
OpenSearch 2.3 is live

🍾

!

documentation

INSTALL AND CONFIGURE

UPGRADE TO OPENSEARCH

OPENSEARCH

OPENSEARCH DASHBOARDS

SECURITY PLUGIN

SECURITY ANALYTICS
PLUGIN

SEARCH PLUGINS

INDEX MANAGEMENT
PLUGIN

REPLICATION PLUGIN

OBSERVABILITY PLUGIN

About Observability

Observability security

Event analytics

Operational panels

Trace analytics / Analyze Jaeger trace data

INTRODUCED 2.5

The trace analytics functionality in the OpenSearch Observability plugin now supports
Jaeger trace data. If you use OpenSearch as the backend for Jaeger trace data, you can
use the trace analytics built-in analysis capabilities. This provides support for
OpenTelemetry (OTEL) formatted trace data.

When you perform trace analytics, you can select from two data sources:

Data Prepper – Data ingested into OpenSearch through Data Prepper.

Jaeger – Trace data stored within OpenSearch as its backend.

If you currently store your Jaeger trace data in OpenSearch, you can now use the
capabilities built into trace analytics to analyze the error rates and latency. You can also
!lter the traces and look into the span details of a trace to pinpoint any service issues.

When you ingest Jaeger data into OpenSearch, it gets stored in a di"erent index than the
OTEL-generated index that gets created when you run data through Data Prepper. Use
the data source selector in Dashboards to indicate on which data source you want to
perform trace analytics.

Jaeger trace data that you can analyze includes span data, as well as service and
operation endpoint data.

By default, each time you ingest data for Jaeger, it creates a separate index for that day.

To learn more about Jaeger data tracing, see the Jaeger open source documentation.

To use trace analytics with Jaeger data, you need to con!gure error capability.

Jaeger data that is ingested for OpenSearch needs to have the environment variable
ES_TAGS_AS_FIELDS_ALL set to true for errors. If data is not ingested in this format it will
not work for errors and error data will not be available for traces in trace analytics with
OpenSearch.

Trace analytics for non-Jaeger data use OTEL indexes with the naming conventions otel-
v1-apm-span-* or otel-v1-apm-service-map* .

Jaeger indexes follow the naming conventions jaeger-span-* or jaeger-service-* .

The following section provides a sample Docker compose !le that contains the required
con!guration to enable errors for trace analytics.

Use the following Docker compose !le to enable Jaeger data for trace analytics with the
ES_TAGS_AS_FIELDS_ALL environment variable set to true to enable errors to be added to
trace data.

Copy the following Docker compose !le contents and save it as docker-compose.yml .

Run the following command to deploy the Docker compose YAML !le.

docker compose up -d

To stop the cluster, run the following command:

docker compose down

Use the sample app provided with the Docker !le to generate data. After you run the
Docker compose !le, it runs the sample app in your local host port 8080. To open the
app, go to http://localhost:8080.

In the sample app, Hot R.O.D., select any one of the buttons to generate data. Now you
can view trace data in Dashboards.

After you generate Jaeger trace data you can go to OpenSearch Dashboards to view your
trace data.

Go to Dashboards Trace analytics at
http://localhost:5601/app/observability-dashboards#/trace_analytics/home.

To analyze the Jaeger trace data in Dashboards, !rst set up the trace analytics
functionality. To get started, see Get started with trace analytics.

You can specify either Data Prepper or Jaeger as the data source when you perform trace
analytics. From Dashboards, go to Observability > Trace analytics and select Jaeger.

After you select Jaeger for the data source, you can view all of the indexed data in
Dashboard view, including Error rate and Throughput.

You can view the trace error count over time in the Dashboard view and also see the top
!ve combinations of services and operations that have a non-zero error rate.

With Throughput selected, you can see the throughput of traces on Jaeger indexes that
are coming in over time.

You can select an individual trace from Top 5 Service and Operation Latency list and
view the detailed trace data.

You can also see the combinations of services and operations that have the highest
latency.

If you select one of the entries for Service and Operation Name and go to the Traces
column to select a trace, it will automatically add the service and operation as !lters.

In Traces, you can see the latency and errors for the !ltered service and operation for
each individual Trace ID in the list.

If you select an individual Trace ID, you can see more detailed information about the
trace, such as time spent by the service and each span for the service and operation. You
can also view the payload that you get from the index in JSON format.

You can also look at individual error rates and latency for each individual service. Go to
Observability > Trace analytics > Services. In Services, you can see the average
latency, error rate, throughput and trace for each service in the list.

version: '3'
services:
 opensearch-node1: # This is also the hostname of the container within the Docker network (i.e. https://opensearch-node1/)
 image: opensearchproject/opensearch:latest # Specifying the latest available image - modify if you want a specific version
 container_name: opensearch-node1
 environment:
 - cluster.name=opensearch-cluster # Name the cluster
 - node.name=opensearch-node1 # Name the node that will run in this container
 - discovery.seed_hosts=opensearch-node1,opensearch-node2 # Nodes to look for when discovering the cluster
 - cluster.initial_cluster_manager_nodes=opensearch-node1,opensearch-node2 # Nodes eligible to serve as cluster manager
 - bootstrap.memory_lock=true # Disable JVM heap memory swapping
 - "OPENSEARCH_JAVA_OPTS=-Xms512m -Xmx512m" # Set min and max JVM heap sizes to at least 50% of system RAM
 ulimits:
 memlock:
 soft: -1 # Set memlock to unlimited (no soft or hard limit)
 hard: -1
 nofile:
 soft: 65536 # Maximum number of open files for the opensearch user - set to at least 65536
 hard: 65536
 volumes:
 - opensearch-data1:/usr/share/opensearch/data # Creates volume called opensearch-data1 and mounts it to the container
 ports:
 - "9200:9200"
 - "9600:9600"
 networks:
 - opensearch-net # All of the containers will join the same Docker bridge network

 opensearch-node2:
 image: opensearchproject/opensearch:latest # This should be the same image used for opensearch-node1 to avoid issues
 container_name: opensearch-node2
 environment:
 - cluster.name=opensearch-cluster
 - node.name=opensearch-node2
 - discovery.seed_hosts=opensearch-node1,opensearch-node2
 - cluster.initial_cluster_manager_nodes=opensearch-node1,opensearch-node2
 - bootstrap.memory_lock=true
 - "OPENSEARCH_JAVA_OPTS=-Xms512m -Xmx512m"
 ulimits:
 memlock:
 soft: -1
 hard: -1
 nofile:
 soft: 65536
 hard: 65536
 volumes:
 - opensearch-data2:/usr/share/opensearch/data
 networks:
 - opensearch-net
 opensearch-dashboards:
 image: opensearchproject/opensearch-dashboards:latest # Make sure the version of opensearch-dashboards matches the version of opensearch installed on other nodes
 container_name: opensearch-dashboards
 ports:
 - 5601:5601 # Map host port 5601 to container port 5601
 expose:
 - "5601" # Expose port 5601 for web access to OpenSearch Dashboards
 environment:
 OPENSEARCH_HOSTS: '["https://opensearch-node1:9200","https://opensearch-node2:9200"]' # Define the OpenSearch nodes that OpenSearch Dashboards will query
 networks:
 - opensearch-net

 jaeger-collector:
 image: jaegertracing/jaeger-collector:latest
 ports:
 - "14269:14269"
 - "14268:14268"
 - "14267:14267"
 - "14250:14250"
 - "9411:9411"
 networks:
 - opensearch-net
 restart: on-failure
 environment:
 - SPAN_STORAGE_TYPE=opensearch
 - ES_TAGS_AS_FIELDS_ALL=true
 - ES_USERNAME=admin
 - ES_PASSWORD=admin
 - ES_TLS_SKIP_HOST_VERIFY=true
 command: [
 "--es.server-urls=https://opensearch-node1:9200",
 "--es.tls.enabled=true",
]
 depends_on:
 - opensearch-node1

 jaeger-agent:
 image: jaegertracing/jaeger-agent:latest
 hostname: jaeger-agent
 command: ["--reporter.grpc.host-port=jaeger-collector:14250"]
 ports:
 - "5775:5775/udp"
 - "6831:6831/udp"
 - "6832:6832/udp"
 - "5778:5778"
 networks:
 - opensearch-net
 restart: on-failure
 environment:
 - SPAN_STORAGE_TYPE=opensearch
 depends_on:
 - jaeger-collector

 hotrod:
 image: jaegertracing/example-hotrod:latest
 ports:
 - "8080:8080"
 command: ["all"]
 environment:
 - JAEGER_AGENT_HOST=jaeger-agent
 - JAEGER_AGENT_PORT=6831
 networks:
 - opensearch-net
 depends_on:
 - jaeger-agent

volumes:
 opensearch-data1:
 opensearch-data2:

networks:
 opensearch-net:

Analyze Jaeger trace data

•

•

Data ingestion requirements

About data ingestion with Jaeger indexes

How to set up OpenSearch to use Jaeger data

Step 1: Run the Docker compose !le

Step 2: Start the cluster

Step 2: Generate sample data

Step 3: View trace data in OpenSearch Dashboards

Use trace analytics in OpenSearch Dashboards

Data sources

Dashboard view

Error rate

Throughput

Traces

Services

Get Involved

Code of Conduct

Forums

Github

Community Projects

Resources

FAQ

Testimonials

Brand Guidelines

Trademark Usage Policy

OpenSearch Disambiguation

Connect

Connect

© 2023 OpenSearch contributors. OpenSearch is a registered trademark of Amazon Web Services.

© 2005-2021 Django Software Foundation and individual contributors. Django is a registered trademark of the Django Software
Foundation.
This website was forked from the BSD-licensed djangoproject.com originally designed by Threespot & andrevv.
We ♡ Django and the Django community. If you need a high-level Python framework, check it out.

Documentation Search...

Download · About · Community · Documentation

http://localhost:4000/downloads.html
http://localhost:4000/docs/latest/
http://localhost:4000/docs/latest/observability-plugin/index/
http://localhost:4000/docs/latest/observability-plugin/observability-security/
http://localhost:4000/docs/latest/observability-plugin/event-analytics/
http://localhost:4000/docs/latest/observability-plugin/operational-panels/
http://localhost:4000/docs/latest/observability-plugin/trace/index/
https://www.jaegertracing.io/
http://localhost:5601/app/observability-dashboards#/trace_analytics/home
http://localhost:4000/docs/latest/observability-plugin/trace/get-started/
http://localhost:4000/codeofconduct.html
https://discuss.opendistrocommunity.dev/
https://github.com/opensearch-project
http://localhost:4000/community_projects
http://localhost:4000/faq/
http://localhost:4000/testimonials.html
http://localhost:4000/brand.html
http://localhost:4000/trademark-usage.html
http://localhost:4000/disambiguation.html
https://opensearch.org/connect.html
https://opensearch.org/
http://localhost:4000/trademark-usage.html
https://aws.amazon.com/
https://www.djangoproject.com/foundation/
https://www.djangoproject.com/trademarks/
https://github.com/django/djangoproject.com/
https://www.threespot.com/
http://andrevv.com/
https://www.djangoproject.com/
http://localhost:4000/docs/latest/observability-plugin/trace/trace-analytics-jaeger/#
http://localhost:4000/downloads.html
http://localhost:4000/docs/

