | 38 | 100 |Filtering during k-NN search |Filtering during k-NN search/scoring script | -| 1M | 80 | 100 | Boolean filter |Filtering during k-NN search | - -## Scoring script filter - -A scoring script filter first filters the documents and then uses a brute-force exact k-NN search on the results. For example, the following query searches for hotels with a rating between 8 and 10, inclusive, that provide parking and then performs a k-NN search to return the 3 hotels that are closest to the specified `location`: - -```json -POST /hotels-index/_search -{ - "size": 3, - "query": { - "script_score": { - "query": { - "bool": { - "filter": { - "bool": { - "must": [ - { - "range": { - "rating": { - "gte": 8, - "lte": 10 - } - } - }, - { - "term": { - "parking": "true" - } - } - ] - } - } - } - }, - "script": { - "source": "knn_score", - "lang": "knn", - "params": { - "field": "location", - "query_value": [ - 5.0, - 4.0 - ], - "space_type": "l2" - } - } - } - } -} -``` -{% include copy-curl.html %} - -## Boolean filter with ANN search - -A Boolean filter consists of a Boolean query that contains a k-NN query and a filter. For example, the following query searches for hotels that are closest to the specified `location` and then filters the results to return hotels with a rating between 8 and 10, inclusive, that provide parking: - -```json -POST /hotels-index/_search -{ - "size": 3, - "query": { - "bool": { - "filter": { - "bool": { - "must": [ - { - "range": { - "rating": { - "gte": 8, - "lte": 10 - } - } - }, - { - "term": { - "parking": "true" - } - } - ] - } - }, - "must": [ - { - "knn": { - "location": { - "vector": [ - 5, - 4 - ], - "k": 20 - } - } - } - ] - } - } -} -``` +| 10M | 38 | 100 |Efficient k-NN filtering | Boolean filter | +| 10M | 80 | 100 | Scoring script |Efficient k-NN filtering | +| 1M | 2.5 | 100 |Efficient k-NN filtering | Scoring script | +| 1M | 38 | 100 |Efficient k-NN filtering |Efficient k-NN filtering/scoring script | +| 1M | 80 | 100 | Boolean filter |Efficient k-NN filtering | -The response includes documents containing the matching hotels: +## Efficient k-NN filtering -```json -{ - "took" : 95, - "timed_out" : false, - "_shards" : { - "total" : 1, - "successful" : 1, - "skipped" : 0, - "failed" : 0 - }, - "hits" : { - "total" : { - "value" : 5, - "relation" : "eq" - }, - "max_score" : 0.72992706, - "hits" : [ - { - "_index" : "hotels-index", - "_id" : "3", - "_score" : 0.72992706, - "_source" : { - "location" : [ - 4.9, - 3.4 - ], - "parking" : "true", - "rating" : 9 - } - }, - { - "_index" : "hotels-index", - "_id" : "6", - "_score" : 0.3012048, - "_source" : { - "location" : [ - 6.4, - 3.4 - ], - "parking" : "true", - "rating" : 9 - } - }, - { - "_index" : "hotels-index", - "_id" : "5", - "_score" : 0.24154587, - "_source" : { - "location" : [ - 3.3, - 4.5 - ], - "parking" : "true", - "rating" : 8 - } - } - ] - } -} -``` +You can perform efficient k-NN filtering with the `lucene` or `faiss` search engines. -## Lucene k-NN filter implementation +### Lucene k-NN filter implementation k-NN plugin version 2.2 introduced support for running k-NN searches with the Lucene engine using HNSW graphs. Starting with version 2.4, which is based on Lucene version 9.4, you can use Lucene filters for k-NN searches. @@ -219,7 +68,7 @@ The following flow chart outlines the Lucene algorithm. For more information about the Lucene filtering implementation and the underlying `KnnVectorQuery`, see the [Apache Lucene documentation](https://issues.apache.org/jira/browse/LUCENE-10382). -## Filtering during k-NN search +### Using a Lucene k-NN filter Consider a dataset that includes 12 documents containing hotel information. The following image shows all hotels on an xy coordinate plane by location. Additionally, the points for hotels that have a rating between 8 and 10, inclusive, are depicted with orange dots, and hotels that provide parking are depicted with green circles. The search point is colored in red: @@ -227,9 +76,9 @@ Consider a dataset that includes 12 documents containing hotel information. The In this example, you will create an index and search for the three hotels with high ratings and parking that are the closest to the search location. -### Step 1: Create a new index +**Step 1: Create a new index** -Before you can run a k-NN search with a filter, you need to create an index with a `knn_vector` field. For this field, you need to specify `lucene` or `faiss` as the engine and `hnsw` as the `method` in the mapping. +Before you can run a k-NN search with a filter, you need to create an index with a `knn_vector` field. For this field, you need to specify `lucene` as the engine and `hnsw` as the `method` in the mapping. The following request creates a new index called `hotels-index` with a `knn-filter` field called `location`: @@ -265,7 +114,7 @@ PUT /hotels-index ``` {% include copy-curl.html %} -### Step 2: Add data to your index +**Step 2: Add data to your index** Next, add data to your index. @@ -300,7 +149,7 @@ POST /_bulk ``` {% include copy-curl.html %} -### Step 3: Search your data with a filter +**Step 3: Search your data with a filter** Now you can create a k-NN search with filters. In the k-NN query clause, include the point of interest that is used to search for nearest neighbors, the number of nearest neighbors to return (`k`), and a filter with the restriction criteria. Depending on how restrictive you want your filter to be, you can add multiple query clauses to a single request. @@ -469,4 +318,214 @@ POST /hotels-index/_search } } ``` +{% include copy-curl.html %} + +### Faiss k-NN filter implementation + +Starting with k-NN plugin version 2.9, you can use `faiss` filters for k-NN searches. + + + +### Using a Faiss efficient filter + + + +**Step 1: Create a new index** + +Before you can run a k-NN search with a filter, you need to create an index with a `knn_vector` field. For this field, you need to specify `faiss` as the engine in the mapping. + +The following request : + +```json + +``` +{% include copy-curl.html %} + +**Step 2: Add data to your index** + +Next, add data to your index. + +The following request : + +```json + +``` +{% include copy-curl.html %} + +**Step 3: Search your data with a filter** + +Now you can create a k-NN search with filters. + +The following request : + +```json + +``` +{% include copy-curl.html %} + +The response returns : + +```json + +``` + +## Boolean filter with ANN search + +A Boolean filter consists of a Boolean query that contains a k-NN query and a filter. For example, the following query searches for hotels that are closest to the specified `location` and then filters the results to return hotels with a rating between 8 and 10, inclusive, that provide parking: + +```json +POST /hotels-index/_search +{ + "size": 3, + "query": { + "bool": { + "filter": { + "bool": { + "must": [ + { + "range": { + "rating": { + "gte": 8, + "lte": 10 + } + } + }, + { + "term": { + "parking": "true" + } + } + ] + } + }, + "must": [ + { + "knn": { + "location": { + "vector": [ + 5, + 4 + ], + "k": 20 + } + } + } + ] + } + } +} +``` + +The response includes documents containing the matching hotels: + +```json +{ + "took" : 95, + "timed_out" : false, + "_shards" : { + "total" : 1, + "successful" : 1, + "skipped" : 0, + "failed" : 0 + }, + "hits" : { + "total" : { + "value" : 5, + "relation" : "eq" + }, + "max_score" : 0.72992706, + "hits" : [ + { + "_index" : "hotels-index", + "_id" : "3", + "_score" : 0.72992706, + "_source" : { + "location" : [ + 4.9, + 3.4 + ], + "parking" : "true", + "rating" : 9 + } + }, + { + "_index" : "hotels-index", + "_id" : "6", + "_score" : 0.3012048, + "_source" : { + "location" : [ + 6.4, + 3.4 + ], + "parking" : "true", + "rating" : 9 + } + }, + { + "_index" : "hotels-index", + "_id" : "5", + "_score" : 0.24154587, + "_source" : { + "location" : [ + 3.3, + 4.5 + ], + "parking" : "true", + "rating" : 8 + } + } + ] + } +} +``` + +## Scoring script filter + +A scoring script filter first filters the documents and then uses a brute-force exact k-NN search on the results. For example, the following query searches for hotels with a rating between 8 and 10, inclusive, that provide parking and then performs a k-NN search to return the 3 hotels that are closest to the specified `location`: + +```json +POST /hotels-index/_search +{ + "size": 3, + "query": { + "script_score": { + "query": { + "bool": { + "filter": { + "bool": { + "must": [ + { + "range": { + "rating": { + "gte": 8, + "lte": 10 + } + } + }, + { + "term": { + "parking": "true" + } + } + ] + } + } + } + }, + "script": { + "source": "knn_score", + "lang": "knn", + "params": { + "field": "location", + "query_value": [ + 5.0, + 4.0 + ], + "space_type": "l2" + } + } + } + } +} +``` {% include copy-curl.html %} \ No newline at end of file From 6686582e0b746eba6a028ad9cd7efb41b601f788 Mon Sep 17 00:00:00 2001 From: Fanit Kolchina Date: Fri, 7 Jul 2023 18:56:54 -0400 Subject: [PATCH 04/11] Refactor boolean filtering section Signed-off-by: Fanit Kolchina --- _search-plugins/knn/approximate-knn.md | 24 +------------- _search-plugins/knn/filter-search-knn.md | 42 +++++++++++++++++++++--- 2 files changed, 39 insertions(+), 27 deletions(-) diff --git a/_search-plugins/knn/approximate-knn.md b/_search-plugins/knn/approximate-knn.md index d57d164050..13505b046c 100644 --- a/_search-plugins/knn/approximate-knn.md +++ b/_search-plugins/knn/approximate-knn.md @@ -242,30 +242,8 @@ POST _bulk After data is ingested, it can be search just like any other `knn_vector` field! ### Using approximate k-NN with filters -If you use the `knn` query alongside filters or other clauses (e.g. `bool`, `must`, `match`), you might receive fewer than `k` results. In this example, `post_filter` reduces the number of results from 2 to 1: -```json -GET my-knn-index-1/_search -{ - "size": 2, - "query": { - "knn": { - "my_vector2": { - "vector": [2, 3, 5, 6], - "k": 2 - } - } - }, - "post_filter": { - "range": { - "price": { - "gte": 5, - "lte": 10 - } - } - } -} -``` +To learn about using filters with k-NN search, see [k-NN search with filters]({{site.url}}{{site.baseurl}}/search-plugins/knn/filter-search-knn/). ## Spaces diff --git a/_search-plugins/knn/filter-search-knn.md b/_search-plugins/knn/filter-search-knn.md index fd32ec68b7..6151b59575 100644 --- a/_search-plugins/knn/filter-search-knn.md +++ b/_search-plugins/knn/filter-search-knn.md @@ -12,10 +12,12 @@ has_math: true To refine k-NN results, you can filter a k-NN search using one of the following methods: - [Efficient k-NN filtering](#efficient-k-nn-filtering): This approach applies filtering _during_ the k-NN search, as opposed to before or after the k-NN search, which ensures that `k` results are returned. This approach is supported by the following search engines: - - Hierarchical Navigable Small World (HNSW) algorithm implemented by the Lucene search engine (k-NN plugin versions 2.4 and later) + - Lucene search engine with a Hierarchical Navigable Small World (HNSW) algorithm (k-NN plugin versions 2.4 and later) - Faiss search engine (k-NN plugin versions 2.9 or later) -- [Boolean filter](#boolean-filter-with-ann-search): This approach runs an [approximate nearest neighbor (ANN)]({{site.url}}{{site.baseurl}}/search-plugins/knn/approximate-knn/) search and then applies a filter to the results. Because of post-filtering, it may return significantly fewer than `k` results for a restrictive filter. +- [Post filtering](#post-filtering): Because it is performed after the k-NN search, this approach may return significantly fewer than `k` results for a restrictive filter. + - [Boolean post filter](#boolean-filter-with-ann-search): This approach runs an [approximate nearest neighbor (ANN)]({{site.url}}{{site.baseurl}}/search-plugins/knn/approximate-knn/) search and then applies a filter to the results. The two query parts are executed independently and then the intersection of their result sets is taken. + - [The `post_filter` parameter](#post-filter-parameter): This approach runs an [approximate nearest neighbor (ANN)]({{site.url}}{{site.baseurl}}/search-plugins/knn/approximate-knn/) on the full dataset and then applies the filter to k-NN results. - [Scoring script filter](#scoring-script-filter): This approach involves pre-filtering a document set and then running an exact k-NN search on the filtered subset. It does not scale for large filtered subsets. @@ -24,7 +26,8 @@ The following table summarizes the preceding filtering use cases. Filter | When the filter is applied | Type of search | Supported engines and methods | Where to place the `filter` clause :--- | :--- | :--- | :--- Efficient k-NN filtering | During search (a hybrid of pre- and post-filtering) | Approximate | - `lucene` (`hnsw`)
- `faiss` (`hnsw`, `ivf`) | Inside the k-NN query clause. -Boolean filter | After search (post-filtering, works exactly like the `post_filter` keyword) | Approximate | -`lucene`
- `nmslib`
- `faiss` | Outside the k-NN query clause. Must be a leaf clause. +Boolean filter | After search (post-filtering) | Approximate | -`lucene`
- `nmslib`
- `faiss` | Outside the k-NN query clause. Must be a leaf clause. +The `post_filter` parameter | After search (post-filtering) | Approximate | -`lucene`
- `nmslib`
- `faiss` | Outside the k-NN query clause. Scoring script filter | Before search (pre-filtering) | Exact | N/A | Inside the script score query clause. ## Filtered search optimization @@ -369,7 +372,11 @@ The response returns : ``` -## Boolean filter with ANN search +## Post filtering + +You can achieve post filtering with a Boolean filter or by providing the `post_filter` parameter. + +### Boolean filter with ANN search A Boolean filter consists of a Boolean query that contains a k-NN query and a filter. For example, the following query searches for hotels that are closest to the specified `location` and then filters the results to return hotels with a rating between 8 and 10, inclusive, that provide parking: @@ -479,6 +486,33 @@ The response includes documents containing the matching hotels: } ``` +### Post filter parameter + +If you use the `knn` query alongside filters or other clauses (e.g. `bool`, `must`, `match`), you might receive fewer than `k` results. In this example, `post_filter` reduces the number of results from 2 to 1: + +```json +GET my-knn-index-1/_search +{ + "size": 2, + "query": { + "knn": { + "my_vector2": { + "vector": [2, 3, 5, 6], + "k": 2 + } + } + }, + "post_filter": { + "range": { + "price": { + "gte": 5, + "lte": 10 + } + } + } +} +``` + ## Scoring script filter A scoring script filter first filters the documents and then uses a brute-force exact k-NN search on the results. For example, the following query searches for hotels with a rating between 8 and 10, inclusive, that provide parking and then performs a k-NN search to return the 3 hotels that are closest to the specified `location`: From 01dc37c8800122f8ceb3d580c3b644b755110462 Mon Sep 17 00:00:00 2001 From: Fanit Kolchina Date: Sun, 16 Jul 2023 16:54:06 -0400 Subject: [PATCH 05/11] Clarified that Faiss works with hnsw only Signed-off-by: Fanit Kolchina --- _search-plugins/knn/filter-search-knn.md | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/_search-plugins/knn/filter-search-knn.md b/_search-plugins/knn/filter-search-knn.md index 6151b59575..a096cfa280 100644 --- a/_search-plugins/knn/filter-search-knn.md +++ b/_search-plugins/knn/filter-search-knn.md @@ -13,7 +13,7 @@ To refine k-NN results, you can filter a k-NN search using one of the following - [Efficient k-NN filtering](#efficient-k-nn-filtering): This approach applies filtering _during_ the k-NN search, as opposed to before or after the k-NN search, which ensures that `k` results are returned. This approach is supported by the following search engines: - Lucene search engine with a Hierarchical Navigable Small World (HNSW) algorithm (k-NN plugin versions 2.4 and later) - - Faiss search engine (k-NN plugin versions 2.9 or later) + - Faiss search engine with a Hierarchical Navigable Small World (HNSW) algorithm (k-NN plugin versions 2.9 or later) - [Post filtering](#post-filtering): Because it is performed after the k-NN search, this approach may return significantly fewer than `k` results for a restrictive filter. - [Boolean post filter](#boolean-filter-with-ann-search): This approach runs an [approximate nearest neighbor (ANN)]({{site.url}}{{site.baseurl}}/search-plugins/knn/approximate-knn/) search and then applies a filter to the results. The two query parts are executed independently and then the intersection of their result sets is taken. From 03c1d014751612baa62eef5a1d0a02a64ebd3f18 Mon Sep 17 00:00:00 2001 From: Fanit Kolchina Date: Mon, 17 Jul 2023 11:59:03 -0400 Subject: [PATCH 06/11] Add more Faiss filtering information Signed-off-by: Fanit Kolchina --- _search-plugins/knn/filter-search-knn.md | 269 +++++++++++++++++------ images/faiss-algorithm.jpg | Bin 0 -> 26341 bytes 2 files changed, 203 insertions(+), 66 deletions(-) create mode 100644 images/faiss-algorithm.jpg diff --git a/_search-plugins/knn/filter-search-knn.md b/_search-plugins/knn/filter-search-knn.md index a096cfa280..ab002a7d68 100644 --- a/_search-plugins/knn/filter-search-knn.md +++ b/_search-plugins/knn/filter-search-knn.md @@ -11,23 +11,23 @@ has_math: true To refine k-NN results, you can filter a k-NN search using one of the following methods: -- [Efficient k-NN filtering](#efficient-k-nn-filtering): This approach applies filtering _during_ the k-NN search, as opposed to before or after the k-NN search, which ensures that `k` results are returned. This approach is supported by the following search engines: - - Lucene search engine with a Hierarchical Navigable Small World (HNSW) algorithm (k-NN plugin versions 2.4 and later) - - Faiss search engine with a Hierarchical Navigable Small World (HNSW) algorithm (k-NN plugin versions 2.9 or later) +- [Efficient k-NN filtering](#efficient-k-nn-filtering): This approach applies filtering _during_ the k-NN search, as opposed to before or after the k-NN search, which ensures that `k` results are returned (if there are at least `k` results in total). This approach is supported by the following engines: + - Lucene engine with a Hierarchical Navigable Small World (HNSW) algorithm (k-NN plugin versions 2.4 and later) + - Faiss engine with a Hierarchical Navigable Small World (HNSW) algorithm (k-NN plugin versions 2.9 or later) - [Post filtering](#post-filtering): Because it is performed after the k-NN search, this approach may return significantly fewer than `k` results for a restrictive filter. - - [Boolean post filter](#boolean-filter-with-ann-search): This approach runs an [approximate nearest neighbor (ANN)]({{site.url}}{{site.baseurl}}/search-plugins/knn/approximate-knn/) search and then applies a filter to the results. The two query parts are executed independently and then the intersection of their result sets is taken. + - [Boolean post filter](#boolean-filter-with-ann-search): This approach runs an [approximate nearest neighbor (ANN)]({{site.url}}{{site.baseurl}}/search-plugins/knn/approximate-knn/) search and then applies a filter to the results. The two query parts are executed independently and then the results are combined based on the query operator (`should`, `must`, and so on) provided in the query. - [The `post_filter` parameter](#post-filter-parameter): This approach runs an [approximate nearest neighbor (ANN)]({{site.url}}{{site.baseurl}}/search-plugins/knn/approximate-knn/) on the full dataset and then applies the filter to k-NN results. -- [Scoring script filter](#scoring-script-filter): This approach involves pre-filtering a document set and then running an exact k-NN search on the filtered subset. It does not scale for large filtered subsets. +- [Scoring script filter](#scoring-script-filter): This approach involves pre-filtering a document set and then running an exact k-NN search on the filtered subset. It may have high latency and does not scale for large filtered subsets. The following table summarizes the preceding filtering use cases. Filter | When the filter is applied | Type of search | Supported engines and methods | Where to place the `filter` clause :--- | :--- | :--- | :--- -Efficient k-NN filtering | During search (a hybrid of pre- and post-filtering) | Approximate | - `lucene` (`hnsw`)
- `faiss` (`hnsw`, `ivf`) | Inside the k-NN query clause. -Boolean filter | After search (post-filtering) | Approximate | -`lucene`
- `nmslib`
- `faiss` | Outside the k-NN query clause. Must be a leaf clause. -The `post_filter` parameter | After search (post-filtering) | Approximate | -`lucene`
- `nmslib`
- `faiss` | Outside the k-NN query clause. +Efficient k-NN filtering | During search (a hybrid of pre- and post-filtering) | Approximate | - `lucene` (`hnsw`)
- `faiss` (`hnsw`) | Inside the k-NN query clause. +Boolean filter | After search (post-filtering) | Approximate | - `lucene`
- `nmslib`
- `faiss` | Outside the k-NN query clause. Must be a leaf clause. +The `post_filter` parameter | After search (post-filtering) | Approximate | - `lucene`
- `nmslib`
- `faiss` | Outside the k-NN query clause. Scoring script filter | Before search (pre-filtering) | Exact | N/A | Inside the script score query clause. ## Filtered search optimization @@ -40,20 +40,18 @@ Depending on your dataset and use case, you might be more interested in maximizi Once you've estimated the number of documents in your index, the restrictiveness of your filter, and the desired number of nearest neighbors, use the following table to choose a filtering method that optimizes for recall or latency. - - | Number of documents in an index | Percentage of documents the filter returns | k | Filtering method to use for higher recall | Filtering method to use for lower latency | | :-- | :-- | :-- | :-- | :-- | | 10M | 2.5 | 100 | Scoring script | Scoring script | -| 10M | 38 | 100 |Efficient k-NN filtering | Boolean filter | -| 10M | 80 | 100 | Scoring script |Efficient k-NN filtering | -| 1M | 2.5 | 100 |Efficient k-NN filtering | Scoring script | -| 1M | 38 | 100 |Efficient k-NN filtering |Efficient k-NN filtering/scoring script | -| 1M | 80 | 100 | Boolean filter |Efficient k-NN filtering | +| 10M | 38 | 100 | Efficient k-NN filtering | Boolean filter | +| 10M | 80 | 100 | Scoring script | Efficient k-NN filtering | +| 1M | 2.5 | 100 | Efficient k-NN filtering | Scoring script | +| 1M | 38 | 100 | Efficient k-NN filtering | Efficient k-NN filtering/scoring script | +| 1M | 80 | 100 | Efficient k-NN filtering | Boolean filter | ## Efficient k-NN filtering -You can perform efficient k-NN filtering with the `lucene` or `faiss` search engines. +You can perform efficient k-NN filtering with the `lucene` or `faiss` engines. ### Lucene k-NN filter implementation @@ -259,7 +257,195 @@ The response returns the three hotels that are nearest to the search point and h } ``` -Note that there are multiple ways to construct a filter that returns hotels that provide parking, for example: +For more ways to construct a filter, see [Constructing a filter](#constructing-a-filter). + +### Faiss k-NN filter implementation + +Starting with k-NN plugin version 2.9, you can use `faiss` filters for k-NN searches. + +When you specify a Faiss filter for a k-NN search, the Faiss algorithm decides whether to perform an exact k-NN search with pre-filtering or an approximate search with modified post-filtering. The algorithm uses the following variables: + +- N: The number of documents in the index. +- P: The number of documents in the document subset after the filter is applied (P <= N). +- k: The maximum number of vectors to return in the response. + +The following flow chart outlines the Faiss algorithm. + +![Faiss algorithm for filtering]({{site.url}}{{site.baseurl}}/images/faiss-algorithm.jpg) + +### Using a Faiss efficient filter + +Consider an index that holds information about shirts for a clothing store. You want to find the top rated shirts that are similar to the one you have but would like to restrict the results by shirt size. + +In this example, you will create an index and search for shirts that are similar to the shirt you provide. + +**Step 1: Create a new index** + +Before you can run a k-NN search with a filter, you need to create an index with a `knn_vector` field. For this field, you need to specify `faiss` and `hnsw` as the `method` in the mapping. + +The following request creates an index that contains vector representations of shirts: + +```json +PUT /products-shirts +{ + "settings": { + "index": { + "knn": true + } + }, + "mappings": { + "properties": { + "item_vector": { + "type": "knn_vector", + "dimension": 3, + "method": { + "name": "hnsw", + "space_type": "l2", + "engine": "faiss" + } + } + } + } +} +``` +{% include copy-curl.html %} + +**Step 2: Add data to your index** + +Next, add data to your index. + +The following request adds 12 documents that contain information about shirts, including their vector representation, size, and rating: + +```json +POST /_bulk?refresh +{ "index": { "_index": "products-shirts", "_id": "1" } } +{ "item_vector": [5.2, 4.4, 8.4], "size" : "large", "rating" : 5 } +{ "index": { "_index": "products-shirts", "_id": "2" } } +{ "item_vector": [5.2, 3.9, 2.9], "size" : "small", "rating" : 4 } +{ "index": { "_index": "products-shirts", "_id": "3" } } +{ "item_vector": [4.9, 3.4, 2.2], "size" : "xlarge", "rating" : 9 } +{ "index": { "_index": "products-shirts", "_id": "4" } } +{ "item_vector": [4.2, 4.6, 5.5], "size" : "large", "rating" : 6} +{ "index": { "_index": "products-shirts", "_id": "5" } } +{ "item_vector": [3.3, 4.5, 8.8], "size" : "medium", "rating" : 8 } +{ "index": { "_index": "products-shirts", "_id": "6" } } +{ "item_vector": [6.4, 3.4, 6.6], "size" : "small", "rating" : 9 } +{ "index": { "_index": "products-shirts", "_id": "7" } } +{ "item_vector": [4.2, 6.2, 4.6], "size" : "small", "rating" : 5 } +{ "index": { "_index": "products-shirts", "_id": "8" } } +{ "item_vector": [2.4, 4.0, 3.0], "size" : "small", "rating" : 8 } +{ "index": { "_index": "products-shirts", "_id": "9" } } +{ "item_vector": [1.4, 3.2, 9.0], "size" : "small", "rating" : 5 } +{ "index": { "_index": "products-shirts", "_id": "10" } } +{ "item_vector": [7.0, 9.9, 9.0], "size" : "xlarge", "rating" : 9 } +{ "index": { "_index": "products-shirts", "_id": "11" } } +{ "item_vector": [3.0, 2.3, 2.0], "size" : "large", "rating" : 6 } +{ "index": { "_index": "products-shirts", "_id": "12" } } +{ "item_vector": [5.0, 1.0, 4.0], "size" : "large", "rating" : 3 } + +``` +{% include copy-curl.html %} + +**Step 3: Search your data with a filter** + +Now you can create a k-NN search with filters. In the k-NN query clause, include the vector representation of the shirt that is used to search for similar ones, the number of nearest neighbors to return (`k`), and a filter by size and rating. + +The following request searches for size small shirts rated between 7 and 10, inclusive: + +```json +POST /products-shirts/_search +{ + "size": 2, + "query": { + "knn": { + "item_vector": { + "vector": [ + 2, 4, 3 + ], + "k": 10, + "filter": { + "bool": { + "must": [ + { + "range": { + "rating": { + "gte": 7, + "lte": 10 + } + } + }, + { + "term": { + "size": "small" + } + } + ] + } + } + } + } + } +} +``` +{% include copy-curl.html %} + +The response returns the two matching documents: + +```json +{ + "took": 2, + "timed_out": false, + "_shards": { + "total": 1, + "successful": 1, + "skipped": 0, + "failed": 0 + }, + "hits": { + "total": { + "value": 2, + "relation": "eq" + }, + "max_score": 0.8620689, + "hits": [ + { + "_index": "products-shirts", + "_id": "8", + "_score": 0.8620689, + "_source": { + "item_vector": [ + 2.4, + 4, + 3 + ], + "size": "small", + "rating": 8 + } + }, + { + "_index": "products-shirts", + "_id": "6", + "_score": 0.029691212, + "_source": { + "item_vector": [ + 6.4, + 3.4, + 6.6 + ], + "size": "small", + "rating": 9 + } + } + ] + } +} +``` + +For more ways to construct a filter, see [Constructing a filter](#constructing-a-filter). + +### Constructing a filter + +There are multiple ways to construct a filter for the same condition. For example, you can use the following constructs to create a filter that returns hotels that provide parking: - A `term` query clause in the `should` clause - A `wildcard` query clause in the `should` clause @@ -323,55 +509,6 @@ POST /hotels-index/_search ``` {% include copy-curl.html %} -### Faiss k-NN filter implementation - -Starting with k-NN plugin version 2.9, you can use `faiss` filters for k-NN searches. - - - -### Using a Faiss efficient filter - - - -**Step 1: Create a new index** - -Before you can run a k-NN search with a filter, you need to create an index with a `knn_vector` field. For this field, you need to specify `faiss` as the engine in the mapping. - -The following request : - -```json - -``` -{% include copy-curl.html %} - -**Step 2: Add data to your index** - -Next, add data to your index. - -The following request : - -```json - -``` -{% include copy-curl.html %} - -**Step 3: Search your data with a filter** - -Now you can create a k-NN search with filters. - -The following request : - -```json - -``` -{% include copy-curl.html %} - -The response returns : - -```json - -``` - ## Post filtering You can achieve post filtering with a Boolean filter or by providing the `post_filter` parameter. diff --git a/images/faiss-algorithm.jpg b/images/faiss-algorithm.jpg new file mode 100644 index 0000000000000000000000000000000000000000..e992c83f145b314bb7451c95efaeec92634bdda0 GIT binary patch literal 26341 zcmc$_2Ut^Gwl^Ld3JOROrHPc#0}^`ml@drokhie|`j9g+ZVY zz?n0Ezowt_XU3swYF76UdJw3##$N)8w8F0LbkF0O#WV;Mt@A0JR|iz>Ud2czmw_0QwgI0CC_C z-XDGP(Av}bFXqmlp3gcs002Ar006BS0KhZ|0MMZRB0D|(H+8#pD&jb;m;33@5#R!_ z2iyWc0d4?WfY>Po2HXZn0Azkn0n`BJ&i+cj&gV|kd8+fj(j_XY3slsXXlSS}QB%`g zp}#_NneH+*H7x@z9sSj-3|DEcFfuV-Wjdv={xWjrSIKkdFP#>=dYSt2Dfiz@Ki>iv zE}dmMGj{F_58y1rnR5(hezpNPPrLiHT7Qeg(>76EJaggH(OK$KvFX**{F!rr^B1pB zQBhsIbnbL`&YnAef$Aay<0U3;3FhlOcTEz9ud#sjjZLjR9>v#;^2#B6eovN^l95%d z;P2CrZdsi{^<F@q$%7D&BpOG_cwJISIIOs(O~;90TAE;QO!O z`LlE;c=HT$)^f`3V7N$F^ycsIGwl!@Ke&$(NP?~t2P-#RFWuoA$w)v08Q7pI#<^ca zg<7S%+R>ln0yn#(!lq3qwU>(`duIS$ zMwAOV>|oJyrmWfSS^L4o9pSLik`wOvlXG9MsjX51<8Pg*a+|RaZS&UrW_AA=PeCAZ zpz@}8`JH$}6@udgBY?Ki2WO+e`{Qpc`s?Fdq#`cks&x#2YNny9f|KDV;BUOJ$aVTf zBl=>q1NGD@LTMc-AJ5%dc>7uFr=am9X)tbrhX5aZ+J>#|mfBzQo zdf!=v6bEpfDoJA);`)Pi0-+8sFZCIb5U~^w`tGU3Fp|{)caDhMVjuiff7o8&ygX;q z<)m%%P^-{d5RH-femqkt+hw2f%{FyszW72B9x*7a7DR5yKRKXDx7jI) zD~l{iBEwDw=X;JK?ON`<@|1k(gP(V1Lw~j}lPRGDqyWz7KlroZ{cm|UR2EoIkK-U} zgNDHGK^;E<-fBMqz_Y*c9{)pD`C5J5=%>>g5Ta~(E%X|yWWV9strB|fs$xY*CY)OC zf%tGLFX00Ux2En-2jtN623JXn^&JjLbLk08H^SEy=fOr)B)TLkS+b zqMNfy7dNjv-=N}Gg6p$PHn6qtTtN7?$JUReTumhwc9kiI=#%T(bh|`=^b)W zFpRzx z;23atnex~tW<|y|dBVWteP!k+@p_DPD86v75>n`OL%*P3vKa%7cd=;BDUS0_c=zyg zcXFEX1H zsv{f}M5|O_vh!-ctn$Rf0GveF(s|>6g)X^Zf;Ni z&SRy7&9Jx0QuIc#G6gM$Kq3|4@g9qIP_TZUJBPIdb0$5cZ4@M%8gb59@fAD;ekmT- zlcbHGIxkquYfVL%+4>2f`<`QuO14RsbTlzo+?T{t+~-OlsZ*sI6Ya!6G$KdJg_xn4 zSer1}(=1RMwRMm{2~(S$r}Tr3fSUwbxFLravGYk zo~*_P)ho9=zV?HwO3kZcd$&_-0$5Uod)K66tdDL8P4F)6puL~d?)B`qJ+8ism z(za&=N3O8E2NKFOSLA~kZ0)N-W3s{}gOhnv!gl@y+%O~7MvV@be5E&2Q@?`f1eUCJ zt&Rjo4v}^CnqQn$c}429Di3;BdW+a{4Dt zvg`X(_b}yw;Zcow4=V~wY!TFpK8b57@)$bfG>6ha6x?aFI$MvKIL|&y;<<@o7m}1{ zkIv?e1DxXrspx-4G#+lq&P%jcTY4ZqagB<+c}jlD%Yo8ZKJJvg(_fsTH$no?h&=yq z?^S;$cz4J(0=^yCxqqH9zxpTO?R=uNr!Tm`pw|?YKec=dJAz7iHL)*3B z__w)3r=-ckO16o_k*YEQ)$$ifR#DSX8tbK`Oa}{V(8W$nDl-lUbbvrSSif`ZriXe* z9SV#zIM&dn)G(r5Z5ATYEsP=&`ZB}W!ic0f1%sviP`z6}0ovxiA5q`zIXQh4z6)4$ znNOg1D4}Bx_P%AZWHTYy)Y zs!MVQi>elWsUIxt`n)~n(Bt;r6(%5yn3laa%gh*+l>MnvM_6T17i-Er(iUu#|JAmZ zXq;qJ)MiV$ZLIT#JrZZUsxW*%4jVT-(o)@}$<6MGINma5d!SkU;R4NH*A-~pqy=MT^mn62VI>5uDW=Ml;g|rWer&}4H-a|>;~Ah zQ!O7OB}8_#FpQDd#b5nJAFGYc(WBLa7CjEo&gV+QKdNxJ+m~z0{6&NnGiK3pFT%O> zRl?3y_#8#96s^ZcAk>3ks@mS#nCp68PpJ6qIbS%uw7a4`8>`ypFfS&ry$qBXN3c(z zQ}IktK1M&+F7sOPlCd0}1K0s##Jr3#O&@DV>bj?aO$1sJxQ&E5Xq>lw-C@Fe!;!9;qD2-ix(ydS8%?ZeDfD>V zZEnPUI64Pg%T%@DrkU5l+qaS8>`L_|F*D~i7{{B%%9F)2I@fR0{#Nw(TB46@8hIs- zEFE@#p8ffHh);f%JE0A)1cgJlD8S}0pAU%*o~^qXPqX;lGVe6>y=yXh47*SrLCN&A z^NU>Wg2QaJ=AB_zTkubq31N@GgI0l+yR4SS-7bf0->23v}1- zd?pYEIxwE%w6_>^$gcG1xw=t)G+LR`tW6y?C(%5ux}F;MVYtL_j<7T?B=S)QpICr> zL2yvF%RPuEMPruY?3!;EbI&K4m~Osw&^1#PmXBXs|5(G|%fW8215{3V(6~x8;kn}sJLoeq4aAw43S3~4sfqLROxR~9O_=G zMNW*axe!B^ZDDDG(}a%h3yDE|QbaPNcdp6<9A{=gHO#R@jF2%cc{g==TUxU|d#d|R zk;&8VdEX#%#K?jDh-ASZg%&3VY1=pEC&lkjgdD$)+6o(sC@PhuTvFZE!sFrAQWI6VJLz5mo-b+2RS*<)ASun-rm?@!C0UVAhvqTS5$(&(Q6 z+SR33TUIFb+O*Z)rcAOFwoxG?e4u28$(b(N+j4R4i-*z)s6F4hZeBu=QWMi=Sm>i3 zigkH2c6-5rFs|Cw#!UmOl}ceqxnie$qe8LMu9;n;$C=|PF^2K_OTwvk-9#4ITxlwbv!smQ0*d$U0kS@BZfLVI<$#;4*5yI!+w5y(QdC9Ty> zFKjw8?g=~ptkk+X-Ytk{dPH5H^4O-7NMH^1!dD4auqGbjMAp-YXhRI0(XMQop^d5^ z6UND5vOe>~B^$D6;}g8+)BYurG$CZ~uRK~TOJrrLB=Bh>a<$VK>dM%<^6p_ZsjyC} z)O8do@vI2IofnDwq2z)>B~Y?NHmW9d7zy z!wJ*JHgu*_!G*l2FIxP{W|Sobu4`ChViNnQe8X1Pvwgpk41YQF(3%pBFI+4Xcy}HK zt%C^6a7kZO9J%OoYj?HA2;R9XE0j%PCn(*^$tE^`p!Tm8C{@kyA4Ak!=Y{8L65A5? z^>WOeMkLq3%H{)Z>$AS~$0sS+YU5yEQJHfytqYXrPAVChd5|d`sL;MCV zX72Fn(#FaJMxZMt;o=ymlaT(ibG+Pd*m_>N-}m)Q=2!T>sqODMnG__=f4Nw{uw#bj zh&DB9B=H;LqLVUF_xtDJ`96CvcbC&a;$&iVB|>i%yv}+2L4wz<2~SGx3!GS{y9Z!= z{$Fe0QzE)n^wO|cetRB_ou=%*c=3ISf$d8$E(aS=h#=x7Yd#oyh{r}Pu{`rc{ zx#!#Sn($E+fpnf05vk50isb6cA8-9i$XuF!14XtcXA$SbhQB*5byntUX*3x-#pX0Q zj!JxgzHOGL60@CU*m-b1_gwWGv#%M63aX&_D(yhd1(m|s^@|aG5_^xLj`Qx618;HS zj|Y0!3x^rpucg|4-eTR?esWV*bjQ(*P|Oz02Z_%NrZRlAD9-mzG-f5WHJ-|GLn5MV=` z^3>5@H!kvz#-91Z7PZ#J|8Vibs@*c>Sg|9}fNPwysF(gy9yTTMhARgvwes*f`T%Lh zHF!E9yVo8CKPyn5xAfEQwn>bUpnnCpQT2Zqn|~?3U=Z`P`Z(<1*{|kCni|P1ujv&$ zb3AgNm%nk@^j{YJH-!H$ynxN~<~knRez&gWtWl_RN|b960u4kkLhxLU)(os!9ta(qHt7Fna+2*Z74Jrbh)nJEm9$MC)Bjf#s2-fgOMcjYv>W1t3h4+PSrw}E`U z$}ay#yZ@Ey?Ppr_I7tvuVoq7)GgpMQg$g*@4Q*umvduTyC)S8Npj5ey&<$l%q2|t* zMruWNt&LCBRNZW^Xns7p?ED~83OpHIZ-D#3Bz7>l%huFUy7*mShGHaoE_51#ltFaY zR}x3;7M#CVnmhv?P7l2Cnhosr@KT|SxAdRa$d(`2=Q3&%EgkiFLx;g^-u(&qtSRhy z5eIAtXa_Qm)oVV9jPwj|5ufmK+xrP%T%V4BXiO@|u|_yJ)k2Tkz7~JLg(;Zr0nYaP zt2X`*WcMTQk6*mJb0fTavCE%UYEs7;Ia-O(_~76;Es+w@QR(FgvU`!5V5hE8pK{1> zDPc;}Q_T>)Z0=C(CBXOE+(cvn?)X9LXzW8^*ZKw*lii)fuVO$KvitaO_;CF*SWh$P z8+6Mg%Vu3=n_CD96ykxwZFt1qb1zGN7)tj~7Zo}TST5UGd=vaT^I_S*(UaS)5@zat z8{BzmP~fGzE>NCb20F|4bRRiL(Q>L&1TeGnrPXLqHVQp{un7il@bZccgHInIH@FW` ze*35milvIPYda%PpNX~TKz;3#wl^4y?qmA$uK}IR;k`Z9q+z5QK>-IFtej5JTmrK{ z^e9Vi`M|NgmnC#uGfP(&pNr@Go_jms(WQjTCfj6flq_Z6I*SD_dT8#B5zETpV*EDK z{r$Bl3}avKV*df6M*igG-A6W^ljv8R>uYNza;%7#1Fo~Z{U3DwpQ@aRX$AFO{(S2w z+*@?R#z;dRK?(5Wdrd6{_i&tkk>51(?CMy+7+qC>Zaj5(N(OhA$`d51Cq;U%y2rjD zq3kChHg}*dyivQ&Y_ErurCtmf>E$1R$6l~l1#fz6MSWY0Sv<^Ko=K>Z`C#KJMuZXr zI>KQyr{5hYl0N}VS!<83d-(SraL&9?>JPZ%GFxwXZ9i+aYv|qEC>6l z3itHmQpKZZ&27j0ua!7@tYFHBseUu5#rL%gTKn>1985ar8(OO!up8!ah72m#=kH#k^NJ~{r_d;j2 z{k4>6n;Xs?SRh`EZ!i~&%^oN9c!D_v5nSzhLH=*_T9$%l;9-0D{dqqDqg#4up6jP} z9{I7lPu_*k(rjbG6ttgJXO<)5{f7NzOImu9uqSk{JEoyRG^*jl*(wXXVmlo8Y3?XL z2Ssj#GYU1xpG%LVYlx zx;&Q!V3k^Qn#1e`R-u|KX~ytK^}wsuI}JZhgj>O)IF^PwQcAZiywp>;JMW#SmOVLw zye>D13X}w<5eOo%MDA9-b5qW;y0>YX!EHSA(oBxJu3@=7PhIw3d*=0EPq2JleuD|O zrahL;k#%^X8O;g?7j=d^0U1Ky!A>SSl+NA3!}{SYGJoPTkjpb=mU2K*;HG!}UKie~ z2gNm@_F)=W7g@3P1|94h~oB=fXf3K|kcUCk?0K!>+r~FSYPnGkw zw*SK?gu)T9`gMCWLpxHX%auDXzb&d@aAcWrjgfrWqy08oU$9HqqZK?}Uu=Ef*S+pz z3Jvgu33snGUFE7Dfd)h(=?~b;HYvZ%;1@7m*>-)`w!Tr)s-;=yx*hGck`~>fzixrr z?-#_jjow^!IlT+U{!o8&$74M(znpir+&=&@Qcc;;?R<37*heO057iiJ`THj4%q->F zBS)=LmL{61IOCU!1-3uOXG6mLudF)Xt9^WED-0#p09^_u{DoBTP*7s;z=$npo@8r# zI>e3EuFUQ7teidhs){ndYz^5cjwcHWB^r( zspde$3+aq*M*}-+`hOqk^4prK>?&q^`Tci1Va8*P-+^CMhl4S({ZWA!KbA)-4k9+o@!&xW8d491VdFiEaZ01S~Ch-iIfxg|T(_h4AkPj~vH{XxX=cCJKCv-58@Sr*V#MwCSiOb}=O!hE$nsZAVK697Cb`4D z%K_$tb5*xgCAJ)n%hG-D$=}Io2H+Awva69hp`qr(EDARjANkCdhf7-K(nsiohrEv76H(9JVFj6D4m9nWk#8 zX6ZGQ{fijgi}?Q$rTvZaiq^>J+g_56` z+(W)6ZBoOW~NhRNh$vrxcQ zg$@fzZE9ntZ!9h&2~yp%li|Bs0y*oYWjK0;dE>WU=I*BDxqa&BuDWVJmsI$KRf``g#7)}!SkBu z|EN!O#SZXLp$E)nATE_itduIG0d=VdF4_ey@)%@ywVP1*(x0XsG#W16DeKQ`$=v&T zC^npObAbx0?_%FFALAvUJ>#9p5@SH#Sey!plrv~eR`;O;wqXae5r(Mv_)Un_je&=& zrp9+-QuB;7QKNYd`PniVV_XZTAHDR_2d$7#xd&L_OgG%L9plz?a}z>x4}n*AFqAx)J+sejiF2L0obN)hz+xz8O>0T_O^#5Ei*I3Gcd3v;JG{z8k0Ga>pWs) z>X#+Xf=izgf#KR>hWS{sPBO6Y^j=QKwpuTL7N;<;FkZ$Bl%#z>q31eX8`*2=skv>^ zW0MX$}aq~}DZeP+%^V(o^J>(uE1;}_vb#%sX4vqC2Ztt=M zBrK18?w@*eput?nLRAZ-@UQ7*zuo^}33 zE>?5O+b5EF!185Nja&WEww&PX#=aWXWZ#a&>(;rX6D`uomDuVq+c$6O96tR1KCUrB z6$UJ}4GdNRb@S|Ut(Uod`UyBU-B@F})#-=3$u8Ec>@3sGntUBmxdluU<6&E?R6 za<6y)RIziEf;#Za_?D;m6W}fjr)R8-FL|~-k!90HHRueiTPyn5qm#6$^kxF;Kk!4{ zBEN!eL-}&^W7o~$WPS!N#IT<40>f9_cFDK39~UYf?F`$l1kH_)gTO8pde=@@9#UDy zMA8XvJL_@dK(9u_#^$WYI4MBU!S?!1xkF7o`CY?~Ue|zxPooEbbHt+m?BYMJMIHl` ztb0EOzRb3HN;uQxb9{H&r(ZvP75Pn*_l)x&djCNEZwg&;QG1@808HhVOtbiz_85=jr@#Z>j|i6P0(5AJ^D&t1>a7YrYU?$ijseV9+5o^D)f5cXlc zpdhe4(D`As<~MDN)-Ij38Yl9{!Y3o@E2g6l-S??}0`BdW+S?Be=vqW{yf$^}xV^YY z@X+_%y95gq0t4Bo7xYfyLbI+1(=8IW2yNBxm(HRHkdt~0D+E^NQcw9b5>mW(;oi{oE$(_hJ1Z!Eo(10@NHQp%@Lw)`#VP~|!GUjL z9dLS_lZh4A&89Y)UJo;p;0y{+l*)`Qt;5RR%^#Vy0rwq#0t{+Zic_%u8=dhREep2u zCuhDg+&zVw#Z8MW?46{|G^rGaZPM2nd=M|^if6ugiZVNel+lwS=uaVKp>tN(PaC!| zw{L#uVc>gQZF_YUS4rZdz!;mFn!!|qVf&si)+AF`U_HTEpAmr-+m#&mJq51)N0WIU zmPL{`Gd4eP8MPi>oEF;po8cIlFM$gFW2VkmJ6RT}pgz=P_eUmD7~%y_Kb}G~ruY=IW6pc&cntcKfW=KJ?|s1jh&p&K56}n zx9DHqS~P0Y?M#khG~LgBYBJ$YnIrV5CYs3Gsjr0w&A2F5FtBy;p<$#*EP~MEy;=B` zMy}5IJ+UvTe4CfC@g50qh5euY4u4^si6-6et=-~ASVcUr@dXzat=oP2loHLCC4wlqNb~UPf8qoq{)Q85pB7E{&}f{YLQ~tPuA3Nb z@+-~*-)C+IKK~Z}>KCx?k05fH7Mb5Wso6S>ol>rU8DD?tv4{WIW2flCKZg9&&R>Sy z#?F+;U>Pi<=-v@Gnd+a<2vZB!cgZb?EhmwBqryIw#&}DPqJLztq}nDd$}7!qy^Wx| zd!f)P%aeKaz|w#90ToRDwOwymZb~k>(--feLGeB5`P(4KQJ$kH4&t1KP5 z(-+O11aC4QMy_96)VO$xYdpm;{zqhR*O|1h9LhHO1)9)Lb3M#&`db{T#0Skwj8aVQ zsT2HKF7K1RXd<4mf=Y$OoBl96%QMw~_6)`@Y5$ORe&Wjem($fkMqU(kUAYG!N^2tn zLkSj=TM}Lm6rQftU8V7RDbq^qEg`drv*nC4M)wNGzy=-xe{(R%KhaeP@^JiSm~&@d z_Whmw*>O?#L-jj5_e7d_@eV1D$JXbJ1bHn2vSfZx$t+%9sKyK~X(#nMC@dYf!tOm~ z?3u>axD9uyL!N4F&LerqOiQ1J`E8^$Ymik+H7lB78sxR6$3?9lE*xh(-N~5Zr;YVS zcR}Ggr2Ab@qN!lgDGZE}m`#XbOG#@_HI?xlyeJyQJih+Kb8umnW*N9qd|>~f)p6$!0zHCT4F2q3FWjcAt;?|7ePg>N*IR)zzx zMOi+q%Le!w1oPirx~3R+w`p=^B}`!qMU z;MiZRyEIkIKc-n_M?$+KVkU>?v9}kfi*gmVxOydg0ISur!sb$jtPZ0s>lSzODmv#y z`=b7li)MOH6?Zjm9X1K8$HVloh+rOR5ESa>pe`{UzED^z*{YfN@Nv^2&-*o`+KKC z=DuvRLPq0+*NgFj^+fe-{Zt*zwkE9px|;KX3B4%Z^!+j;W0VgobfT~WckV6o3K71h z^Gp+Tu+UkX{8AesqSRI0>*>#9vFY;oRm{tfh~IR1`t1x`HZuy3G@Et$3x+;s=qaGp-{%6pa>2ZG8u~UM&t=Mbf>md}5Nrm}=db@T6f__Oe4lMk=r%iqwnY z!}B+$C4Z)(#T%RM8|$B)4^rRqSgtj3zG)b0=IGl2LZ+I+g zUb>Gq%92fq(w}RAoR7QZWZC?wwq;{*Ue|6+eszIzZaGx_!B^W+$OKA2h|tS zVHX}B8aTJP?S-x=2&R`YtQW5{0qE_T{-cn0~F#Q?s6r|%^6zVo;*ZUdK!ms&0s zYnK^-?H8`S+*A|L7HHauGikax84&R-r3l*k5L2*}y{-V^ena`9N(Hpu`%J;~|7;2!S z@Bjt#2V3wFPteE|`}cZcKUya$82WVzGw&HjB8IfL1E4w;#VY z7^7L$7JQOXUS3w3na&0nsMr{IQD1P z%|LmHhp*d{w^`mjib(qd|1u%At)|@1Qu(I%<1ygO-9N>@{2gZfh~|GX`S6_^LZwAp z-U9&IZ~fEK=7qCV=jz_U`z7{tzPBD>rd|hz`G|>>XASd_N6+WR+&7E1ez5-pfCuUF zbQ6g;t42-OD3K474)xxYo6c^AKU;j|uOJR_MZS7h?X&I>pXbUNAE7!T?9+Q6H)3pB z0jejNi5H`KnRKh480L7?hDXK|gKk!kx7Jx?PqMkb3NoJQ>BzMtm!(p!<<&&r6e52I zP(&Zyj>34$pHCT|Db@G6NwJ%RIOQwL*S~m&*Va_j>|4OjBBwUF1*K9ku#dx#2zt#7 zD-!$TVs7%~PV@%a1KBl1Fz;Mwcar{k9tvKly?M3^$ehCw?3~iD+C|406|Dt4=`}PC z=>MywyE7(v4eSNPHXhr#Gdz7{+k5acviQm##AW3ZJ9XU zn3YP@*ly0h!j93Mp2JusqFSsk<;TUjaMi(NohsFw^-3Qxq2|~cjdpVz=djTP%kP{U z@U|VL<+E>djOO(;p0emfPnjBZ`GQSoME!N-xkcvZQ}u~23Zg-TfQ?FjU-#vx!)!`b zm2;BqjdTs2_r=9UaAtmBn|9c(8qev&l_S{VEI&3G(bW`ue`ti;!4A&txA%Ok1gEiE zLc@o?;d=w0#zJAWU4`{q1U@kc4^HUs=G%VoX}>fc4{?=gQDpV)tsc9#?C>ZRL*rqR zM<)U+Gp^_aK$PM;MV6N^#(xV~#?#?oP_F9)L$o-Gg^ zMyk89Z*2Vo(BGOu?eD^Zk|ms^*ZX~yZFM@GAjc`ZYRaCyafu~|(u_9O>e3z$;i_V- zk2N%DL`Bu;F%E4a3SIik>b5+gCy^f%i(JOPJQy~dkaO~Jf<+ed&f}W($pWm23C7UF zvzz%BA2HW=TM&tbD0F!=>$q0L-c2#qx-c5G7S%Xi5npW#U-qYlf)(n#moq+Tv@0?2 zD64E2s^-IZi#T@i<0=%0ZWEHwgYf0*V%F<^Yd?U2ZtlkzM?Gbe9|^X|LXiMcbE zjge8YY%RsHu@&HY9h(8&nq-N(4)>-PJ~R#n+6_dV06!rQSopB=1*U*XydzRGV7^I8VZXjwS!O!feFW->vom)M@z<@QjgG=QOo8UGLR2l zj$E$GRP8grR;feO7M{U(!)8$sNJ#F2lCDewR%V(+;6KHiONy-N7Sr^Jx~~JxG%O`q z>hVZ*g+s(hdlSw(6~>O76jNWV-!I_vk{tI2DcCr9vqW?>WQjBsps}@l8O|2Q@JK5& zscHUPEop+tU54tG2YhK5zJj9^pt*xhngTjJZLKt-ROWYd>*GEdjc7NhblCm{)?!)F zt{j`3g1bN+eCIVz-)0*`7L^QRwrbis5YKNz*Z;fs^YTuDGkyh6M!0yloG^L{XT1uu zy4iQgqeQ+p6+UnBG1R3gL6O_pdn8*LXXlW!r(~HZku$Y8lAP*+Wj>znnucMS`Pxy3 zm)&UW2|D|+uc@Voa5HQ|#&8}+DJe(Q?Fssam_e+GU7Sr{RC~I^Cz-bKo>=Z|q}Gwb zFexD<>4Z(MIx0%tdU%@0K(@xebzp)jeqsTc7{J6a*f5>O+4b?BYB5%?E%Gv_xr!KuC;Bt| zxatH^A}pbj7w&{?iWerVoXbt}M~zE8d6#I>f!dyVkWCU?28Q-^F4S`C;KZ6H5jiNR zejOH8&qq{#P3QfDG}+R}&MX?1ta4`4%hpX+Aj z3?xI@;deBeZ{$9acK-AGZS%@C(UNL(z-r~o`VeJph_8IP)`Ka}cMi3fQMTb>cx)0O z$6O8e;H3!uCqNTi810v#`Xh}f|Cf-MQ|~#kF9+S)rTthrM@=4O#47ox`oR~$V2097fn@5-T7B&j-&wZFfsJaF-G0~7Fq>eX>-y$IW581Qi;0T3r_z1^%l_&RU2B@ zHMz;TE5N)7mB6U`awC!K7k5&pL@w>%P(b2B5mR6F0zEDouie)*u9t0dcI5*ePOgg@-e(`uZFSAfzfL^8spfz*<+a= zKSm{yt@4}Avk0{JjPSeiNqBKlQFyXmXKfb@ztX3L`V7CvzRLL}nbCzy3^K`xzROl? zVi)vCi&NrtnjZY6MHyEEF@(-Gv5HqN|8(OI7OCFJ4oi(fd-;-Pkf#8Ctah6$axYnB zqM5XFz2RB~s0I%O0~v0vln8iBjqs^7 zgl*+~x(8+xW=rc4xzey%KIM7E5E9t_Hgq0U4li&?!1|8}i6H8Q)U9Qj^v?3&I4q+v zrH@S%#c@IHJy#pUW1!ZqN4$&OnK3xSP*mK5Rdb(eJcKw{1LDI?N7^zh?p1vL_UVdJ zrpjv`4f~)E+Kvm9-hdJ{L05Mrs2U{Oy3)TA)nS2TE)~`njEX2ziAf##QDp2uBr+34 z4L@Bsh9>ihRI0R`KO);!PZ>392C1PgCC&0`N-O1!ILtp%L9NbQ9qqf5PhOEbXKEBZ z!;)V0yScQhnA*K5Ycq0_BST45T zx0QPY;vT>QxJQ{UVlL@^p3veoW5{Bq%lmko8m$>pm}+Jbh17Y(ksQ^J3B1221rEEZ z)=P47Ek6_!fpvBC2`xdQ6Cm*lA9y1;mE$ zI%;431o%kh!i3z55I&NcRZ9ekr4_<9oLEq@(4J|`psQ-cu&J%Z$6KO#aS#G|AtVfB z#6o@pA~Pavj&w1|g>eT(l!giWyW^KW73@*nvRKNJ)?G%ef&KvB=Nl(?oGXt`UoI3d{#ybyV7IL$9z*VlVuGi%zwW`=#*S#OIa*dB7xO;oSLUrv`71dn zjhXay)D!Izb8PjCtyzjz%$)7R(aqWdxyYH7R{4aJDXsqYs85m%`Qto<&{UL&+Cbq; z5?EU10pF{HIRb3HMVB9FvwPFCSzA$u$FiIm`&fCF1zDZxW9i3Mb+#WCwPG}fchL3I zq`$IuQhYvL*d-MrVbcl|W-WS=%FS#mUJ$5^U<6Ln;=$!>n{OZZG3L)NLo z=VJBP^A?JI&?bCeg`}_#1A&_pJzPbW$t_I|jpBs&`Bp_U*$?w|(ZVm0Jo^CzjwNtN z7T@*~1Z$N5-L$sgb=~>ad9A=p+fKD(H>c9;W{ZeJrVztCH%x%jT4*N6hY#+ml-O{s zK82M{UEO*$Wok&Ft9nvKub{5u5jen+>t<11v2Q&ocb=c;SSjH(of{OF5a}5MWe-yxLvL@c~J)UV;r^w#SLnwaUho z-syy)Y04W`VqTFi2kyCUBQH-ZTR;nwK;fNpK~4tP2EuSHy)Ow%z@oum!H&Dbwjf-x z^{%srrjyi;rM;^@FR!OFeE|Mu18qDB+9}2M(p9fjnmBLL1&tvbVZ#$8(Hb>dw#ZpM z0e0o9;6{apbuTc5Ulc7-qTw{oP&U)~%qJ^Yt@;25k^JFW3 z&#T{)by#vb3$c&-c$BuH$Xg1ls`|Ztikkf`XcZEdjW&%z`lKBYyr{Cz3N_eZr^or%Dp8T6z zP`Ai?j)y#i?%Ai!?n-6sU0+YqI^8|3$2wMJ*7T08yuNz<1YAVbUh|l-Xciyq#VPcy zmaiwn>}@`iBpf|g3*C@4f*GO7IWkGps*Dz>6PRjJ^hm-1gHS-`P@vAr z+zzyz&fxdX59j?GjFH-E5!2P_So=hop>tWyTnli z)-KaLE|!-|Q*Nij+lJ){DrfVi-7y}rjCObdTlw(Tl)3MDj*Q$~eUGJP?aJ&y8r|DM zHLU#FQSpWoV!WHVmgt~qlY7g@aI}7WIhi0gQJpuCYD8g-j9P=0NA>8Am%U$F%=d~K zTJZV8(}krBXJv+Q2}~oR(IzINNAf_LBgH4cgA|iT86sOZP!-!C9^V6X)34eqLPk>_ z_ePK+ch2}fNf_EOXpT_5)Hni_obpMAxa(Xx`g9?>#VcQ=(@v}yb(b zMP#R7%ZT{xford9{Qc08WK#p(+6dy{evMxt$uPAr}6Q^FN?sYyv*G z@$}wNh|e2f6)a6H9HCxS{GrdzaKZJrlZflxq9}B&-@vCU%?PN&5Z0y12{oro*mGi>L24|9o%X zzrBSoSR;MO`>{U;=}^yG#?ycg4%~d5<1=~?52St7Xj~&WoRHf%lFi-B05TyT_^1JD z-g8tMdEqe0*?n;JmG*>I(o@ChE2QLiOKB#YJx>+gP@6nHZ>X3J~0_KM#bS)J7o6M6Z; zvBn*L(BV zH?!xPZ|^;O)|%O~e>-q9$N*p91RKH-D_}+guZ*m^vxX3q22JV%le@*w;d)}T!o1H@ z3~g&J%=w#F6DC~^QT;EqFtc!IV8AKLlYu;`_Q@FZ?b>ptJdrfcDP?sJs=^F?zXENZ zgvaatFu~?wV&P56E)V=wuvS-~$Nd)-?ipcAF#*kZl>|qiv>q%bab#AYELOeGy|v9q z7|t5GTasH|8)q*rd{loQ%A0G$zysABN=4>xowML+_Eo0W8c0Il@GeRlOwHsOd$9@; zd6(n?4YfdFBy9)sL_$QoZgE&3(`_^y_0zga(6Eud2ksYV3Asa(Z<#U+-bRLJEe7yA zH!fhL3RR+gLPQY$b_ZMjum;wZ$23#NTHZF0gYyE8eoh3*Hx?o5Us_d7D!6-p$HaMY z1WXEVw#)PMKRV4*fj72x97-BwUAGeQ_aud8Q;B!1&?cbfBk#}V8nAZSI_)QYcAgoEd;vxgr&gNJjm#TMsJh=g3P z>(l9G;B1;?@Hqqwgybl5{8$@8@>^eia6Di~f;mcYOy8LuU4H`Kt85%+OLF(w6VmNd zQ!@{7W+L!X&+A4a&SH76dowd{hvbk80Vud`P6^H4XVXy_5XVx9s}ben`Gi$9|{#^455$A2asY{MdG0GO0<9X#plGZ=|R!5GGdkii9W5CYM zNeCEW$QD3#-||u+Wb{Ja_{YqSvEFqLC|@x$MyHwwX=%f?qQ3)y^xx-a4a*U@*l!ez z0keQT*2OOV{eFRl9!a+KY;2lDqG|_k7s_{iBASz1J^l!2xxa2<9oIRoofFQ6OvMCp z?jj+Jz8nq0g>4X1>247`B+ATQ_YKHX55jE*8S1fu2*`olq;UAN!Fm{`AVa8iDEWrO z$}+LCjBroo?)LLhRqLc?9^$p)-VAU+30a=DMcPt-aSwPM;Ed7t<>Ft-`E2DnDg2IZ zn{_D2W2!UH)Gh@q##Zpk>l^O%I4F?2LJc7?9&q)&t6@EV$AvMB4=K`g*$O??uw#{6#Uf8_Hp?`|$78373>gDe`I|+Sx z`GBQVW8L2ryy0Gkgjf%S@3T9O*aarHcCB_oTV_+{m*Z!M!49F`4j|XLRun04Dn3Bk z9%XB+-7JPHAXIg`6fjGSMq!dIaJPx)ii%9_Q1P>#= zg8SsMNq|3Dc6RM5eIJ&=g~eGwDy(AqOcz8{D1vmqgWmP%4~#|$27%RHJP3#9glcR? zgCstA1)?f*vjQ3!h-EsPjl_Bb4R@r|4nJtNjIXM;-~NNqrYEuThwH;kU1bv_XvAbQ zkpIRJw9=f6v@%nN4wIm+FssPLAcE;3fGf_`5F?K1hH#QiUP>JT&JcO*bSIWM>g9&d zgR&dAbvime<#0pw_(*v*MR8_jrsz^2*M-&dQe?AO#C9dgv3l_!n>8kKS;~qmo#4`= z#jdy}KPveurCeLnDuP3*!{{asY6I#ZIwy)pkbbGGR;OuFkW99IB^mLwW*s1d!`=csWjWF8`axzJ3H;jGA* zNSRKyTIuix&C->+^ZkYM2(h;i;HBH~i-gE|GmkuljPDK2KEr7fu)>LFt%5cDX`pk8 z#3(GUe`%Ulnzpv8EWr)zYguH+7Y4ms48zH<5lW(!n6Ek86JIoSds+6}eorwSvfr>q z87z&xhUcoljNJL>z^aKyxxh<9cn$b?yTDmo!(RK_v^mz>vD9!P)kLX1BC+nuAYtS9mu5PqegQ4&z_S%%IN z2WaB7K#ahe=(mjpEhKzQQCf0p>X-t{hv!v_LyZ#IEEUp;IQo}vi4ON}k@L*b_uwM= z^9@4sX67IQMGYyP{0^h$j;}zYacEqAzh)-NtW}z)Qa!^-s!zQz&Cu|QPVAG!C}urZ zD@YoR10hS&PuegR_E`bea`QgyGK09-4q z83+O9;#8R3r7ihSIvwTQ4N*P!Z-nb6oc|wzT<-pUD6~~|*upy`(b71s`l8Je|Qf#`%gp ztyL|GIY{su(C>%Kb%Cv3PU%Z4+e17aKg4wgIM=58m4@f{FG=dn_1J#&d5MixvK?(S z@f|LE_i*BS5m_8&_7nVjZ1$B-1Bd-jJTHCPH+gOPVXE#m`u?X4;7#A3(OyoWP2w-e z@SVXWflncP9^KiwA9BsAi=yPJ*MTYBe6O*F)U044!ugiDS{V#53vlQ3S~j+G&N+K%TU*VA6fKQ9{9 zH`6aGb=+zqOxDW`eLpK!Z_qk4W1UB*$U;S3QPUNxRR@PML4D~ zz+UE2B+n=AnaerVUx#eEUK79QH)+4*Zd5d^#77w7&wFGe%9Oq*_iixcef1d4u&wiE zXwB&0YUOAvyrc%IvUpHpU?J=Ayp1(o3pdvcePI{_bu3Lq_17cYKejpHcIAJjj2T!` zofkj-Oi9a7d}Q3dMWoPtJc5w#|3iG=@fWe)fgZ-AY8~;=Bgl9O`=a>2(QMOPo7mEy z(CiZr^58O-J5ntr%6+v3;acTcoV*~>-aE3I`cro5N3iq3f5Y16hCEJ%8NqeBQSz~L zVVO&QkU&w9xJ5%l4YqIc@Y?ZWo>9EjO6t0_I{1eH#3y<^Q~V|?d-5&@@u~MTC7G0T zHKFDo(0V6*odO`*R_)S7&yq@Ee}B&>*4*(&W&VG94vr2S3k3pLbX#FxwdLFrIGkhu z6{6qw&xrm-iHoyxl6pQ{fy-!_Qyue)<&$~}W^V_bH*tBMAwMYKed;}z@j=C(N*tdb zt6BTaF~50}O=j6AS)pV<^)_1;%dd`A{LP)y1ti^n8TSHzxI-)%=T3#zk<{d#2h!(Q zJ1FvAz;dz{jY$K8m$sLD2W2{*npC{*zLhOHs4ER?Vj62Q%1JBPPq_BKrvbxnrX1Oq z;Miu)vJ9g zh#KtaereX2Wi=-?)QWHR(4zk#b^V=-Ow3tP62$<|1Xr((u_EyB;lh*EU!OI@McY{- zoKjedT{;2uqHlf)fIn8|Uwr-hiu7wo4Bo%D{YO{(k0$-4UjNb6&YJSvQ);f9=IJYx z3K8sCS{KoJjL*x@9jwSF9Tg+{&e!5L?1k;sLunFJMB*ILtEG2*0cVRk1hV(Zm8QdH zuRe0mCER>~pcH))G2KABKKwr~)8|{dlxWA&Gwu+48KTDy``BEp_CyBgomhZLjRrQL zJ)EqjgLAyVvzeCpBn;%@^zVH|vfQi9-@DO#{hP5_i7SO4SgjlY=nZy)}rWndq#9|+bCkz`&hsKm_6 z_J;fRr8zJy=VUkbl?r>5ZRNH_(?n)Eq}>ap(oM(D6-|N?TG3?}vVQcj7Ih3%TPw;4 zZt^0^)H$rWTgr;G3T-w9jYa56jR)!G_R{_cHmvO{_XQ$fTmGc~wG&tVZFPU0aP0)g zhf>CSj6n3|SL-nbb{9UD?rSi4l%$xN@@srFWnyg_S1A2lb_gg^VQo}C8Hl=bp9D#s zprg}iBV3y^*XQsh801-77=)p5KT&a)0&tO#xk-RQ**5uyZ)$ue;0wa0Iv?62~#tSy-n8?#@yR;e*F+dncR8)|d z!mdR9OrDBMFc!G?=B>BXgsue1w^t7j--n531vUs8L5@H8VEokBm=JP`NV^<7Jxd1h z9rUG))CCtZ5f6AFk1mBso%MNf=MW$n8+(J*nQ5cX`Cw0+48peTS9`9_?Jq|xbEXTM zAnfOA(aHLaCDF=|w4075!zC43whn}J9@*UBh@;Ysm7D_2n;;=WJpr4t3$RU1K{F^ zfXibVL&R$54&FC-CYjOcg5;=t@tk*Mi2nD9SE-F_#m5ruZR+vaJ0b)@d05MnwUz;; z4qpa_?kQOxtb2_F?R>R9zmAqlkgM%m?I*1)t0VY=@J;~Dz^yA z9oo}0y|2H-%ga7wTGPmm5Zd`X?~C~I$ZmVr$dTG^SZDfCS={TWyFxLXezRxWhJ7N$ z{_e=}Y1-X&>Lryg`zOk6xmwFD6uX5nt`5Z+vDqHCOyiMF!2VIs@>TdgjG`qrh{L+X zBPpWL*7n!4Q^_qA!vi@ji-41*zsA?UF`!|v19K^?E^t|=r958F)t1hF{`9PzkloZy zn|kcJ^ao(J-WN^LJsDNya|h{zV_dc0~t_+dsp_SIM1J=rC{y!UzC69WT}jRfB`~i<0xf8^AI8 zhrb#~@0etTraY>sD(#q}eWXZauh1@CoFhNf;CW#sTAVBGl1zc>kk~WSeA(kwEZv@s167ho z%;gYZO}hd7lF7+8)7LP$jO)RB``>?%|Ka*bTi}WYM@z|Zcel&#W~u=UFbu`Uv6XYl z;sO+LGnht0LqTvtUY}n=LSFmIuUh~8!HN03Q!3TSWE^8K(!66kw|Z?)X1-=H* z;5&c5Z<-Y*rqsm-)fbZTY(SR$Lx3^H)a-4@q~mY`bunuv9Qop;Q*on8hz3=q_WDHl z`O1)4)$oLc6%KYzsVA7NFsRd=JQIx@G;KHjei;06=IOpYEaEKo=Iz1+<=NvwN95f-Z{Om zY0j^{phQq^ktn*D=1aP`E*D9(SO1v!HH%_AO7EzPs?YLx2aH7Q7{-`0XZqA3Vap&=hGg!nL{LZM2_xI>N z`!e~_1{g{t{2Z3I!v)WD)SaIvXt>{}EQ^A~p9eWvM^xaI>P=M4()4<~ZKI;BSoH)1 zkGKxRn!eQAr#1>=UP3;AXvmk7rUE=qi`npW_w~oAN42#DiDNZM$>SGJQ-P3xN zPlts$`q`qR+%3nMCKjB`0ml-4uj1bxt8En1aNZ^}+YybC6ZCy7p)UL&w$-jG=CNU^ zl4uMavBv>%lj&)#FtE}O-cdHnZ|?H4Jr13Ys0(?jkXI@`C&fwB&roo84%ps`K@PEK zz>jqoQ5FQD_h!KBwD5^KRMltjm!oz?N8O58*6#99zxiw9FVPNHMBKCrt$^)WdXG~!5Ied%c^#~|$0+?k0mnWW6)-jkBw$dJ;vAfS- zZp8QFR${_D31)l9&Y0I+dOK&N*Um`jvnQ4oaedZ0 zG+iyIwSyJ_Ubahyp^Pdq%_3WK_aw;fjgbys@&HO;hH)LZQnjf>ehEL!PhHZk*@UE;k zf*jAGO*Ak=FRkqsV7I%Ykj%Xacjt=cT;+gyUf_wund&m-4~%0v!qYWITndk{`#-&I z0C!;<^G}WJvG-%)(#GH{wwu&s^BhXj?YObqaoxyrv2A@vAXmI~PFb~3VNrqb+~8n~ zE1zr(KGzJPXh1nb;NjsY)0>Rq;Q>x;OWb2P3nHfVIc-$qYPPFQGJjhmyDg8R&WClj zbQaK?%vw!;cC4?b6#?EkQ=eMUn2?pdrAv25rm>Qutr>!J+iUQu1$do(>c z%mx*9@SGz8!R`I^@nj^|R2cf Date: Mon, 17 Jul 2023 12:38:57 -0400 Subject: [PATCH 07/11] Apply suggestions from code review Co-authored-by: Melissa Vagi Signed-off-by: kolchfa-aws <105444904+kolchfa-aws@users.noreply.github.com> --- _search-plugins/knn/filter-search-knn.md | 10 +++++----- 1 file changed, 5 insertions(+), 5 deletions(-) diff --git a/_search-plugins/knn/filter-search-knn.md b/_search-plugins/knn/filter-search-knn.md index ab002a7d68..ce72fbc169 100644 --- a/_search-plugins/knn/filter-search-knn.md +++ b/_search-plugins/knn/filter-search-knn.md @@ -13,11 +13,11 @@ To refine k-NN results, you can filter a k-NN search using one of the following - [Efficient k-NN filtering](#efficient-k-nn-filtering): This approach applies filtering _during_ the k-NN search, as opposed to before or after the k-NN search, which ensures that `k` results are returned (if there are at least `k` results in total). This approach is supported by the following engines: - Lucene engine with a Hierarchical Navigable Small World (HNSW) algorithm (k-NN plugin versions 2.4 and later) - - Faiss engine with a Hierarchical Navigable Small World (HNSW) algorithm (k-NN plugin versions 2.9 or later) + - Faiss engine with a HNSW algorithm (k-NN plugin versions 2.9 or later) - [Post filtering](#post-filtering): Because it is performed after the k-NN search, this approach may return significantly fewer than `k` results for a restrictive filter. - [Boolean post filter](#boolean-filter-with-ann-search): This approach runs an [approximate nearest neighbor (ANN)]({{site.url}}{{site.baseurl}}/search-plugins/knn/approximate-knn/) search and then applies a filter to the results. The two query parts are executed independently and then the results are combined based on the query operator (`should`, `must`, and so on) provided in the query. - - [The `post_filter` parameter](#post-filter-parameter): This approach runs an [approximate nearest neighbor (ANN)]({{site.url}}{{site.baseurl}}/search-plugins/knn/approximate-knn/) on the full dataset and then applies the filter to k-NN results. + - [The `post_filter` parameter](#post-filter-parameter): This approach runs an [ANN]({{site.url}}{{site.baseurl}}/search-plugins/knn/approximate-knn/) on the full dataset and then applies the filter to k-NN results. - [Scoring script filter](#scoring-script-filter): This approach involves pre-filtering a document set and then running an exact k-NN search on the filtered subset. It may have high latency and does not scale for large filtered subsets. @@ -275,7 +275,7 @@ The following flow chart outlines the Faiss algorithm. ### Using a Faiss efficient filter -Consider an index that holds information about shirts for a clothing store. You want to find the top rated shirts that are similar to the one you have but would like to restrict the results by shirt size. +Consider an index that holds information about shirts for a clothing store. You want to find the top-rated shirts that are similar to the one you have but would like to restrict the results by shirt size. In this example, you will create an index and search for shirts that are similar to the shirt you provide. @@ -625,7 +625,7 @@ The response includes documents containing the matching hotels: ### Post filter parameter -If you use the `knn` query alongside filters or other clauses (e.g. `bool`, `must`, `match`), you might receive fewer than `k` results. In this example, `post_filter` reduces the number of results from 2 to 1: +If you use the `knn` query alongside filters or other clauses (for example, `bool`, `must`, `match`), you might receive fewer than `k` results. In this example, `post_filter` reduces the number of results from 2 to 1: ```json GET my-knn-index-1/_search @@ -652,7 +652,7 @@ GET my-knn-index-1/_search ## Scoring script filter -A scoring script filter first filters the documents and then uses a brute-force exact k-NN search on the results. For example, the following query searches for hotels with a rating between 8 and 10, inclusive, that provide parking and then performs a k-NN search to return the 3 hotels that are closest to the specified `location`: +A scoring script filter first filters the documents and then uses a brute-force exact k-NN search on the results. For example, the following query searches for hotels with a rating between 8 and 10, inclusive, that provide parking and then performs a k-NN search to return the three hotels that are closest to the specified `location`: ```json POST /hotels-index/_search From 5ee7ccc6a78eed9e2a30d3aa31f8b43e2ec3d48c Mon Sep 17 00:00:00 2001 From: kolchfa-aws <105444904+kolchfa-aws@users.noreply.github.com> Date: Tue, 18 Jul 2023 10:25:41 -0400 Subject: [PATCH 08/11] Apply suggestions from code review Co-authored-by: Nathan Bower Signed-off-by: kolchfa-aws <105444904+kolchfa-aws@users.noreply.github.com> --- _search-plugins/knn/filter-search-knn.md | 6 +++--- 1 file changed, 3 insertions(+), 3 deletions(-) diff --git a/_search-plugins/knn/filter-search-knn.md b/_search-plugins/knn/filter-search-knn.md index ce72fbc169..c300b06367 100644 --- a/_search-plugins/knn/filter-search-knn.md +++ b/_search-plugins/knn/filter-search-knn.md @@ -13,11 +13,11 @@ To refine k-NN results, you can filter a k-NN search using one of the following - [Efficient k-NN filtering](#efficient-k-nn-filtering): This approach applies filtering _during_ the k-NN search, as opposed to before or after the k-NN search, which ensures that `k` results are returned (if there are at least `k` results in total). This approach is supported by the following engines: - Lucene engine with a Hierarchical Navigable Small World (HNSW) algorithm (k-NN plugin versions 2.4 and later) - - Faiss engine with a HNSW algorithm (k-NN plugin versions 2.9 or later) + - Faiss engine with an HNSW algorithm (k-NN plugin versions 2.9 or later) - [Post filtering](#post-filtering): Because it is performed after the k-NN search, this approach may return significantly fewer than `k` results for a restrictive filter. - [Boolean post filter](#boolean-filter-with-ann-search): This approach runs an [approximate nearest neighbor (ANN)]({{site.url}}{{site.baseurl}}/search-plugins/knn/approximate-knn/) search and then applies a filter to the results. The two query parts are executed independently and then the results are combined based on the query operator (`should`, `must`, and so on) provided in the query. - - [The `post_filter` parameter](#post-filter-parameter): This approach runs an [ANN]({{site.url}}{{site.baseurl}}/search-plugins/knn/approximate-knn/) on the full dataset and then applies the filter to k-NN results. + - [The `post_filter` parameter](#post-filter-parameter): This approach runs an [ANN]({{site.url}}{{site.baseurl}}/search-plugins/knn/approximate-knn/) search on the full dataset and then applies the filter to k-NN results. - [Scoring script filter](#scoring-script-filter): This approach involves pre-filtering a document set and then running an exact k-NN search on the filtered subset. It may have high latency and does not scale for large filtered subsets. @@ -652,7 +652,7 @@ GET my-knn-index-1/_search ## Scoring script filter -A scoring script filter first filters the documents and then uses a brute-force exact k-NN search on the results. For example, the following query searches for hotels with a rating between 8 and 10, inclusive, that provide parking and then performs a k-NN search to return the three hotels that are closest to the specified `location`: +A scoring script filter first filters the documents and then uses a brute-force exact k-NN search on the results. For example, the following query searches for hotels with a rating between 8 and 10, inclusive, that provide parking and then performs a k-NN search to return the 3 hotels that are closest to the specified `location`: ```json POST /hotels-index/_search From 0b0779a8569539fa6eea6ebf49f5a0ca09109076 Mon Sep 17 00:00:00 2001 From: kolchfa-aws <105444904+kolchfa-aws@users.noreply.github.com> Date: Tue, 18 Jul 2023 10:29:12 -0400 Subject: [PATCH 09/11] Update _search-plugins/knn/filter-search-knn.md Co-authored-by: Nathan Bower Signed-off-by: kolchfa-aws <105444904+kolchfa-aws@users.noreply.github.com> --- _search-plugins/knn/filter-search-knn.md | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/_search-plugins/knn/filter-search-knn.md b/_search-plugins/knn/filter-search-knn.md index c300b06367..9f7b2653bc 100644 --- a/_search-plugins/knn/filter-search-knn.md +++ b/_search-plugins/knn/filter-search-knn.md @@ -16,7 +16,7 @@ To refine k-NN results, you can filter a k-NN search using one of the following - Faiss engine with an HNSW algorithm (k-NN plugin versions 2.9 or later) - [Post filtering](#post-filtering): Because it is performed after the k-NN search, this approach may return significantly fewer than `k` results for a restrictive filter. - - [Boolean post filter](#boolean-filter-with-ann-search): This approach runs an [approximate nearest neighbor (ANN)]({{site.url}}{{site.baseurl}}/search-plugins/knn/approximate-knn/) search and then applies a filter to the results. The two query parts are executed independently and then the results are combined based on the query operator (`should`, `must`, and so on) provided in the query. + - [Boolean post filter](#boolean-filter-with-ann-search): This approach runs an [approximate nearest neighbor (ANN)]({{site.url}}{{site.baseurl}}/search-plugins/knn/approximate-knn/) search and then applies a filter to the results. The two query parts are executed independently, and then the results are combined based on the query operator (`should`, `must`, and so on) provided in the query. - [The `post_filter` parameter](#post-filter-parameter): This approach runs an [ANN]({{site.url}}{{site.baseurl}}/search-plugins/knn/approximate-knn/) search on the full dataset and then applies the filter to k-NN results. - [Scoring script filter](#scoring-script-filter): This approach involves pre-filtering a document set and then running an exact k-NN search on the filtered subset. It may have high latency and does not scale for large filtered subsets. From 85375ee26d812090c2989e598e5bd58bb13da8e0 Mon Sep 17 00:00:00 2001 From: Fanit Kolchina Date: Tue, 18 Jul 2023 10:35:22 -0400 Subject: [PATCH 10/11] Implemented editorial comments Signed-off-by: Fanit Kolchina --- _search-plugins/knn/filter-search-knn.md | 16 ++++++++-------- 1 file changed, 8 insertions(+), 8 deletions(-) diff --git a/_search-plugins/knn/filter-search-knn.md b/_search-plugins/knn/filter-search-knn.md index 9f7b2653bc..f0a407db17 100644 --- a/_search-plugins/knn/filter-search-knn.md +++ b/_search-plugins/knn/filter-search-knn.md @@ -15,11 +15,11 @@ To refine k-NN results, you can filter a k-NN search using one of the following - Lucene engine with a Hierarchical Navigable Small World (HNSW) algorithm (k-NN plugin versions 2.4 and later) - Faiss engine with an HNSW algorithm (k-NN plugin versions 2.9 or later) -- [Post filtering](#post-filtering): Because it is performed after the k-NN search, this approach may return significantly fewer than `k` results for a restrictive filter. - - [Boolean post filter](#boolean-filter-with-ann-search): This approach runs an [approximate nearest neighbor (ANN)]({{site.url}}{{site.baseurl}}/search-plugins/knn/approximate-knn/) search and then applies a filter to the results. The two query parts are executed independently, and then the results are combined based on the query operator (`should`, `must`, and so on) provided in the query. - - [The `post_filter` parameter](#post-filter-parameter): This approach runs an [ANN]({{site.url}}{{site.baseurl}}/search-plugins/knn/approximate-knn/) search on the full dataset and then applies the filter to k-NN results. +- [Post-filtering](#post-filtering): Because it is performed after the k-NN search, this approach may return significantly fewer than `k` results for a restrictive filter. You can use the following two filtering strategies for this approach: + - [Boolean post-filter](#boolean-filter-with-ann-search): This approach runs an [approximate nearest neighbor (ANN)]({{site.url}}{{site.baseurl}}/search-plugins/knn/approximate-knn/) search and then applies a filter to the results. The two query parts are executed independently, and then the results are combined based on the query operator (`should`, `must`, and so on) provided in the query. + - [The `post_filter` parameter](#post-filter-parameter): This approach runs an [ANN]({{site.url}}{{site.baseurl}}/search-plugins/knn/approximate-knn/) search on the full dataset and then applies the filter to the k-NN results. -- [Scoring script filter](#scoring-script-filter): This approach involves pre-filtering a document set and then running an exact k-NN search on the filtered subset. It may have high latency and does not scale for large filtered subsets. +- [Scoring script filter](#scoring-script-filter): This approach involves pre-filtering a document set and then running an exact k-NN search on the filtered subset. It may have high latency and does not scale when filtered subsets are large. The following table summarizes the preceding filtering use cases. @@ -275,7 +275,7 @@ The following flow chart outlines the Faiss algorithm. ### Using a Faiss efficient filter -Consider an index that holds information about shirts for a clothing store. You want to find the top-rated shirts that are similar to the one you have but would like to restrict the results by shirt size. +Consider an index that holds information about different shirts for an e-commerce application. You want to find the top-rated shirts that are similar to the one you already have but would like to restrict the results by shirt size. In this example, you will create an index and search for shirts that are similar to the shirt you provide. @@ -509,9 +509,9 @@ POST /hotels-index/_search ``` {% include copy-curl.html %} -## Post filtering +## Post-filtering -You can achieve post filtering with a Boolean filter or by providing the `post_filter` parameter. +You can achieve post-filtering with a Boolean filter or by providing the `post_filter` parameter. ### Boolean filter with ANN search @@ -623,7 +623,7 @@ The response includes documents containing the matching hotels: } ``` -### Post filter parameter +### post-filter parameter If you use the `knn` query alongside filters or other clauses (for example, `bool`, `must`, `match`), you might receive fewer than `k` results. In this example, `post_filter` reduces the number of results from 2 to 1: From b77debd74e3fada3dea25fefc45332477b37161b Mon Sep 17 00:00:00 2001 From: Fanit Kolchina Date: Tue, 18 Jul 2023 10:36:44 -0400 Subject: [PATCH 11/11] Implemented one more editorial comment Signed-off-by: Fanit Kolchina --- _search-plugins/knn/filter-search-knn.md | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/_search-plugins/knn/filter-search-knn.md b/_search-plugins/knn/filter-search-knn.md index f0a407db17..7e926a970e 100644 --- a/_search-plugins/knn/filter-search-knn.md +++ b/_search-plugins/knn/filter-search-knn.md @@ -275,7 +275,7 @@ The following flow chart outlines the Faiss algorithm. ### Using a Faiss efficient filter -Consider an index that holds information about different shirts for an e-commerce application. You want to find the top-rated shirts that are similar to the one you already have but would like to restrict the results by shirt size. +Consider an index that contains information about different shirts for an e-commerce application. You want to find the top-rated shirts that are similar to the one you already have but would like to restrict the results by shirt size. In this example, you will create an index and search for shirts that are similar to the shirt you provide.