-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathchannel_analysis_setup.py
99 lines (77 loc) · 2.99 KB
/
channel_analysis_setup.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
#!/usr/bin/env python
"""
Script to run a quick path sampling simulation on a toy model that will
exhibit switching between two channels.
"""
from __future__ import print_function
import openpathsampling as paths
import openpathsampling.engines.toy as toys
import numpy as np
import argparse
def make_parser():
parser = argparse.ArgumentParser()
parser.add_argument('--nsteps', type=int, default=10000)
return parser
parser = make_parser()
opts = parser.parse_args()
n_steps = opts.nsteps
pes = (toys.OuterWalls([1.0,1.0], [0.0,0.0])
+ toys.Gaussian(-0.7, [30.0, 0.5], [-0.6, 0.0])
+ toys.Gaussian(-0.7, [30.0, 0.5], [0.6, 0.0])
+ toys.Gaussian(0.5, [85.0, 70.0], [0.1, 0.0]))
topology = toys.Topology(n_spatial=2, masses=[1.0, 1.0], pes=pes)
engine = toys.Engine(
{'integ': toys.LangevinBAOABIntegrator(dt=0.02,
temperature=0.1,
gamma=2.5),
'n_frames_max': 5000,
'n_steps_per_frame': 10}, topology)
template = toys.Snapshot(coordinates=np.array([[0.0, 0.0]]),
velocities=np.array([[0.0, 0.0]]),
engine=engine)
def val(snapshot, index):
return snapshot.xyz[0][index]
cv_x = paths.FunctionCV("xval", val, index=0)
cv_y = paths.FunctionCV("yval", val, index=1)
stateA = paths.CVDefinedVolume(cv_x, float("-inf"), -0.6).named("A")
stateB = paths.CVDefinedVolume(cv_x, 0.6, float("inf")).named("B")
network = paths.TPSNetwork(stateA, stateB)
scheme = paths.OneWayShootingMoveScheme(network=network, engine=engine)
# I'll fake an initial trajectory
trajectory = paths.Trajectory([
toys.Snapshot(coordinates=np.array([[-.65+k*0.1, 0.0]]),
velocities=np.array([[0.1, 0.0]]),
engine=engine)
for k in range(14)
])
initial_conditions = scheme.initial_conditions_from_trajectories(trajectory)
# use this for debugging the equilibration
# equil_store = paths.Storage('equil.nc', 'w')
equil_store = None
# update the user on what we're doing
equil_str = "Running 1000 steps of equilibration."
if equil_store is None:
equil_str += " Not saving equilibration steps."
print(equil_str)
equil_sim = paths.PathSampling(storage=equil_store,
move_scheme=scheme,
sample_set=initial_conditions)
equil_sim.status_update_frequency = 500
equil_sim.run(1000)
equil_conditions = equil_sim.sample_set
# this should be a decorrelated trajectory
equil_traj = equil_conditions[0].trajectory
init_traj = initial_conditions[0].trajectory
assert(not equil_traj.is_correlated(init_traj))
print("Setting up the full simulation and running " + str(n_steps)
+ " steps.")
simulation = paths.PathSampling(
storage=paths.Storage('channel_analysis_sim.nc', 'w'),
move_scheme=scheme,
sample_set=equil_conditions
)
simulation.save_frequency = 200
simulation.status_update_frequency = 200
simulation.run(n_steps)
simulation.storage.save(cv_y)
simulation.storage.close()