-
Notifications
You must be signed in to change notification settings - Fork 10
/
Copy pathORNL-2719.txt
3179 lines (2576 loc) · 74 KB
/
ORNL-2719.txt
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
CONTENTS
SUMIMAIY . cvtenirneeieuientioes e enseetesssestanssescessssessssnatesentessersesssusssssasersonsensessensensnsessssssssssessesssssssenes ]
I P OAU CION. . ettt st eeteesiseesaee e sbe e saesassenessassasssestosaessnssseeatessasnssssasesnnssaessrants 1
Materials, Methods, and Apparatus .....cccceveiiiccesese et st s ss e 2
General Discussion of the System LiF-UF ,-ThF, and the
Limiting Binary Systems .c.eeeviveieeceiicttninnnese it scetessresssstsseseesrastessssessssessasssensestsssnense 2
The 20 Mole % LiF Join and the LiF.4UF ,-LiF-4ThF, (ss)
Fractionation Paths ...ttt eesseeceteessassssesseessessssessaessssaessseses 20
P At e e e b s sa e sa e s bt s e e a s e sars s b et et s aeseen savRaarabenarsaten 21
The 53.8 Mole % LiF Join and the 7LiF-6UF4—7LiF-6ThF4 (ss)
Fractiongtion Paths ...t scseeniste et e sresaensesssasseresessssssassenssasss nsenassos 21
The 75 Mole % LiF Join and the 3LiF-ThF, (ss) Fractionation Paths......cccoovenirnerncnnc. 21
Relations Between the Solid SolUtionS ... cuiieeeuinienrcctnice e e sve st esnaaes 31
ACKNOWIEAGMENTS ... .ottt rte e sttt e sieerbe e e sert e ses eraesbe s st esen sasbeesaensene 34
APPENAIX .cueerinriiieiiiciiriinierereeteeesitassreesresesaesstessasts s aes s sssassensaessasre seresssars senesenesatesessraeneeannrases 43
ORNL-2719
Chemistry-General
TID-4500 (14th ed.)
Contract No. W-7405-eng-26
REACTOR CHEMISTRY DIVISION
PHASE EQUILIBRIA IN THE SYSTEMS
UF —ThF , AND LiF-UF -ThF
C. F. Weaver
R. E. Thoma
H. Insley
H. A. Friedman
This document has been reviewed and is determined to be
DATE ISSUED
AUl L4 1959
OAK RIDGE NATIONAL LABORATORY
Ock Ridge, Tennessee
operated by
UNION CARBIDE CORPORATION
for the
U.S. ATOMIC ENERGY COMMISSION
PHASE EQUILIBRIA IN THE SYSTEMS UF ,~ThF ; AND LiF-UF ;-ThF
C. F. Weaver R. E. Thoma
SUMMARY
As part of a study of materials potentially
useful as fluid fuels for high-temperature reactors,
equilibrium diagrams for the condensed systems
UF,-ThF, and LiF-UF ,-ThF, have been de-
termined. Both thermal analysis and quenching
techniques were used, with phase identification
accomplished by petrographic and x-ray diffraction
analysis. A complete series of solid solutions
without maximum or minimum is formed by UF,
and ThF,. The system LiF-UF,-ThF, contains
no ternary compounds but does contain four
ternary solid solutions. The compounds LiF+-4ThF,
and LiF+-4UF, form a continuous series of solid
solutions, as do the compounds 7LiF <6 ThF, and
7LiF-6UF,. A series of solid solutions exists
having compositions at 33Y% mole % LiF between
LiF-2ThF, and 23 mole % UF,. Another series of
solid solutions exists having compositions at
75 mole % LiF between 3LiF+-ThF, and 15.5 mole
% UF ;. Seven primary-phase fields appear in the
system, those which are solid solutions being
indicated by (ss): LiF, 4LiF-UF4, 3LiF-Th(U)F,
(ss), 7LiF-6ThF ,~7LiF-6 UF, (ss), LiF-2Th(U)F
(ss), LiF+4ThF ,-LiF-4UF, (ss), and UF ,-ThF,
(ss). Phase relations were established trom the
liquidus to about 300°C. The three invariant
points which occur are the following: peritectic,
19 mole % UFA, 18 mole % ThF,, 609°C; peri-
tectic, 20.5 mole % UF4, 7 mole % ThF ,, 500°C;
and eutectic, 26 .5 mole % UF4, 1.5 mole % ThF4,
488°C.
The solid phases taking part in the invariant
reactions are the following: peritectic point at
609°C: LiF'4ThF4—LiF~4UF4 (ss) containing
28 mole % UF,, LiF:2Th(U)F, containing 23
mole % UF,, and 7LiF« ThF ,—7LiF.6UF, con-
taining 23 mole % UF ,; peritectic point at 500°C:
LiF, 7LiF«6ThF ~7LiF.6UF, (ss) containing
31 mole % UF,, and 3LiF-Th(U)F, (ss) containing
15.5 mole % UF,; eutectic point at 488°C:
4LiF-UF4, LiF, and 7LiF+6 ThF4—7LiF-6UF4 (ss)
containing 42.5 mole % UF .
The refractive indices of the ternary solid
solutions were determined as functions of compo-
sition and used for an optical analysis of the
solid solutions when they occurred with other
phases. This information made possible the
H. Insley H. A. Friedman
construction of tie lines, fractionation paths, and
compatibility triangles for the three ternary
invariant points.
INTRODUCTION
Several years ago, R. C. Briant of the Oak
Ridge National Laboratory suggested the use of a
molten mixture of UF, and ThF, together with
fluorides of alkali metals and beryllium fluoride
or zirconium fluoride as a potential fuel for a
high-temperature, low-pressure nuclear reactor.!
A systematic study at ORNL during the past
several years has developed molten salt mixtures
whose chemical and physical properties seem to
suit them for use as fuels in U235 burner re-
actors,2 in plutonium burner reactors, and in
one-region U233 breeder reactors and as blankets
in two-region U233 breeder reactors. Nuclear
reactor designs have been proposed which would
utilize mixtures of Li’F, BeF,, ThF,, and UF,
as fuels.3-3
Little is known concerning the phase relation-
ships of the system LiF-Ber-UF4-ThF4 except
that solid solutions involving LiF, UF,, and
ThF, occur as primary and secondary phases at
low UF, and ThF, concentrations. Phase
diagrams of the limiting binary systems LiF-BeF
(ref 6), LiF-UF, (ref 7), and LiF-ThF, (ref 8)
YA, M. Weinberg and R. C. Briant, Nuclear Sci. and
Eng. 2, 797-803 (1957).
2E. S. Bettis et al., Nuclear Sci, and Eng. 2, 804-825
(1957).
3J. K. Davidson and W. L. Robb, A Molten Salt
Thorium Converter for Power Production, KAPL-M-
JKD-10 (1956).
4L. G. Alexander et al., ‘‘Conceptual Design of a
Power Reactor,”” chap 17 of Fluid Fuel Reactors,
Addison-Wesley, Reading, Mass., 1958,
5L. G. Alexander, ‘‘Nuclear Aspects of Molten-Salt
Reactors,’’ chap 14 of Fluid Fuel Reactors, Addison-
Wesley, Reading, Mass., 1958.
¢R. E. Thoma, Pbhase Diagrams of Nuclear Reactor
Materials, ORNL-2548,
7C. J. Barton et al., J]. Am, Ceram. Soc. 41(2), 63-69
(1958).
8R. E. Thoma et al., ‘‘Phase Equilibria in the Fused
Salt Systems LiF-Thl"'4 and NaF-ThF4," J. Pbys.
Chem. (in press).
have been published. The systems BeF,-UF,
(ref 9) and LiF-BeF,-UF, (ref 10) have been
investigated at the Mound Laboratory., Results of
phase equilibrium studies of the systems BeF,-
ThF, and LiF-BeF,-ThF, will soon be reported
by the authors. Preliminary diagrams of these
systems are in the literature.'1+12 The system
Bef ,-UF ,-ThF, has not, to our knowledge, been
investigated. The remaining systems, UF“-ThF4
and LiF-UF ,-ThF,, are the subject of this report.
Preliminary diagrams of these systems have been
reported by the authors.'2:13 As is to be expected
from the known similarities in the parameters of
the unit cells of ThF4 and UF4 (refs 14 and 15),
a salient characteristic of the condensed systems
UF,-ThF, and LiF-UF,-ThF, is the extensive
formation of solid solutions.
MATERIALS, METHODS, AND APPARATUS
The lithium fluoride used in this investigation
was reagent grade, obtained from Foote Mineral
Company and from Maywood Chemical Works. The
thorium tetrafluoride was obtained from lowa
State College and from National Lead Company.
The wuranium tetrafluoride was obtained from
Mallinkrodt Chemical Works. No appreciable
impurities were found in the uranium tetrafluoride
or thorium tetrafluoride by spectrographic, x-ray
diffraction, or microscopic analysis.
The phase equilibria data were obtained by
thermal analysis of slowly cooled melts and by
identifying the phases present in mixtures which
had been equilibrated and quenched. Because
uranium and thorium fluorides are easily converted
). F. Eichelberger, E. F. Joy, E. Orban, T. B.
Rhinehammer, and P. A. Tucker, unpublished work.
10, F, Eichelberger, D. E. Etter, C. R. Hudgens,
L. V. Jones, T. B. Rhinehammer, P. A, Tucker, and
L. J. Wittenberg, unpublished work.
1w, R. Grimes et al., '"Chemical Aspects of Molten-
Fluoride Reactor Fuels,’”’ chap 12 of Fluid Fuel Re-
actors, Addison-Wesley, Reading, Mass., 1958,
12”Sl.npplement to ‘Phase Diagrams for Ceramists’’’
(compiled by M. Levin and H. F. McMurdie),
American Ceramics Society, Inc., Easton, Pa. (in press).
]3R. E. Thoma et al., MSR Quar. Prog. Rep. Jan 31,
1958, ORNL.2474, p 81,
'I4W. H. Zachariasen, X-Ray Diffraction Studies of
qagzjg)ellaneous Uranium Compounds, MDDC-1152 (June
155, J. Katz and E, Rabinowitch, The Chemistry of
Uranium, NNES VIHI-5, McGraw-Hill, New York, 1951.
to oxides or oxyfluorides at elevated temperatures,
it was necessary to remove small amounts of
water and oxygen as completely as possible from
the starting materials. To facilitate the removal
of these substances, ammonium bifluoride was
added to the mixtures of lithium fluoride, thorium
fluoride, and uranium fluoride before initial
heating in the thermal analysis experiments,
While the mixtures were being heated the water
was evaporated from the system, The oxides
were converted by reaction with the ammonium
bifluoride to products which have not yet been
identified but which are likely to be ammonium
fluometallates.'6+17 Upon further heating, the
“ammonium fluometallates’® decomposed to form
the metal fluorides. These same mixtures were
later used in the quenching experiments,
The phases were identified by petrographic and
x-ray diffraction techniques. These methods for
characterizing phases, as well as a description
of the apparatus used for preparing and annealing
samples, were reported previously,”+8:18-21
GENERAL DISCUSSION OF THE SYSTEM
LiF-UF ,-ThF, AND THE LIMITING
BINARY SYSTEMS
The phase diagram of the condensed ternary
system LiF-UF4-ThF4 is shown in Fig. 1, and a
photograph of a three-dimensional model22 of the
system is shown in Fig. 2. The associated
binary systems are shown in Figs. 3-5.
One metastable compound (3LiFoUF4) and three
incongruently melting compounds (4LiF-UF4,
7LiF-6UF,, and LiF.4UF,) are formed in the
system LiF-UF ,. Optical properties, except those
of 3LiF-UF4, and x-ray diffraction data for these
;gmsza Quar. Prog. Rep. April 30, 1959, ORNL-2723,
p 93.
17, J. Sturm, Oak Ridge
personal communication.
8¢, J. Barton et al., J. Phys. Chem. 62, 665 (1958).
19R. E. Thoma et al.,, J. Am. Ceram. Soc. 42(1),
21-26 (1959).
20H. A. Friedman,
Techniques for Phase
Ceram. Soc. (in press).
21p, A. Tucker and E. F. Joy, Am. Ceram. Soc. Bull.
36(2), 52-54 (1957).
Model constructed by C. Johnson, summer participant
ot ORNL, 1958.
National Laboratory,
**Modifications of Quenching
Equilibrium Studies,”” J. Am.
ThE,
(AL UNCLASSIFIED
ORNL-LR-DWG 28245AR2
PRIMARY-PHASE AREAS
(@) UF,-ThE, (ss)
(b) LiF-4UF,-LiF-4ThF, (ss)
() LiF-2Th(UIF, (ss)
(d) 7LiF-6UF,-7LiF-6ThE, (ss)
(e) 3LiF-Th(U)F, (ss)
(f) LiF
TEMPERATURE IN °C
COMPOSITION IN mole %%
LiF- 4ThE,
LiF'2ThF4
P87 N
AN
7LiF-6ThF,
P 762 A
\ (b
P 597 Ay
£ 565 00
3LiF-ThF4
£ 568 A A
S
pAY
o) Q
P 609
@)\
3 0
AD\, B
RS 6o T NP 500
% 25 W\
T O \ o) \ \\ ,
VAR ARWNAN Y
845 aLiF-UF,” £500" '£490 P 610 PTT5 LiF-4UF
7LiF-6UF,
Fig. 1. The System LIF-UF4-TI1F4.
UNCLASSIFIED
PHOTO 32550
+
® TLiF-gu,
Lif +71k.
if 6'."‘ ]h’“‘“‘
+
LF-4uf, UF4UE, + u, (¢
LiF-4UF,
300
TLF-8UF,
Fig. 2. Three-Dimensional Model of the System LiF-UF,-ThF,.
TEMPERATURE (°C)
TEMPERATURE (-C)
UNCLASSIFIED
ORNL —LR-DWG 17457
1100
/
A
{000 /
200 v
:
/
700 \ /
600 \
/ u~
500 \/ 5 u
yod © <
4LiF UF4/ = W
~ -
400
LiF 10 20 30 40 50 60 70 80 90 UF,
UF, (mole %)
Fig. 3. The System LiF-UF ..
UNCLASSIFIED
ORNL-LR-DWG 26535A
el T T T T 1
& | i N ‘ 5 UNCLASSIFIED
ORNL~-LR-DWG 27913R
1050 ! R ! 1200 | :
950 ———-L—u—r-—--wa E | ! [L - o ‘ l
‘ 4 T T 1100 tremmme '~ LiQuID
1 | f 1 T & ‘"%, $ i |
850 ha——— : ; A“,k*l-__. U SUN— 2 \T 1 T /
\ { 51000 |- -~—*LIQUID + ThE, - UF, SOLID SOLUTION
: ui
750 ——1 /- —— o . ;
; \ ‘ / = 900 |-— — A-j«‘m-;,-ug, SOLID SOLUTION
; i | | . - |
N\ ! NN RS S I T . ! :
850 P\ g . soo L IS N N N
VY cun m iR 4_ T, 10 20 30 40 50 60 70 80 90 UF,
550 F—F = e RIS y
3LiF-ThE,—| 7LiF -6ThE,— LiF-2ThE, — E - | UFy {mole %)
i :
250 | I l
LiF 10 20 30 40 50 60 70 80 90 ThE‘
ThE, (mole %)
Fig. 4. The System LiF-ThF,
Fig. 5. The System ThF4-UF4.
compounds are shown in Tables 1 and 2, re- A complete series of solid solutions without
spectively. The compound 4LiF-UF, has a lower maximum or minimum is formed in the system
limit of stability at 470°C. The compositions and UF ,-ThF,. The optical properties of these solid
temperatures of the three peritectic invariant solutions are shown in Table 1 and Fig. 6. The .
points and the eutectic invariant point are
(1) peritectic: 26 mole % UF ,, 500°C; (2) eutectic: NeLASSFED
27 mole % UF,, 490°C; (3) peritectic: 40 mole % ' ORNL-LR—DWG 279145 -
UF,, 610°C; (4) peritectic: 57 mole % UF,, 775°C. | A |
One congruently melting compound (3LiF-ThF4)
and three incongruently melting compounds
(7LiF-6 ThF,, LiF2ThF,, ond LiF.4ThF,) are
formed in the system LiF-ThF ,. Optical properties
and x-ray diffraction data for these compounds are
shown in Tables 1 and 2, respectively. The
compositions and temperatures of the three peri-
tectic and two eutectic invariant points and one
congruent melting point are (1) eutectic: 23 mole | [
% ThF,, 565°C; (2) congruent melting point: 25 rag b | | x
mole % ThF,, 573°C; (3) eutectic: 29 mole % The 20 4%‘: (mo!e?)eo 80 U
ThF,, 568°C; (4) peritectic: 30.5 mole % ThF,, 4 7
597°C; (5) peritectic: 42 mole % ThF4, 762°C; Fig. 6. Indices of Refractlon vs Composition for ThF ;-
(6) peritectic: 58 mole % ThF,, 897°C, UF, (ss),
INDEX OF REFRACTION
Table 1. Optical Properties of LiF-UF4, LiF-ThF4, and UF4-ThF4 Solid Phases®
Compound Optical Character Sign Optic Angle N,or N, N, or N.y
4LiF.UF, Biaxial + 45° 1.460 1.472
7LiF-6UF4 Uniaxial - 1.554 1.551
LiF-4UF, Biaxial - 10° 1.584 1.600
3LiF~ThF46 Biaxial - 10° 1.480 1.488
7LiF-6ThF4 Uniaxial + - 1,502 1.508
LiF«2ThF, Uniaxial - 1.554 1.548
LiF«4ThF 4" Biaxial - 10° 1.528 1.538
UF4-ThF4 (ss€)
(70% UF ) Biaxial - 60° 1.536 1.586
(60% UF ) Biaxial - 60° 1.530 1.580
(50% UF ) Biaxial - 60° 1.516 1.566
(40% UF ;) Biaxial - 60° 1.510 1.560
% Data taken from R. E. Thoma et al., *Phase Equilibria in the Fused Salt Systems LiF-ThF4 and NaF-ThF4,"
J. Pbys, Chem, (in press); H. Insley et al., Optical Properties and X-Ray Diffraction Data for Some Inorganic Fluoride
and Chloride Compounds, ORNL-2192 (Oct. 23, 1956); and L. A. Harris, G. D. White, and R. E. Thoma, ** Analysis of
the Solid Phases in the System LiF-ThF4," J. Pbys., Chem. (in press). .
bThis routinely observed biaxiality appears to be produced by strain in the 3Li|=-'l'hl=4 and LiF-4ThF4 crystals,
inasmuch as the crystal type is tetragonal as determined by x-ray diffraction measurements,
©Solid solution.
Table 2. X-Ray Diffraction Patterns for the Solid Phases Occurring in the Systems LiF-ThF, ond LiF-UF ;*
3LiF-ThE, TLiF-6THF, LiF-2ThE, LiF 4ThF, ALiF-UF, ILiF-UF, TLiF-6UF, LiF-4UF,
&) 1, 4R v, AR) 1, 4R i, 4R) i, 4R 1”1, AR) 1, 4R) i,
6.42 00 607 15 7.97 5 8.4 3 567 0 49 0 66l 6 102 8
a.46 00 591 20 637 0 776 3 546 25 480 15 597 20 633 12
4.37 00 536 % 39 00 651 5 513 70 44 100 582 15 607 5
2.62 8 5.5 15 3.8 65 580 25 493 00 4.34 00 5.2 % 573 2
3.09 55 495 325 5 482 5 4ss VI X 15 515 0 a9 8
2.866 0 485 20 3 5 4m 70 444 00 39 8 465 0 470 2
2.788 0 475 00 297 0 3.8 00 42 7 340 80 437 13 425 %0
2.542 2% 400 85 282 25 240 0 382 0 340 10 395 55 3.88 2
2.327 0 392 15 2675 7 325 0 355 0 304 25 385 13 37 100
2,189 0 374 15 2528 0 292 25 203 0 207 50 368 0 352 %0
2,104 65 355 65 2338 5 282 2% 289 25 2.4 80 3.49 B 306 8
2,071 2% 344 o 2s 85 2,603 10 2866 3 27m 3 33 9 343 8
2,036 0 33 70 2053 0 2398 0 2747 0 259 B 3s 70 306 12
1.959 3.2 60 200 65 2137 25 2468 o 2169 15 3.07 0 284 40
1933 60 303 00 1787 7 205 35 2398 20 2.083 s 29 95 27l 55
1.877 25 284 35 L0 10 2000 0 2= @ 2085 s 27 0 2542 8
7 25 2747 25 1689 5 2018 0 216 5 194 50 2707 3 2.3% 10
1,743 % 257 20 1603 5 2005 B 2,074 0 1913 25 2542 25 2300 10
1.701 35 243 0 1509 5 9w 0 202 20 1860 0 2350 13 2.2 8
1.66) o 239 10 1.820 0 1872 0 L75 25 228 25 2.000 10
1.618 0 2302 20 1778 3 1.83% 25 1723 2% 2.264 13 2088 3
1.547 I/ 237 20 1.725 5 1.685 25 2184 o 206 &0
1.520 35 2008 5 1719 5 1.662 8 2097 B e 50
2.001 15 1.666 5 1.646 0 2,060 30 1.888 2
1.892 55 1.605 5 1.599 8 2.047 5 1819 8
1.859 15 1.595 5 1.993 B 1767 25
1.804 15 1.563 5 1972 2
1.680 15 1.947 25
1.653 20 1.924 15
1.600 20 1.909 30
1.854 a5
1.825 2
1773 2
1,757 2
1.709 15
1.680 15
1.625 15
1.579 25
1.562 8
*Dota taken from R, E. Thoma et al., *Phoso Equilibrium in the Fused Salt Systems LiF-ThF , and NoF-ThF " . Phys. Chem. (in pross); H. Insloy et al., Optical Properties and
X-Ray Diffraction Data for Some Inorganic Fluoride and Chloride Compounds, ORNL-2192 (Oct, 23, 1956); L. A. Harris, G. D. White, and R. E. Thoma, *‘Anclysis of the Solid Phoses in
the Systom LiF-ThF ' J. Pbys. Chem. (in press); and L. A. Harris, Crystal Structures of 7:6 Type Compounds of Alkali Fluorides with Uranium Tetrafluoride, ORNL CF.58.3.15
{March 6, 1958).
- equilibrium phase diagram is based on the thermal
analysis data shown in Table 3 and the results of
quenching studies shown in Table 4,
The system LiF-UF ,-ThF, contains no ternary
compounds but does contain four ternary solid
solutions. The compounds LiFotiTI*aF“--LiF-AUF4
form a continuous series of solid solutions, as do
the compounds 7LiF-6ThF4-7LiF-6UF4. A
series of solid solutions exists having compo-
sitions at 331/3 mole % LiF between LiF.2ThF,
and 23 mole % UF4. Another series of solid
solutions exists having compositions at 75% LiF
between 3LiF-ThF4 and 15.5 mole % UF4. The
joins containing these solid solutions are
described in detail in sections below.
Seven primary-phase fields appear in the system:
LiF, 4LiF.UF, 3LiF-ThF, (ss), 7LiF«6 ThF ,—
JLiF-6UF, (ss), LiF2ThF, (ss), LiF-4ThF ,-
LiF-4UF4 (ss), and ThF4-UF4 (ss). Phase re-
lations were established from the liquidus to
about 360°C. Three invariant points occur: peri-
tectic: 20.5 mole % UF4, 7 mole % ThF,, 500°C;
eutectic: 26.5 mole % UF4, 1.5 mole % ThF4,
488°C; peritectic: 19 mole % UF,, 18 mole %
ThF,, 609°C. The reactions which take place at
Table 3. Thermal Analysis Data for the Systems UF4-TI1 F4 and LiF-Th F4-UF4*
Interpretation Key
| = liquidus
a = boundary between UFA-Th F4 (ss) and LiF+4UF ,~LiF-4Th F4 (ss) primary-phase fields
b=4LiF.U Fq decomposition
¢ = boundary between LiF°2ThF4 (ss) and LiF°4UF4-LiF'4Th Fy (ss) primary-phase fields
d = ternary eutectic
e= LiF, 3Li|""°T|'1F4 (ss), 7LiF-6UF4-—7LiF'6Th F4 (ss) peritectic
f = boundary between 3LiF+*Th F4 (ss) and 7LiF°6UF4-7LiF°6Th Fy (ss) primary-phase fields
g = boundary between LiF and 7LiF'6UF4-7LiF°6Th F4 (ss) primary-phase fields
h = liquid disappearance at {
i= 3Li|'-'°ThF4 (ss) exsolution
k = liquid disappearance at m
m = boundary between LiF and 3LiF*Th F4 (ss) primary-phase fields
s = solidus
Composition Temperature Interpretation Composition Temperature Interpretation
(mole %) (°C) (mole %) (°c)
UF4-ThF4** LiF-Tl1F4-UF4
70-30 1025 20-10-70 747
1023 750
1005 20-20-60 965 1
985 951 |
60-40 1051 | 780 a
1045 | ' 785 a
1010 20-30-50 982 |
993 941 |
955 825 a
50-50 1085 | 817 a
1080 | 20-40-40 805 a
1050 | 795 a
1035 20-50-30 915
1017 837 a
1005 832 a
990 825 a
985 20-60-20 835 a
40-60 1040 | 832 a
1035 20.70-10 855 a
1022 860 a
1005 33)4-33)4-33), 859 o
990 846 a
960 830 a
815 a
LiF-ThF“-UF4 815 a
20-10-70 962 | 33),-46%-20 478 b
960 | 430
*In general, more than one thermal analysis was made for each nominal composition, All the thermal breaks are
listed, but it is not intended to imply that they all occurred on a single cooling curve, The variation in temperatures
associated with the same phenomenon is believed to be caused by supercooling effects.
**Each of these slowly cooled melts contained only one phase according to x-ray diffraction and petrographic
analysis, indicating that there is no miscibility gap in the system UFA-Th F4.
8
13
Table 3 (continued)
Composition Temperature . Composition Temperature .
(mole %) (°C) Interpretation (mole %) (°C) Interpretation
33)%-46%-20 320 40-30-30 823
300 470 b
33%-51%-15 890 a 458 b
870 a 40-40-20 902
852 a 902
33),-56%-10 91 | 861 l
961 | 860 1
875 a 590
875 a 588
665 c 467 b
663 c 423
960 | 40-50-10 865 ]
956 | 860 |
875 a 855 1
875 a 675 c
695 c 675 c
692 c 50-10-40 755 |
35-20-45 895 | 755 !
893 I 482 d
805 a 480 d
805 a 420
800 a 428
799 a 50-15-35 635
480 d 483 d
423 482 d
35-45-20 928 430
928 50-25-25 803 l
850 a 490 d
850 a 490 d
845 a 451
845 a 442
40-10-50 840 l 53.8-6.2-40 720 |
840 | 715 |
777 482 d
777 450
475 b 53.8-10-36.2 717 !
445 717 |
40-20-40 825 | 481 d
800 445
790 53.8-11.2-35 730 |
782 625
467 b 490 d
428 485 d
40-30-30 863 | 441
853 1 430
825 53,8-13.2-33 725 !
Table 3 {continued)
10
Composition Temperature ] Composition Temperature ]
(mole %) ©C) Interpretation (mole %) (°C) Interpretation .
53.8-13.2-33 725 I 57-15-28 467 b
487 d 57-21.5-21.5 717 |
485 d 690
436 481 d
53.8-15-31.2 726 I 481 d
718 | 458
485 d 458
455 57-26-17 708 !
53.8-18.2.28 740 | 707 |
740 | 496 e
485 d 495 e
485 d 485 d
446 485 d
53.8-23.1-23.1 773 | 427
770 l 57-28-15 733 |
485 d 733 !
437 500 e
53.8-30-16.2 766 I 499 e
7351 ! 480 d
498 e 480 d
485 d 417
468 b 57-30-13 748 |
53.8.36.2-10 763 | 748
762 I 515 f
517 f 514 f
515 f 487 d
447 485 d
57-4-39 666 ! 422
663 | 57-32-11 750
550 750
535 687 1
493 g 686 |
493 g 521 f
488 d 521 f
480 d 58+22.20 725 |
57-10-33 688 ! 725 I
687 l 490 d
491 d 442
490 d 58-24.18 715 I
470 b 715 !
470 b 495 e
57-15-28 705 | 480 d
705 I 430
492 g 60-5-35 625 I ©
487 d 620 |
483 d 489 d
Table 3 (continued)
Composition Temperature ] Composition Temperature )
(mole %) °0) Interpretation (mole %) ©0) Interpretation
60-5.35 488 d 60-30-10 685 |
450 670
445 665
435 527 f
60-10-30 655 | 525 f
655 | 420
490 d 60-35-5 726 |
489 d 718 I
489 d 546 f
475 b 546 f
475 b 62-10.28 618 1
465 615 1
462 545
60-15-25 670 | 535
670 | 492 g
490 d 491 g9
489 d 485 d
458 470 b
451 62-20-18 650 |
445 650 !
60-20-20 678 I 497
678 | 495
495 g 495
495 9 485 d
490 d 485 d
490 d 440
465 b 62.28-10 687
465 b 685
458 675 I
445 665 |
445 587
60-22.18 685 | 525 f
685 | 410
550 t 62.33-5 704 I
495 703 |
492 545 f
485 d 543 f
485 d 64-24-12 652
467 b 625
60.25-15 710 533 f
657 525 f
657 525 f
508 e 523 f
483 d 64-31.5 673 |
470 b 669 |
60-30-10 690 | 544 t
1
Table 3 (continued)
Composition Temperature Interoretation Composition Temperature Int toti
(mole %) (°C) P (mole %) °C) nterpretation
64-31.5 543 f 69-27-4 540 f
525 69-29.2 612
66-24-10 622 611
620 558 f
567 | 557 f
528 f 70-10.20 495 f
523 h 495 f
517 h 487 d
6629-5 640 I 485 d
640 | 477 b
536 f 462 b
535 f 70.20-10 544 f
530 h 540 f
525 h 524 h
67-26-7 615 521 h
615 520 h
547 f 520 h
542 f 430
68-17-15 592 | 415
592 | 70.24.6 575 |
543 f 575 |
530 f 549 f
512 h 540 f
511 h 70.5-12,5-17 500 e
487 i 500 e
487 i 475 b
430 475 b
68-24-8 610 455
607 450
540 | 442
536 | 441
530 f 400
520 f 70.5-17-12.5 525 f
500 e 520 f
69-4.27 490 9 515 h
487 ] 511 h
480 d 511 h
478 d 475 b
472 b 471 b
467 b 442
445 439
425 71-1.28 507 |
420 489 d
69-27-4 604 | 475 b
600 | 545
549 f 71.2.27 484 d
12
Table 3 (continued)
Composition Temperature . Composition Temperature .
o Interpretation o Interpretation
(mole %) (°C) {mole %) ("C)
71.2.27 475 b 72-8-20 516 |
475 b 508 |
448 508 |
71.5.24 488 d 492 d
485 d 490 d
485 d 450
483 d 72-10-18 560
452 500 e
442 475 b
440 428
435 72-11.17 512 |
71.24.5 560 | 501 e
558 l 500 e
545 h 461 b
544 h 456
535 h 72-12-16 517 |
71.5-1-27.5 484 d 515 |
484 d 508 |
470 b 489 d
455 485 d
71.5-2.26.5 504 441
487 d 428
475 b 72.18-10 530 |
467 b 527 |
451 472 b
72-1.27 762 425
469 b 72,5-1.26.5 480 d
467 b 475 d
463 b 467 b
72.2.26 475 b 467 b
475 b 450
450 73-2-25 485 d
430 476 b
72.3.25 658 475 b
484 d 433
475 b 73-11-16 517 I
462 b 5N f
444 500 e
428 484 d
72-4.24 504 482 d
490 d 469 b
487 d 460 b
445 73-12.15 514 |
72-6-22 487 d 503 e
482 d 477
480 d 477
13
Table 3 (continued)
Composition Temperature . Composition Temperature
(mole %) (°c) Interpretation (mole %) (°C) Interpretation
73-12-15 460 75-15.10 535 |
439 525 m
415 525 m
412 75-20.5 555 |
73-15.12 517 | 555 |
515 | 550 |
510 f 75-23-2 803
507 f 563 |
505 e 532 s
390 77-15.8 645
74-20+6 535 f 546 |
535 f 545 |
74-24-2 555 f 540 k
553 f 538 k
465 i 77-19-4 575
460 i 575
75-5-20 535 550 |
528 | 550 i
526 | 538 k
489 d 80-10.10 755
487 d 748
445 493 i
431 490 i
75-10-15 535 | 428
527 | 80-15.5 625 |
512 k 625 |
507 k 541 k
442 541 k
432 430
75-12-13 524 I 420
521 [ 415
75-15.10 740
14
s
Table 4, Thermal-Gradient Quenching Results for the ThF4-UF4 Liquidus and the LiF-Th F4-U F4 Liquidus?
Compos ition Liquidus
(mole %) Tempoerafure Primary Phase
(°C)
UF ,-ThF,
40-60 1053 + 4 UF,-ThF, (ss?)
50-50 1062 £ 3 UF ,-ThF, (ss)
60.40 1053 £ 4 UF - ThF, (ss)
70.30 1053+ 4 UF,-ThF, (ss)
UF ,-ThF ,-LiF |
2.23.75 5723 3LiFsThF , (ss)
2-24.74 5623 3LiF*ThF, (ss)
2.2969 594 %3 TLiFs6ThF ,~TLiF+6UF , (ss)
4-19.77 567 £3 LiF
4-27-69 5986 TLiFs6 ThF ,~7 LiF*6UF , (ss)
5.15.80 615+3 LiF
5.19-76 5622 3LiF*ThF (ss)
5.20.75 5623 3LiF*ThF, (ss)
5:24-71 56513 TLiF*6ThF ,~7LiF+6UF , (ss)
22-6.72 504 + 4 LiF
23.1.23.1-53.8 744 %3 LiFedThF ,~LiF*4UF (ss)
24-4-72 495 2 LiF + 7LiFs6 ThF ,~7LiF*6UF , (ss)
25.2.73 49112 LiF + 7LiFs6 ThF ;~TLiF*6UF , (ss)
25-3.72 49512 LiF + 7LiFs6 ThF ,~7LiF+6UF , (ss)
25.25-50 806 13 LiF*4ThF ,~LiF*4UF (ss)
26-2-72 496 12 LiF + 7LiF*6ThF ,~7LiF*6UF ; (s5)°
26,5-1-72,5 495 +2 4LiFeUF, + 7LiFs6ThF ~7LiF*6UF , (ss)
26.5-2-71.5 504 2 4LiF°UF , + 7LiF*6ThF ~7LiF+6UF (ss)
27-1.72 49112 4LiFeUF , + TLiFs6 ThF ,~7LiF*6UF , (ss)
27.2.71 49512 LiF + 7LiF*6ThF ,~7LiF*6UF , (ss)
27.5.1-71.5 49512 4LiFsUF , + 7LiF*6 ThF ,~7LiF-6UF , (ss)
28.1.71 508 £ 2 TLiF+6ThF ,~7LiF*6UF, (ss)
28-10.62 615+3 LiFedUF ,~LiF*4ThF (ss)
28-18.2.53.8 729 %3 LiF+4UF ,~LiF*4ThF (ss)
30.10-60 6332 LiF+4UF ,~LiF*dThF (ss)
30-30-40 859 + 1 LiF+4UF ,~LiFe4ThF, (ss)
30-50-20 968 + 4 UF 4-Th Fq (ss)
Table 4 (continued)
1 ]
16
Composition Liquidus
(mole %) Tem%erafure Primary Phase
-G
UF4-ThF4-LiF
31.2-15-53.8 736 +3 LiFe4u F4-Li Fe4Th F4 (ss)
33-10.57 687 3 LiF+4U F4-LiF°4Th F4 (ss)
33-13.2.53.8 7233 LiF°4UF4-Li F*4Th F4 (ss)
5.26-69 581 12 7LiF+6Th F4-7Li F~6UF4
5:29-66 64513 LiFs2ThF , (ss)
5-31-64 66713 LiF+2Th F4 (ss)
5-33-62 70413 LiF2Th F4 (ss)
5-35-60 7143 LiFe2Th F4 (ss)
6-24-70 55512 7LiF*6Th F4—7LiF-6U F4 (ss)