diff --git a/.github/workflows/CI.yml b/.github/workflows/CI.yml index 41e8292db..97cf91454 100644 --- a/.github/workflows/CI.yml +++ b/.github/workflows/CI.yml @@ -33,16 +33,16 @@ jobs: with: repository: 'opensearch-project/OpenSearch' path: OpenSearch - ref: '1.1' + ref: '1.1.0' - name: Build OpenSearch working-directory: ./OpenSearch - run: ./gradlew publishToMavenLocal + run: ./gradlew publishToMavenLocal -Dopensearch.version=1.1.0-SNAPSHOT # dependencies: common-utils - name: Checkout common-utils uses: actions/checkout@v2 with: - ref: 'main' + ref: '1.1' repository: 'opensearch-project/common-utils' path: common-utils - name: Build common-utils @@ -53,7 +53,7 @@ jobs: - name: Checkout job-scheduler uses: actions/checkout@v2 with: - ref: 'main' + ref: '1.1' repository: 'opensearch-project/job-scheduler' path: job-scheduler diff --git a/.github/workflows/benchmark.yml b/.github/workflows/benchmark.yml new file mode 100644 index 000000000..ca4c6c425 --- /dev/null +++ b/.github/workflows/benchmark.yml @@ -0,0 +1,86 @@ +name: Run AD benchmark +on: + push: + branches: + - "*" + pull_request: + branches: + - "*" + +jobs: + + Build-ad: + strategy: + matrix: + java: [14] + + name: Run Anomaly detection model performance benchmark + runs-on: ubuntu-latest + + steps: + - name: Setup Java ${{ matrix.java }} + uses: actions/setup-java@v1 + with: + java-version: ${{ matrix.java }} + + # anomaly-detection + - name: Checkout AD + uses: actions/checkout@v2 + + # dependencies: OpenSearch + - name: Checkout OpenSearch + uses: actions/checkout@v2 + with: + repository: 'opensearch-project/OpenSearch' + path: OpenSearch + ref: '1.1.0' + - name: Build OpenSearch + working-directory: ./OpenSearch + run: ./gradlew publishToMavenLocal + + # dependencies: common-utils + - name: Checkout common-utils + uses: actions/checkout@v2 + with: + ref: '1.1' + repository: 'opensearch-project/common-utils' + path: common-utils + - name: Build common-utils + working-directory: ./common-utils + run: ./gradlew publishToMavenLocal -Dopensearch.version=1.1.0-SNAPSHOT + + # dependencies: job-scheduler + - name: Checkout job-scheduler + uses: actions/checkout@v2 + with: + ref: '1.1' + repository: 'opensearch-project/job-scheduler' + path: job-scheduler + + - name: Build job-scheduler + working-directory: ./job-scheduler + run: ./gradlew publishToMavenLocal -Dopensearch.version=1.1.0-SNAPSHOT + - name: Assemble job-scheduler + working-directory: ./job-scheduler + run: | + ./gradlew assemble -Dopensearch.version=1.1.0-SNAPSHOT + echo "Creating ../src/test/resources/job-scheduler ..." + mkdir -p ../src/test/resources/job-scheduler + pwd + echo "Copying ./build/distributions/*.zip to ../src/test/resources/job-scheduler ..." + ls ./build/distributions/ + cp ./build/distributions/*.zip ../src/test/resources/job-scheduler + echo "Copied ./build/distributions/*.zip to ../src/test/resources/job-scheduler ..." + ls ../src/test/resources/job-scheduler + echo "Creating ../src/test/resources/org/opensearch/ad/bwc/job-scheduler/1.1.0.0-SNAPSHOT ..." + mkdir -p ../src/test/resources/org/opensearch/ad/bwc/job-scheduler/1.1.0.0-SNAPSHOT + echo "Copying ./build/distributions/*.zip to ../src/test/resources/org/opensearch/ad/bwc/job-scheduler/1.1.0.0-SNAPSHOT ..." + ls ./build/distributions/ + cp ./build/distributions/*.zip ../src/test/resources/org/opensearch/ad/bwc/job-scheduler/1.1.0.0-SNAPSHOT + echo "Copied ./build/distributions/*.zip to ../src/test/resources/org/opensearch/ad/bwc/job-scheduler/1.1.0.0-SNAPSHOT ..." + ls ../src/test/resources/org/opensearch/ad/bwc/job-scheduler/1.1.0.0-SNAPSHOT + + - name: Build and Run Tests + run: | + ./gradlew ':test' --tests "org.opensearch.ad.ml.HCADModelPerfTests" -Dtests.seed=2AEBDBBAE75AC5E0 -Dtests.security.manager=false -Dtests.locale=es-CU -Dtests.timezone=Chile/EasterIsland -Dtest.logs=true -Dmodel-benchmark=true + ./gradlew integTest --tests "org.opensearch.ad.e2e.SingleStreamModelPerfIT" -Dtests.seed=60CDDB34427ACD0C -Dtests.security.manager=false -Dtests.locale=kab-DZ -Dtests.timezone=Asia/Hebron -Dtest.logs=true -Dmodel-benchmark=true \ No newline at end of file diff --git a/DEVELOPER_GUIDE.md b/DEVELOPER_GUIDE.md index f387fbd56..3b7782e78 100644 --- a/DEVELOPER_GUIDE.md +++ b/DEVELOPER_GUIDE.md @@ -45,6 +45,8 @@ Currently we just put RCF jar in lib as dependency. Plan to publish to Maven and 8. `./gradlew adBwcCluster#rollingUpgradeClusterTask -Dtests.security.manager=false` launches a cluster with three nodes of bwc version of OpenSearch with anomaly-detection and job-scheduler and tests backwards compatibility by performing rolling upgrade of each node with the current version of OpenSearch with anomaly-detection and job-scheduler. 9. `./gradlew adBwcCluster#fullRestartClusterTask -Dtests.security.manager=false` launches a cluster with three nodes of bwc version of OpenSearch with anomaly-detection and job-scheduler and tests backwards compatibility by performing a full restart on the cluster upgrading all the nodes with the current version of OpenSearch with anomaly-detection and job-scheduler. 10. `./gradlew bwcTestSuite -Dtests.security.manager=false` runs all the above bwc tests combined. +11. `./gradlew ':test' --tests "org.opensearch.ad.ml.HCADModelPerfTests" -Dtests.seed=2AEBDBBAE75AC5E0 -Dtests.security.manager=false -Dtests.locale=es-CU -Dtests.timezone=Chile/EasterIsland -Dtest.logs=true -Dmodel-benchmark=true` launches HCAD model performance tests and logs the result in the standard output +12. `./gradlew integTest --tests "org.opensearch.ad.e2e.SingleStreamModelPerfIT" -Dtests.seed=60CDDB34427ACD0C -Dtests.security.manager=false -Dtests.locale=kab-DZ -Dtests.timezone=Asia/Hebron -Dtest.logs=true -Dmodel-benchmark=true` launches single stream AD model performance tests and logs the result in the standard output When launching a cluster using one of the above commands logs are placed in `/build/cluster/run node0/opensearch-/logs`. Though the logs are teed to the console, in practices it's best to check the actual log file. diff --git a/build.gradle b/build.gradle index 8acdb6368..a35e9ca59 100644 --- a/build.gradle +++ b/build.gradle @@ -36,13 +36,17 @@ buildscript { opensearch_build = opensearch_version.replaceAll(/(\.\d)([^\d]*)$/, '$1.0$2') common_utils_version = System.getProperty("common_utils.version", opensearch_build) job_scheduler_version = System.getProperty("job_scheduler.version", opensearch_build) + // gradle build won't print logs during test by default unless there is a failure. + // It is useful to record intermediately information like prediction precision and recall. + // This option turn on log printing during tests. + printLogs = "true" == System.getProperty("test.logs", "false") } repositories { mavenLocal() + maven { url "https://aws.oss.sonatype.org/content/repositories/snapshots" } mavenCentral() maven { url "https://plugins.gradle.org/m2/" } - jcenter() } dependencies { @@ -69,9 +73,10 @@ tasks.withType(Javadoc) { repositories { mavenLocal() + maven { url "https://aws.oss.sonatype.org/content/repositories/snapshots" } mavenCentral() maven { url "https://plugins.gradle.org/m2/" } - jcenter() + maven { url "https://d1nvenhzbhpy0q.cloudfront.net/snapshots/lucene/" } } apply plugin: 'java' @@ -168,6 +173,12 @@ opensearch_tmp_dir.mkdirs() test { include '**/*Tests.class' systemProperty 'tests.security.manager', 'false' + + if (System.getProperty("model-benchmark") == null || System.getProperty("model-benchmark") == "false") { + filter { + excludeTestsMatching "org.opensearch.ad.ml.HCADModelPerfTests" + } + } } task integTest(type: RestIntegTestTask) { @@ -206,6 +217,12 @@ integTest { } } + if (System.getProperty("model-benchmark") == null || System.getProperty("model-benchmark") == "false") { + filter { + excludeTestsMatching "org.opensearch.ad.e2e.SingleStreamModelPerfIT" + } + } + // The 'doFirst' delays till execution time. doFirst { // Tell the test JVM if the cluster JVM is running under a debugger so that tests can @@ -226,6 +243,12 @@ integTest { jvmArgs '-agentlib:jdwp=transport=dt_socket,server=y,suspend=y,address=*:5005' } + if (printLogs) { + testLogging { + showStandardStreams = true + outputs.upToDateWhen {false} + } + } } testClusters.integTest { @@ -699,3 +722,13 @@ validateNebulaPom.enabled = false tasks.withType(licenseHeaders.class) { additionalLicense 'AL ', 'Apache', 'Licensed under the Apache License, Version 2.0 (the "License")' } + +// show test results so that we can record information like precion/recall results of correctness testing. +if (printLogs) { + test { + testLogging { + showStandardStreams = true + outputs.upToDateWhen {false} + } + } +} diff --git a/src/test/java/org/opensearch/ad/TestHelpers.java b/src/test/java/org/opensearch/ad/TestHelpers.java index c00418a2c..a608c0a15 100644 --- a/src/test/java/org/opensearch/ad/TestHelpers.java +++ b/src/test/java/org/opensearch/ad/TestHelpers.java @@ -51,6 +51,7 @@ import java.util.Collections; import java.util.HashMap; import java.util.List; +import java.util.Locale; import java.util.Map; import java.util.Random; import java.util.Set; @@ -1150,4 +1151,133 @@ public static Map parseStatsResult(String statsResult) throws IO } return adStats; } + + public static class AnomalyDetectorBuilder { + private String detectorId = randomAlphaOfLength(10); + private Long version = randomLong(); + private String name = randomAlphaOfLength(20); + private String description = randomAlphaOfLength(30); + private String timeField = randomAlphaOfLength(5); + private List indices = ImmutableList.of(randomAlphaOfLength(10).toLowerCase(Locale.ROOT)); + private List featureAttributes = ImmutableList.of(randomFeature(true)); + private QueryBuilder filterQuery; + private TimeConfiguration detectionInterval = randomIntervalTimeConfiguration(); + private TimeConfiguration windowDelay = randomIntervalTimeConfiguration(); + private Integer shingleSize = randomIntBetween(1, AnomalyDetectorSettings.MAX_SHINGLE_SIZE); + private Map uiMetadata = null; + private Integer schemaVersion = randomInt(); + private Instant lastUpdateTime = Instant.now().truncatedTo(ChronoUnit.SECONDS); + private List categoryFields = null; + private User user = randomUser(); + private String resultIndex = null; + + public static AnomalyDetectorBuilder newInstance() throws IOException { + return new AnomalyDetectorBuilder(); + } + + private AnomalyDetectorBuilder() throws IOException { + filterQuery = randomQuery(); + } + + public AnomalyDetectorBuilder setDetectorId(String detectorId) { + this.detectorId = detectorId; + return this; + } + + public AnomalyDetectorBuilder setVersion(Long version) { + this.version = version; + return this; + } + + public AnomalyDetectorBuilder setName(String name) { + this.name = name; + return this; + } + + public AnomalyDetectorBuilder setDescription(String description) { + this.description = description; + return this; + } + + public AnomalyDetectorBuilder setTimeField(String timeField) { + this.timeField = timeField; + return this; + } + + public AnomalyDetectorBuilder setIndices(List indices) { + this.indices = indices; + return this; + } + + public AnomalyDetectorBuilder setFeatureAttributes(List featureAttributes) { + this.featureAttributes = featureAttributes; + return this; + } + + public AnomalyDetectorBuilder setFilterQuery(QueryBuilder filterQuery) { + this.filterQuery = filterQuery; + return this; + } + + public AnomalyDetectorBuilder setDetectionInterval(TimeConfiguration detectionInterval) { + this.detectionInterval = detectionInterval; + return this; + } + + public AnomalyDetectorBuilder setWindowDelay(TimeConfiguration windowDelay) { + this.windowDelay = windowDelay; + return this; + } + + public AnomalyDetectorBuilder setShingleSize(Integer shingleSize) { + this.shingleSize = shingleSize; + return this; + } + + public AnomalyDetectorBuilder setUiMetadata(Map uiMetadata) { + this.uiMetadata = uiMetadata; + return this; + } + + public AnomalyDetectorBuilder setSchemaVersion(Integer schemaVersion) { + this.schemaVersion = schemaVersion; + return this; + } + + public AnomalyDetectorBuilder setLastUpdateTime(Instant lastUpdateTime) { + this.lastUpdateTime = lastUpdateTime; + return this; + } + + public AnomalyDetectorBuilder setCategoryFields(List categoryFields) { + this.categoryFields = categoryFields; + return this; + } + + public AnomalyDetectorBuilder setUser(User user) { + this.user = user; + return this; + } + + public AnomalyDetector build() { + return new AnomalyDetector( + detectorId, + version, + name, + description, + timeField, + indices, + featureAttributes, + filterQuery, + detectionInterval, + windowDelay, + shingleSize, + uiMetadata, + schemaVersion, + lastUpdateTime, + categoryFields, + user + ); + } + } } diff --git a/src/test/java/org/opensearch/ad/e2e/DetectionResultEvalutationIT.java b/src/test/java/org/opensearch/ad/e2e/SingleStreamModelPerfIT.java similarity index 98% rename from src/test/java/org/opensearch/ad/e2e/DetectionResultEvalutationIT.java rename to src/test/java/org/opensearch/ad/e2e/SingleStreamModelPerfIT.java index bf1da12c7..338c2e7f6 100644 --- a/src/test/java/org/opensearch/ad/e2e/DetectionResultEvalutationIT.java +++ b/src/test/java/org/opensearch/ad/e2e/SingleStreamModelPerfIT.java @@ -64,8 +64,8 @@ import com.google.gson.JsonObject; import com.google.gson.JsonParser; -public class DetectionResultEvalutationIT extends ODFERestTestCase { - protected static final Logger LOG = (Logger) LogManager.getLogger(DetectionResultEvalutationIT.class); +public class SingleStreamModelPerfIT extends ODFERestTestCase { + protected static final Logger LOG = (Logger) LogManager.getLogger(SingleStreamModelPerfIT.class); // TODO: fix flaky test, sometimes this assert will fail "assertTrue(precision >= minPrecision);" public void testDataset() throws Exception { @@ -123,6 +123,7 @@ private void verifyTestResults( assertTrue(recall >= minRecall); assertTrue(errors <= maxError); + LOG.info("Precision: {}, Window recall: {}", precision, recall); } private int isAnomaly(Instant time, List> labels) { diff --git a/src/test/java/org/opensearch/ad/ml/AbstractCosineDataTest.java b/src/test/java/org/opensearch/ad/ml/AbstractCosineDataTest.java new file mode 100644 index 000000000..b2c39d036 --- /dev/null +++ b/src/test/java/org/opensearch/ad/ml/AbstractCosineDataTest.java @@ -0,0 +1,219 @@ +/* + * SPDX-License-Identifier: Apache-2.0 + * + * The OpenSearch Contributors require contributions made to + * this file be licensed under the Apache-2.0 license or a + * compatible open source license. + * + * Modifications Copyright OpenSearch Contributors. See + * GitHub history for details. + */ + +package org.opensearch.ad.ml; + +import static org.mockito.ArgumentMatchers.any; +import static org.mockito.Mockito.doAnswer; +import static org.mockito.Mockito.mock; +import static org.mockito.Mockito.when; +import static org.opensearch.ad.settings.AnomalyDetectorSettings.BACKOFF_MINUTES; +import static org.opensearch.ad.settings.AnomalyDetectorSettings.MAX_RETRY_FOR_UNRESPONSIVE_NODE; + +import java.time.Clock; +import java.time.Instant; +import java.time.temporal.ChronoUnit; +import java.util.Collections; +import java.util.HashSet; +import java.util.Set; +import java.util.concurrent.CountDownLatch; +import java.util.concurrent.TimeUnit; +import java.util.concurrent.atomic.AtomicBoolean; + +import org.opensearch.Version; +import org.opensearch.action.ActionListener; +import org.opensearch.action.get.GetRequest; +import org.opensearch.action.get.GetResponse; +import org.opensearch.ad.AbstractADTest; +import org.opensearch.ad.AnomalyDetectorPlugin; +import org.opensearch.ad.NodeStateManager; +import org.opensearch.ad.TestHelpers; +import org.opensearch.ad.dataprocessor.IntegerSensitiveSingleFeatureLinearUniformInterpolator; +import org.opensearch.ad.dataprocessor.Interpolator; +import org.opensearch.ad.dataprocessor.LinearUniformInterpolator; +import org.opensearch.ad.dataprocessor.SingleFeatureLinearUniformInterpolator; +import org.opensearch.ad.feature.FeatureManager; +import org.opensearch.ad.feature.SearchFeatureDao; +import org.opensearch.ad.model.AnomalyDetector; +import org.opensearch.ad.model.Entity; +import org.opensearch.ad.model.IntervalTimeConfiguration; +import org.opensearch.ad.ratelimit.CheckpointWriteWorker; +import org.opensearch.ad.settings.AnomalyDetectorSettings; +import org.opensearch.ad.util.ClientUtil; +import org.opensearch.client.Client; +import org.opensearch.cluster.node.DiscoveryNode; +import org.opensearch.cluster.node.DiscoveryNodeRole; +import org.opensearch.cluster.service.ClusterService; +import org.opensearch.common.settings.ClusterSettings; +import org.opensearch.common.settings.Setting; +import org.opensearch.common.settings.Settings; +import org.opensearch.test.ClusterServiceUtils; +import org.opensearch.test.OpenSearchTestCase; +import org.opensearch.threadpool.ThreadPool; + +public class AbstractCosineDataTest extends AbstractADTest { + protected int numMinSamples; + protected String modelId; + protected String entityName; + protected String detectorId; + protected ModelState modelState; + protected Clock clock; + protected float priority; + protected EntityColdStarter entityColdStarter; + protected NodeStateManager stateManager; + protected SearchFeatureDao searchFeatureDao; + protected Interpolator interpolator; + protected CheckpointDao checkpoint; + protected FeatureManager featureManager; + protected Settings settings; + protected ThreadPool threadPool; + protected AtomicBoolean released; + protected Runnable releaseSemaphore; + protected ActionListener listener; + protected CountDownLatch inProgressLatch; + protected CheckpointWriteWorker checkpointWriteQueue; + protected Entity entity; + protected AnomalyDetector detector; + protected long rcfSeed; + protected ClientUtil clientUtil; + protected ModelManager modelManager; + + @SuppressWarnings("unchecked") + @Override + public void setUp() throws Exception { + super.setUp(); + numMinSamples = AnomalyDetectorSettings.NUM_MIN_SAMPLES; + + clock = mock(Clock.class); + when(clock.instant()).thenReturn(Instant.now()); + + threadPool = mock(ThreadPool.class); + setUpADThreadPool(threadPool); + + settings = Settings.EMPTY; + + Client client = mock(Client.class); + clientUtil = mock(ClientUtil.class); + + detector = TestHelpers.randomAnomalyDetectorWithInterval(new IntervalTimeConfiguration(1, ChronoUnit.MINUTES), true, true); + doAnswer(invocation -> { + ActionListener listener = invocation.getArgument(2); + listener.onResponse(TestHelpers.createGetResponse(detector, detectorId, AnomalyDetector.ANOMALY_DETECTORS_INDEX)); + return null; + }).when(clientUtil).asyncRequest(any(GetRequest.class), any(), any(ActionListener.class)); + + Set> nodestateSetting = new HashSet<>(ClusterSettings.BUILT_IN_CLUSTER_SETTINGS); + nodestateSetting.add(MAX_RETRY_FOR_UNRESPONSIVE_NODE); + nodestateSetting.add(BACKOFF_MINUTES); + ClusterSettings clusterSettings = new ClusterSettings(Settings.EMPTY, nodestateSetting); + + DiscoveryNode discoveryNode = new DiscoveryNode( + "node1", + OpenSearchTestCase.buildNewFakeTransportAddress(), + Collections.emptyMap(), + DiscoveryNodeRole.BUILT_IN_ROLES, + Version.CURRENT + ); + + ClusterService clusterService = ClusterServiceUtils.createClusterService(threadPool, discoveryNode, clusterSettings); + + stateManager = new NodeStateManager( + client, + xContentRegistry(), + settings, + clientUtil, + clock, + AnomalyDetectorSettings.HOURLY_MAINTENANCE, + clusterService + ); + + SingleFeatureLinearUniformInterpolator singleFeatureLinearUniformInterpolator = + new IntegerSensitiveSingleFeatureLinearUniformInterpolator(); + interpolator = new LinearUniformInterpolator(singleFeatureLinearUniformInterpolator); + + searchFeatureDao = mock(SearchFeatureDao.class); + checkpoint = mock(CheckpointDao.class); + + featureManager = new FeatureManager( + searchFeatureDao, + interpolator, + clock, + AnomalyDetectorSettings.MAX_TRAIN_SAMPLE, + AnomalyDetectorSettings.MAX_SAMPLE_STRIDE, + AnomalyDetectorSettings.TRAIN_SAMPLE_TIME_RANGE_IN_HOURS, + AnomalyDetectorSettings.MIN_TRAIN_SAMPLES, + AnomalyDetectorSettings.MAX_SHINGLE_PROPORTION_MISSING, + AnomalyDetectorSettings.MAX_IMPUTATION_NEIGHBOR_DISTANCE, + AnomalyDetectorSettings.PREVIEW_SAMPLE_RATE, + AnomalyDetectorSettings.MAX_PREVIEW_SAMPLES, + AnomalyDetectorSettings.HOURLY_MAINTENANCE, + threadPool, + AnomalyDetectorPlugin.AD_THREAD_POOL_NAME + ); + + checkpointWriteQueue = mock(CheckpointWriteWorker.class); + + rcfSeed = 2051L; + entityColdStarter = new EntityColdStarter( + clock, + threadPool, + stateManager, + AnomalyDetectorSettings.NUM_SAMPLES_PER_TREE, + AnomalyDetectorSettings.NUM_TREES, + AnomalyDetectorSettings.TIME_DECAY, + numMinSamples, + AnomalyDetectorSettings.MAX_SAMPLE_STRIDE, + AnomalyDetectorSettings.MAX_TRAIN_SAMPLE, + interpolator, + searchFeatureDao, + AnomalyDetectorSettings.THRESHOLD_MIN_PVALUE, + featureManager, + settings, + AnomalyDetectorSettings.HOURLY_MAINTENANCE, + checkpointWriteQueue, + rcfSeed + ); + + detectorId = "123"; + modelId = "123_entity_abc"; + entityName = "abc"; + priority = 0.3f; + entity = Entity.createSingleAttributeEntity("field", entityName); + + released = new AtomicBoolean(); + + inProgressLatch = new CountDownLatch(1); + releaseSemaphore = () -> { + released.set(true); + inProgressLatch.countDown(); + }; + listener = ActionListener.wrap(releaseSemaphore); + } + + public int searchInsert(long[] timestamps, long target) { + int pivot, left = 0, right = timestamps.length - 1; + while (left <= right) { + pivot = left + (right - left) / 2; + if (timestamps[pivot] == target) + return pivot; + if (target < timestamps[pivot]) + right = pivot - 1; + else + left = pivot + 1; + } + return left; + } + + protected void checkSemaphoreRelease() throws InterruptedException { + assertTrue(inProgressLatch.await(100, TimeUnit.SECONDS)); + assertTrue(released.get()); + } +} diff --git a/src/test/java/org/opensearch/ad/ml/EntityColdStarterTests.java b/src/test/java/org/opensearch/ad/ml/EntityColdStarterTests.java index 37902ef8f..b90b6efa5 100644 --- a/src/test/java/org/opensearch/ad/ml/EntityColdStarterTests.java +++ b/src/test/java/org/opensearch/ad/ml/EntityColdStarterTests.java @@ -33,64 +33,26 @@ import static org.mockito.Mockito.never; import static org.mockito.Mockito.times; import static org.mockito.Mockito.verify; -import static org.mockito.Mockito.when; -import static org.opensearch.ad.settings.AnomalyDetectorSettings.BACKOFF_MINUTES; -import static org.opensearch.ad.settings.AnomalyDetectorSettings.MAX_RETRY_FOR_UNRESPONSIVE_NODE; import java.io.IOException; import java.time.Clock; -import java.time.Instant; -import java.time.temporal.ChronoUnit; import java.util.AbstractMap.SimpleImmutableEntry; import java.util.ArrayDeque; import java.util.ArrayList; -import java.util.Collections; -import java.util.HashSet; import java.util.List; import java.util.Map.Entry; import java.util.Optional; import java.util.Queue; import java.util.Random; -import java.util.Set; -import java.util.concurrent.CountDownLatch; -import java.util.concurrent.TimeUnit; -import java.util.concurrent.atomic.AtomicBoolean; -import org.opensearch.Version; import org.opensearch.action.ActionListener; -import org.opensearch.action.get.GetRequest; -import org.opensearch.action.get.GetResponse; -import org.opensearch.ad.AbstractADTest; -import org.opensearch.ad.AnomalyDetectorPlugin; import org.opensearch.ad.MemoryTracker; -import org.opensearch.ad.NodeStateManager; -import org.opensearch.ad.TestHelpers; import org.opensearch.ad.common.exception.AnomalyDetectionException; -import org.opensearch.ad.dataprocessor.IntegerSensitiveSingleFeatureLinearUniformInterpolator; -import org.opensearch.ad.dataprocessor.Interpolator; -import org.opensearch.ad.dataprocessor.LinearUniformInterpolator; -import org.opensearch.ad.dataprocessor.SingleFeatureLinearUniformInterpolator; import org.opensearch.ad.feature.FeatureManager; -import org.opensearch.ad.feature.SearchFeatureDao; import org.opensearch.ad.ml.ModelManager.ModelType; -import org.opensearch.ad.model.AnomalyDetector; -import org.opensearch.ad.model.Entity; -import org.opensearch.ad.model.IntervalTimeConfiguration; -import org.opensearch.ad.ratelimit.CheckpointWriteWorker; import org.opensearch.ad.settings.AnomalyDetectorSettings; -import org.opensearch.ad.util.ClientUtil; -import org.opensearch.client.Client; -import org.opensearch.cluster.node.DiscoveryNode; -import org.opensearch.cluster.node.DiscoveryNodeRole; -import org.opensearch.cluster.service.ClusterService; import org.opensearch.common.collect.Tuple; -import org.opensearch.common.settings.ClusterSettings; -import org.opensearch.common.settings.Setting; -import org.opensearch.common.settings.Settings; import org.opensearch.common.util.concurrent.OpenSearchRejectedExecutionException; -import org.opensearch.test.ClusterServiceUtils; -import org.opensearch.test.OpenSearchTestCase; -import org.opensearch.threadpool.ThreadPool; import test.org.opensearch.ad.util.MLUtil; @@ -98,148 +60,7 @@ import com.amazon.randomcutforest.parkservices.AnomalyDescriptor; import com.amazon.randomcutforest.parkservices.ThresholdedRandomCutForest; -public class EntityColdStarterTests extends AbstractADTest { - int numMinSamples; - String modelId; - String entityName; - String detectorId; - ModelState modelState; - Clock clock; - float priority; - EntityColdStarter entityColdStarter; - NodeStateManager stateManager; - SearchFeatureDao searchFeatureDao; - Interpolator interpolator; - CheckpointDao checkpoint; - FeatureManager featureManager; - Settings settings; - ThreadPool threadPool; - AtomicBoolean released; - Runnable releaseSemaphore; - ActionListener listener; - CountDownLatch inProgressLatch; - CheckpointWriteWorker checkpointWriteQueue; - Entity entity; - AnomalyDetector detector; - long rcfSeed; - - @SuppressWarnings("unchecked") - @Override - public void setUp() throws Exception { - super.setUp(); - numMinSamples = AnomalyDetectorSettings.NUM_MIN_SAMPLES; - - clock = mock(Clock.class); - when(clock.instant()).thenReturn(Instant.now()); - - threadPool = mock(ThreadPool.class); - setUpADThreadPool(threadPool); - - settings = Settings.EMPTY; - - Client client = mock(Client.class); - ClientUtil clientUtil = mock(ClientUtil.class); - - detector = TestHelpers.randomAnomalyDetectorWithInterval(new IntervalTimeConfiguration(1, ChronoUnit.MINUTES), true, true); - doAnswer(invocation -> { - ActionListener listener = invocation.getArgument(2); - listener.onResponse(TestHelpers.createGetResponse(detector, detectorId, AnomalyDetector.ANOMALY_DETECTORS_INDEX)); - return null; - }).when(clientUtil).asyncRequest(any(GetRequest.class), any(), any(ActionListener.class)); - - Set> nodestateSetting = new HashSet<>(ClusterSettings.BUILT_IN_CLUSTER_SETTINGS); - nodestateSetting.add(MAX_RETRY_FOR_UNRESPONSIVE_NODE); - nodestateSetting.add(BACKOFF_MINUTES); - ClusterSettings clusterSettings = new ClusterSettings(Settings.EMPTY, nodestateSetting); - - DiscoveryNode discoveryNode = new DiscoveryNode( - "node1", - OpenSearchTestCase.buildNewFakeTransportAddress(), - Collections.emptyMap(), - DiscoveryNodeRole.BUILT_IN_ROLES, - Version.CURRENT - ); - - ClusterService clusterService = ClusterServiceUtils.createClusterService(threadPool, discoveryNode, clusterSettings); - - stateManager = new NodeStateManager( - client, - xContentRegistry(), - settings, - clientUtil, - clock, - AnomalyDetectorSettings.HOURLY_MAINTENANCE, - clusterService - ); - - SingleFeatureLinearUniformInterpolator singleFeatureLinearUniformInterpolator = - new IntegerSensitiveSingleFeatureLinearUniformInterpolator(); - interpolator = new LinearUniformInterpolator(singleFeatureLinearUniformInterpolator); - - searchFeatureDao = mock(SearchFeatureDao.class); - checkpoint = mock(CheckpointDao.class); - - featureManager = new FeatureManager( - searchFeatureDao, - interpolator, - clock, - AnomalyDetectorSettings.MAX_TRAIN_SAMPLE, - AnomalyDetectorSettings.MAX_SAMPLE_STRIDE, - AnomalyDetectorSettings.TRAIN_SAMPLE_TIME_RANGE_IN_HOURS, - AnomalyDetectorSettings.MIN_TRAIN_SAMPLES, - AnomalyDetectorSettings.MAX_SHINGLE_PROPORTION_MISSING, - AnomalyDetectorSettings.MAX_IMPUTATION_NEIGHBOR_DISTANCE, - AnomalyDetectorSettings.PREVIEW_SAMPLE_RATE, - AnomalyDetectorSettings.MAX_PREVIEW_SAMPLES, - AnomalyDetectorSettings.HOURLY_MAINTENANCE, - threadPool, - AnomalyDetectorPlugin.AD_THREAD_POOL_NAME - ); - - checkpointWriteQueue = mock(CheckpointWriteWorker.class); - - rcfSeed = 2051L; - entityColdStarter = new EntityColdStarter( - clock, - threadPool, - stateManager, - AnomalyDetectorSettings.NUM_SAMPLES_PER_TREE, - AnomalyDetectorSettings.NUM_TREES, - AnomalyDetectorSettings.TIME_DECAY, - numMinSamples, - AnomalyDetectorSettings.MAX_SAMPLE_STRIDE, - AnomalyDetectorSettings.MAX_TRAIN_SAMPLE, - interpolator, - searchFeatureDao, - AnomalyDetectorSettings.THRESHOLD_MIN_PVALUE, - featureManager, - settings, - AnomalyDetectorSettings.HOURLY_MAINTENANCE, - checkpointWriteQueue, - rcfSeed - ); - - detectorId = "123"; - modelId = "123_entity_abc"; - entityName = "abc"; - priority = 0.3f; - entity = Entity.createSingleAttributeEntity("field", entityName); - - released = new AtomicBoolean(); - - inProgressLatch = new CountDownLatch(1); - releaseSemaphore = () -> { - released.set(true); - inProgressLatch.countDown(); - }; - listener = ActionListener.wrap(releaseSemaphore); - } - - private void checkSemaphoreRelease() throws InterruptedException { - assertTrue(inProgressLatch.await(100, TimeUnit.SECONDS)); - assertTrue(released.get()); - } - +public class EntityColdStarterTests extends AbstractCosineDataTest { // train using samples directly public void testTrainUsingSamples() throws InterruptedException { Queue samples = MLUtil.createQueueSamples(numMinSamples); diff --git a/src/test/java/org/opensearch/ad/ml/HCADModelPerfTests.java b/src/test/java/org/opensearch/ad/ml/HCADModelPerfTests.java new file mode 100644 index 000000000..9dd542ce4 --- /dev/null +++ b/src/test/java/org/opensearch/ad/ml/HCADModelPerfTests.java @@ -0,0 +1,336 @@ +/* + * SPDX-License-Identifier: Apache-2.0 + * + * The OpenSearch Contributors require contributions made to + * this file be licensed under the Apache-2.0 license or a + * compatible open source license. + * + * Modifications Copyright OpenSearch Contributors. See + * GitHub history for details. + */ + +package org.opensearch.ad.ml; + +import static org.mockito.ArgumentMatchers.any; +import static org.mockito.ArgumentMatchers.anyBoolean; +import static org.mockito.Mockito.doAnswer; +import static org.mockito.Mockito.mock; +import static org.mockito.Mockito.reset; +import static org.mockito.Mockito.when; + +import java.time.Clock; +import java.time.temporal.ChronoUnit; +import java.util.AbstractMap.SimpleImmutableEntry; +import java.util.ArrayDeque; +import java.util.ArrayList; +import java.util.Collections; +import java.util.Comparator; +import java.util.List; +import java.util.Map.Entry; +import java.util.Optional; +import java.util.concurrent.CountDownLatch; +import java.util.concurrent.atomic.AtomicBoolean; + +import org.apache.lucene.util.TimeUnits; +import org.opensearch.action.ActionListener; +import org.opensearch.action.get.GetRequest; +import org.opensearch.action.get.GetResponse; +import org.opensearch.ad.AnomalyDetectorPlugin; +import org.opensearch.ad.MemoryTracker; +import org.opensearch.ad.TestHelpers; +import org.opensearch.ad.feature.FeatureManager; +import org.opensearch.ad.feature.SearchFeatureDao; +import org.opensearch.ad.ml.ModelManager.ModelType; +import org.opensearch.ad.model.AnomalyDetector; +import org.opensearch.ad.model.Entity; +import org.opensearch.ad.model.IntervalTimeConfiguration; +import org.opensearch.ad.settings.AnomalyDetectorSettings; +import org.opensearch.ad.util.LabelledAnomalyGenerator; +import org.opensearch.ad.util.MultiDimDataWithTime; + +import com.carrotsearch.randomizedtesting.annotations.TimeoutSuite; +import com.google.common.collect.ImmutableList; + +@TimeoutSuite(millis = 60 * TimeUnits.MINUTE) // rcf may be slow due to bounding box cache disabled +public class HCADModelPerfTests extends AbstractCosineDataTest { + /** + * A template to perform precision/recall test by simulating HCAD logic with only one entity. + * + * @param detectorIntervalMins Detector interval + * @param precisionThreshold precision threshold + * @param recallThreshold recall threshold + * @param baseDimension the number of dimensions + * @param anomalyIndependent whether anomalies in each dimension is generated independently + * @throws Exception when failing to create anomaly detector or creating training data + */ + @SuppressWarnings("unchecked") + private void averageAccuracyTemplate( + int detectorIntervalMins, + float precisionThreshold, + float recallThreshold, + int baseDimension, + boolean anomalyIndependent + ) throws Exception { + int dataSize = 20 * AnomalyDetectorSettings.NUM_SAMPLES_PER_TREE; + int trainTestSplit = 300; + // detector interval + int interval = detectorIntervalMins; + int delta = 60000 * interval; + + int numberOfTrials = 10; + double prec = 0; + double recall = 0; + double totalPrec = 0; + double totalRecall = 0; + + // training data ranges from timestamps[0] ~ timestamps[trainTestSplit-1] + // set up detector + // We need the detector object as EntityColdStarter.getEntityColdStartData requires a full detector and + // then access its properties. + detector = TestHelpers.AnomalyDetectorBuilder + .newInstance() + .setDetectionInterval(new IntervalTimeConfiguration(interval, ChronoUnit.MINUTES)) + // the categories given earlier when creating the detector and going through cold start don't matter + // as we ensure train and predict using the same entity name later + .setCategoryFields(ImmutableList.of(randomAlphaOfLength(5))) + .setShingleSize(AnomalyDetectorSettings.DEFAULT_SHINGLE_SIZE) + .build(); + + doAnswer(invocation -> { + ActionListener listener = invocation.getArgument(2); + + listener.onResponse(TestHelpers.createGetResponse(detector, detector.getDetectorId(), AnomalyDetector.ANOMALY_DETECTORS_INDEX)); + return null; + }).when(clientUtil).asyncRequest(any(GetRequest.class), any(), any(ActionListener.class)); + + for (int z = 1; z <= numberOfTrials; z++) { + long seed = z; + LOG.info("seed = " + seed); + + searchFeatureDao = mock(SearchFeatureDao.class); + + featureManager = new FeatureManager( + searchFeatureDao, + interpolator, + clock, + AnomalyDetectorSettings.MAX_TRAIN_SAMPLE, + AnomalyDetectorSettings.MAX_SAMPLE_STRIDE, + AnomalyDetectorSettings.TRAIN_SAMPLE_TIME_RANGE_IN_HOURS, + AnomalyDetectorSettings.MIN_TRAIN_SAMPLES, + AnomalyDetectorSettings.MAX_SHINGLE_PROPORTION_MISSING, + AnomalyDetectorSettings.MAX_IMPUTATION_NEIGHBOR_DISTANCE, + AnomalyDetectorSettings.PREVIEW_SAMPLE_RATE, + AnomalyDetectorSettings.MAX_PREVIEW_SAMPLES, + AnomalyDetectorSettings.HOURLY_MAINTENANCE, + threadPool, + AnomalyDetectorPlugin.AD_THREAD_POOL_NAME + ); + + entityColdStarter = new EntityColdStarter( + clock, + threadPool, + stateManager, + AnomalyDetectorSettings.NUM_SAMPLES_PER_TREE, + AnomalyDetectorSettings.NUM_TREES, + AnomalyDetectorSettings.TIME_DECAY, + numMinSamples, + AnomalyDetectorSettings.MAX_SAMPLE_STRIDE, + AnomalyDetectorSettings.MAX_TRAIN_SAMPLE, + interpolator, + searchFeatureDao, + AnomalyDetectorSettings.THRESHOLD_MIN_PVALUE, + featureManager, + settings, + AnomalyDetectorSettings.HOURLY_MAINTENANCE, + checkpointWriteQueue, + seed + ); + + modelManager = new ModelManager( + mock(CheckpointDao.class), + mock(Clock.class), + AnomalyDetectorSettings.NUM_TREES, + AnomalyDetectorSettings.NUM_SAMPLES_PER_TREE, + AnomalyDetectorSettings.TIME_DECAY, + AnomalyDetectorSettings.NUM_MIN_SAMPLES, + AnomalyDetectorSettings.THRESHOLD_MIN_PVALUE, + AnomalyDetectorSettings.MIN_PREVIEW_SIZE, + AnomalyDetectorSettings.HOURLY_MAINTENANCE, + AnomalyDetectorSettings.HOURLY_MAINTENANCE, + entityColdStarter, + mock(FeatureManager.class), + mock(MemoryTracker.class) + ); + + // create labelled data + MultiDimDataWithTime dataWithKeys = LabelledAnomalyGenerator + .getMultiDimData( + dataSize + detector.getShingleSize() - 1, + 50, + 100, + 5, + seed, + baseDimension, + false, + trainTestSplit, + delta, + anomalyIndependent + ); + + long[] timestamps = dataWithKeys.timestampsMs; + double[][] data = dataWithKeys.data; + when(clock.millis()).thenReturn(timestamps[trainTestSplit - 1]); + + doAnswer(invocation -> { + ActionListener, Optional>> listener = invocation.getArgument(2); + listener.onResponse(new SimpleImmutableEntry<>(Optional.of(timestamps[0]), Optional.of(timestamps[trainTestSplit - 1]))); + return null; + }).when(searchFeatureDao).getEntityMinMaxDataTime(any(), any(), any()); + + doAnswer(invocation -> { + List> ranges = invocation.getArgument(1); + List> coldStartSamples = new ArrayList<>(); + + Collections.sort(ranges, new Comparator>() { + @Override + public int compare(Entry p1, Entry p2) { + return Long.compare(p1.getKey(), p2.getKey()); + } + }); + for (int j = 0; j < ranges.size(); j++) { + Entry range = ranges.get(j); + Long start = range.getKey(); + int valueIndex = searchInsert(timestamps, start); + coldStartSamples.add(Optional.of(data[valueIndex])); + } + + ActionListener>> listener = invocation.getArgument(4); + listener.onResponse(coldStartSamples); + return null; + }).when(searchFeatureDao).getColdStartSamplesForPeriods(any(), any(), any(), anyBoolean(), any()); + + entity = Entity.createSingleAttributeEntity("field", entityName + z); + EntityModel model = new EntityModel(entity, new ArrayDeque<>(), null); + ModelState modelState = new ModelState<>( + model, + entity.getModelId(detectorId).get(), + detector.getDetectorId(), + ModelType.ENTITY.getName(), + clock, + priority + ); + + released = new AtomicBoolean(); + + inProgressLatch = new CountDownLatch(1); + listener = ActionListener.wrap(() -> { + released.set(true); + inProgressLatch.countDown(); + }); + + entityColdStarter.trainModel(entity, detector.getDetectorId(), modelState, listener); + + checkSemaphoreRelease(); + assertTrue(model.getTrcf().isPresent()); + + int tp = 0; + int fp = 0; + int fn = 0; + long[] changeTimestamps = dataWithKeys.changeTimeStampsMs; + + for (int j = trainTestSplit; j < data.length; j++) { + ThresholdingResult result = modelManager + .getAnomalyResultForEntity(data[j], modelState, modelId, entity, detector.getShingleSize()); + if (result.getGrade() > 0) { + if (changeTimestamps[j] == 0) { + fp++; + } else { + tp++; + } + } else { + if (changeTimestamps[j] != 0) { + fn++; + } + // else ok + } + } + + if (tp + fp == 0) { + prec = 1; + } else { + prec = tp * 1.0 / (tp + fp); + } + + if (tp + fn == 0) { + recall = 1; + } else { + recall = tp * 1.0 / (tp + fn); + } + + totalPrec += prec; + totalRecall += recall; + modelState = null; + dataWithKeys = null; + reset(searchFeatureDao); + searchFeatureDao = null; + } + + double avgPrec = totalPrec / numberOfTrials; + double avgRecall = totalRecall / numberOfTrials; + LOG.info("{} features, Interval {}, Precision: {}, recall: {}", baseDimension, detectorIntervalMins, avgPrec, avgRecall); + assertTrue("average precision is " + avgPrec, avgPrec >= precisionThreshold); + assertTrue("average recall is " + avgRecall, avgRecall >= recallThreshold); + } + + /** + * Split average accuracy tests into two in case of time out per test. + * @throws Exception when failing to perform tests + */ + public void testAverageAccuracyDependent() throws Exception { + LOG.info("Anomalies are injected dependently"); + + // 10 minute interval, 4 features + averageAccuracyTemplate(10, 0.4f, 0.3f, 4, false); + + // 10 minute interval, 2 features + averageAccuracyTemplate(10, 0.4f, 0.4f, 2, false); + + // 10 minute interval, 1 features + averageAccuracyTemplate(10, 0.4f, 0.4f, 1, false); + + // 5 minute interval, 4 features + averageAccuracyTemplate(5, 0.4f, 0.3f, 4, false); + + // 5 minute interval, 2 features + averageAccuracyTemplate(5, 0.4f, 0.4f, 2, false); + + // 5 minute interval, 1 features + averageAccuracyTemplate(5, 0.4f, 0.4f, 1, false); + } + + /** + * Split average accuracy tests into two in case of time out per test. + * @throws Exception when failing to perform tests + */ + public void testAverageAccuracyIndependent() throws Exception { + LOG.info("Anomalies are injected independently"); + + // 10 minute interval, 4 features + averageAccuracyTemplate(10, 0.3f, 0.1f, 4, true); + + // 10 minute interval, 2 features + averageAccuracyTemplate(10, 0.4f, 0.4f, 2, true); + + // 10 minute interval, 1 features + averageAccuracyTemplate(10, 0.3f, 0.4f, 1, true); + + // 5 minute interval, 4 features + averageAccuracyTemplate(5, 0.3f, 0.1f, 4, true); + + // 5 minute interval, 2 features + averageAccuracyTemplate(5, 0.4f, 0.4f, 2, true); + + // 5 minute interval, 1 features + averageAccuracyTemplate(5, 0.3f, 0.4f, 1, true); + } +} diff --git a/src/test/java/org/opensearch/ad/util/LabelledAnomalyGenerator.java b/src/test/java/org/opensearch/ad/util/LabelledAnomalyGenerator.java new file mode 100644 index 000000000..0fe263d43 --- /dev/null +++ b/src/test/java/org/opensearch/ad/util/LabelledAnomalyGenerator.java @@ -0,0 +1,115 @@ +/* + * SPDX-License-Identifier: Apache-2.0 + * + * The OpenSearch Contributors require contributions made to + * this file be licensed under the Apache-2.0 license or a + * compatible open source license. + * + * Modifications Copyright OpenSearch Contributors. See + * GitHub history for details. + */ + +package org.opensearch.ad.util; + +import static java.lang.Math.PI; + +import java.util.Random; + +import org.joda.time.Instant; + +/** + * Regarding benchmark data, we randomly generated synthetic data with known anomalies + * inserted throughout the signal. In particular, these are one/two/four dimensional + * data where each dimension is a noisy cosine wave. Anomalies are inserted into one + * dimension with 0.003 probability. Anomalies across each dimension can be independent + * or dependent. We have approximately 5000 observations per data set. The data set is + * generated using the same random seed so the result is comparable across versions. + * + */ +public class LabelledAnomalyGenerator { + /** + * Generate labbelled multi-dimensional data + * @param num the number of data points + * @param period cosine periods + * @param amplitude cosine amplitude + * @param noise noise amplitude + * @param seed random seed + * @param baseDimension input dimension + * @param useSlope whether to use slope in cosine data + * @param historicalData the number of historical points relative to now + * @param delta point interval + * @param anomalyIndependent whether anomalies in each dimension is generated independently + * @return the labelled data + */ + public static MultiDimDataWithTime getMultiDimData( + int num, + int period, + double amplitude, + double noise, + long seed, + int baseDimension, + boolean useSlope, + int historicalData, + int delta, + boolean anomalyIndependent + ) { + double[][] data = new double[num][]; + long[] timestamps = new long[num]; + double[][] changes = new double[num][]; + long[] changedTimestamps = new long[num]; + Random prg = new Random(seed); + Random noiseprg = new Random(prg.nextLong()); + double[] phase = new double[baseDimension]; + double[] amp = new double[baseDimension]; + double[] slope = new double[baseDimension]; + + for (int i = 0; i < baseDimension; i++) { + phase[i] = prg.nextInt(period); + amp[i] = (1 + 0.2 * prg.nextDouble()) * amplitude; + if (useSlope) { + slope[i] = (0.25 - prg.nextDouble() * 0.5) * amplitude / period; + } + } + + long startEpochMs = Instant.now().getMillis() - historicalData * delta; + for (int i = 0; i < num; i++) { + timestamps[i] = startEpochMs; + startEpochMs += delta; + data[i] = new double[baseDimension]; + double[] newChange = new double[baseDimension]; + // decide whether we should inject anomalies at this point + // If we do this for each dimension, each dimension's anomalies + // are independent and will make it harder for RCF to detect anomalies. + // Doing it in point level will make each dimension's anomalies + // correlated. + if (anomalyIndependent) { + for (int j = 0; j < baseDimension; j++) { + data[i][j] = amp[j] * Math.cos(2 * PI * (i + phase[j]) / period) + slope[j] * i + noise * noiseprg.nextDouble(); + if (noiseprg.nextDouble() < 0.01 && noiseprg.nextDouble() < 0.3) { + double factor = 5 * (1 + noiseprg.nextDouble()); + double change = noiseprg.nextDouble() < 0.5 ? factor * noise : -factor * noise; + data[i][j] += newChange[j] = change; + changedTimestamps[i] = timestamps[i]; + changes[i] = newChange; + } + } + } else { + boolean flag = (noiseprg.nextDouble() < 0.01); + for (int j = 0; j < baseDimension; j++) { + data[i][j] = amp[j] * Math.cos(2 * PI * (i + phase[j]) / period) + slope[j] * i + noise * noiseprg.nextDouble(); + // adding the condition < 0.3 so there is still some variance if all features have an anomaly or not + if (flag && noiseprg.nextDouble() < 0.3) { + double factor = 5 * (1 + noiseprg.nextDouble()); + double change = noiseprg.nextDouble() < 0.5 ? factor * noise : -factor * noise; + data[i][j] += newChange[j] = change; + changedTimestamps[i] = timestamps[i]; + changes[i] = newChange; + } + } + } + + } + + return new MultiDimDataWithTime(data, changedTimestamps, changes, timestamps); + } +} diff --git a/src/test/java/org/opensearch/ad/util/MultiDimDataWithTime.java b/src/test/java/org/opensearch/ad/util/MultiDimDataWithTime.java new file mode 100644 index 000000000..5dc02429f --- /dev/null +++ b/src/test/java/org/opensearch/ad/util/MultiDimDataWithTime.java @@ -0,0 +1,26 @@ +/* + * SPDX-License-Identifier: Apache-2.0 + * + * The OpenSearch Contributors require contributions made to + * this file be licensed under the Apache-2.0 license or a + * compatible open source license. + * + * Modifications Copyright OpenSearch Contributors. See + * GitHub history for details. + */ + +package org.opensearch.ad.util; + +public class MultiDimDataWithTime { + public double[][] data; + public long[] changeTimeStampsMs; + public double[][] changes; + public long[] timestampsMs; + + public MultiDimDataWithTime(double[][] data, long[] changeTimestamps, double[][] changes, long[] timestampsMs) { + this.data = data; + this.changeTimeStampsMs = changeTimestamps; + this.changes = changes; + this.timestampsMs = timestampsMs; + } +}