-
Notifications
You must be signed in to change notification settings - Fork 10
/
Copy pathORNL-1701.txt
2070 lines (926 loc) · 23.8 KB
/
ORNL-1701.txt
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
CENTRAL RESEAECH LIBRALY
it i o DOCUMENT COLLECTION
VAR
3 445k D3I49L3Y9 4
ORNL 1701
Engineering
FORCED CONVECTION HEAT TRAIilSFER
BETWEEN PARALLEL PLATES AND IN
ANNULI WITH VOLUME HEAT SOURCES
WITHIN THE FLUIDS
H. F. Poppendiek
L. D. Palmer
CENTRAL RESEARCH LIBRARY
DOCUMENT COLLECTION
LIBRARY LOAN COPY
DO NOT TRANSFER TO ANOTHER PERSON
If you wish someone else to see this document,
send in name with document and the library will
arrange a loan,
OAK RIDGE NATIONAL LABORATORY .
OPERATED BY
CARBIDE AND CARBON CHEMICALS COMPANY
A DIVISION OF UNION CARBIDE AND CARBON CORPORATION
POST OFFICE BOX P
OAK RIDGE, TENNESSEE
ORNL-1701
Copy No. 4/ ;7 N
Contract No. W-TL05, eng 26
Reactor Experimental Engineering Division
FORCED CONVECTION HEAT TRANSFER BETWEEN PARALIEL
PLATES AND IN ANNULI WITH VOLUME HEAT
SOURCES WITHIN THE FIUIDS
by
H. F. Poppendiek
L. D. Palmer
DATE ISSUED:
MaY 11 1954
OAK RIDGE NATIONAL LABORATORY
Operated by
CARBIDE AND CARBON CHEMICALS COMPANY
A Division of Union Carbide and Carbon Corporation
Post Office Box P
Ogk Ridge, Tennessee
MARTIN MARIETTA ENERGY SYSTEMS L| RIES
TR
3 Y456 D349L39 y
- AN R et e s e S T
1.
2.
3.
45,
60
T-11.
12.
13&
1k,
15.
16.
17.
18.
19.
200
21.
220
23.
2k,
25,
6.
270
28.
29.
30.
31.
32.
330
3k,
36.
Lo,
Lh,
118,
119.
120-369.
INTERNAL DISTRIBUTION
C. E. Center
Bilology Library
Health Physics Library
Central Research Library
Reactor Experimental
Engineering Library
Laboratory Records Department
Laboratory Records, ORNL R.C.
C. E, Larson
L. B. Emlet (K-25)
J. P, Murray (Y-12)
A. M. Weinberg
E. H. Taylor
E. D. Shipley
C. E. Winters
F. C. VonderLage
R. C. Briant
J. A. Swartout
8. C. Lind
F. L. Culler
A. H. Snell
A. Hollaender
M. T. Kelley
W. J. Fretague
G. Ho Clewett
K. Z. Morgan
T. A. Lincoln
A. 5. Householder
C. S. Harrill
D. 8. Billington
D. W. Cardwell
E. M. King
R. N, Lyon
Jd. A. Lane
A. J. Miller
R. B. Briggs
A. 5. Kitzes
Q. Sisman
R. W. Stoughton
C. B, Graham
45,
h’6&
TINT,
48,
Lg,
500
ci.
52,
53.
5!"0
55,
56,
57«
58,
59
60,
61,
62,
63,
64,
65,
66.
67
680
690
TO.
T1.
T2,
73.
Th o
75
76.
TT o
78,
e
80-11%,
37 e
adocks 0
@l T
1&&“: o X
117,
EXTERNAL DISTRIBUTION
R.
FG
EO
PO
Dfl
M.
A,
G.
SO
P.
GO
0.
C.
IO
AO
C.
K.
PO
ORNL 1701
Engineering
Gall
Poppendiek
Beall
Gili
Cowen
Breazeale (consultant)
Charpie
Alexander
Bettis
Blizard
Bohlmann
Bradfute
Claiborne
Cohen
Cristy
Edlund
Ergen
Frass
Dy Greene
C.
WO
RO
W
Fo
CO
EU
Bo
D.
D.
wo
WO
Hamilton
Hoffman
Kasten
Keilholtz
Lansing
Lawson
Lynch
Mills
Palmer
Powvers
Rosenthal
Savage
Sisman
Ge
M,
Co
¥
k)
i a
e
FD
Thomas
Wardse
Zwola
Foppendiek
Pussard
Sitvney
Manly
R. F. Bacher, California Institute of Technology
A.F. Plant Representative, Wood-Ridge (Attn: S. V. Manson)
Given distribution as shown in TID-A500 under Engineering Category
DISTRIBUTION PAGE TO BE REMOVED IF REPORT IS GIVEN PUBLIC DISTRIBUTION
TABILE OF CONTENTS
INTRODUCTION . csveceveccenscrssonccs .
IAMINAR FLOW ANALYSIS .. eeeeccosccscconssosncccananse searesssssrae ceees
TURBULENT FLOW ANALYSIS.....4.s tesccsasccsasesernnsrenae cocnns cereesnn
DISCUSSION..... Ceescescsesssesseteesesseerat et oes st ne toessesssrases
APPENDIX l.cecceccecsccnsesnsscsseossasasonsse P
PAGE
1h
SUMMARY
This paper concerns itself with forced convection heat transfer
between parallel plates which are infinite in extent and ducting fluids
containing uniform volume heat sources; also heat is transferred uni-
formly to or from the fluids through the parallel plates. Dimensionless
differences betweén the plate wall temperature and the mixed-mean fluid
temperature are evaluated in terms of several dimensionless moduli. These
analyses pertain to the laminar and turbulent flow regimes and liquid
metals as well as ordinasry fluids. The solutions may also be used to
estimate heat transfer in annulus systems whose inmer to outer radius
ratios do not differ significantly from umity.
NOMENCLATURE
letters
cross sectional heat transfer area, ft2
£luid thermel diffusivity, £t2/hr
parameter in equation (o), ft/hr
fluid heat capacity, Btu/lb °F
parameter in equa%ion (r), dimensionless
gravitational force per unit mass, :E‘t/hr2
heat transfer conductance, Btu/hr £ OF
£luid thermsl conductivity, Btu/hr £t (°F/ft)
fluid pressure, 1bs/ft2
heat transfer rate, Btu/hr
radisl distance from centerline of parallel plate system, ft
radial position at which the reference tempersture
tq is stipulated, ft
half the distance between the two parallel plates, ft
fluid temperature st position n, °F
a reference temperature at radius ry, OF
mixed-mean fluid temperature, Op
fluid temperature at plate walls, Op
fluid temperature at the parallel plate system center, Op
fluid velocity at n, ft/hr
mean fluid velocity, ft /hr
ny,
Nu
Re
-8 -
volume hegt source, Btu/hr ft2
axial distance, ft
radial distance from parallel plate walls, ft
fluid weight density, lbs/ft”
eddy diffusivity, £t2/hr
friction factor defined in equation (i) dimensionless
absolute viscosity of fluid, 1b hr/ft2
fluid kinematic viscosity, fte/hr
fluid mass density, lbs h:a:'e/.f"l:}+
£luid shear stress at position n, lbs/ft?
f£1luid shear stress at parallel plate wells, los/ft®
Dimensionless Moduli
Y/ To
Y1./To
h bro/k, Nusselt Modulus
¥ v¢p/k, Prandtl Modulus
up bro/ P
-9 -
INTRODUCTION
The mathematical heat transfer analyses to be presented here for a
parallel plates system are accomplished much in the same manner as were those
for a pipe system presented previously in reference 1. The present analyses
as well as those given in reference 1 can be used to determine the tempera-
ture structure in flowing flulds that possess internal sources of heat gener-
ation. Such volume heat sources may result from nuclear or chemical reactions
or may be generated electrically.
The ideslized volume-heat-source system considered in this paper is
defined by the following postulates:
1.
Thermal and hydrodynemic patterns have been
established (parallel plates of infinite
extent).
Uniform volume heat sources exist within the
fluids.
Physical properties are not functions of
temperature. :
Heat is transferred uniformly to or from the
fluid at the plate walls.
In the case of turbulent flow the generalized
turbulent velocity profile defimnes the hydro-
dynamic structure.
In the case of turbulent flow there exists an
analogy between heat and momentum transfer.
- 10 -
LAMINAR FLOW ANALYSIS
The differential equation deseribing heat transfer in the parallel
plates system for the case of laminaer flow is
o |
3 ey ot L. 0% W
.é.um[l __.)]_a_x_a_é.;é.+ (1)
To Yep
Where,
Uy, mean fluid velocity
t, temperature
X, axial distance
T, radial distance
a, thermal diffusivity
W, wniform volume heat source
Y, fluid weight density
Cps fluid heat capacity
One boundary condition is represented by the uniform wall-heat -flux
which may be positive, negative or zero,
d _ _/aq\ _ 4 Ot (. _ .
a%(r—rq)—(fi)o- k-—a-—l-;-(r“"’ro) (2)
where %&.is the radial heat. flux and (%%) is the wall heat flux. The second
boundary condition is, td,‘h reference te;perature, such as a wall or center-
line temperature,
t(r = rq) = t4 (3)
Note, the mixed-mean fluid temperature may also be specified as the reference
temperature.
-11 -
Downstream from the entrance region where the thermal pattern (tempera-
ture gradients) of the system has become established, the axial temperature
gradient, .ig...;% » 1s uniform and equal to the mixed-mean axial fluid temperg -
ture gra.dientl, ...g.;.fi - The latter gradient can be obtained by making the
following heat rate balance. The heat generated in a lattice whose volume
is 2r, dx (the width of the lattice being unity) plus the heat transferred
into or out of the lattice at the plate walls must all be lost from the
Ei d.x adlc - 2 Y —
Hence, in the established flow region the axial temperature gradient is
w-31 (dq
dt _ btm _ To (dA>o (5)
0x 0JXx Un ¥ cp
Upon substituting equation (5) into equation (1), the following total differ-
ential equation results:
(- @) ©
1. DNote, that the mixed-mean fluid temperature at any given axial position
is defined as,
-ro
-r
/ t u dr °
ty = 2 = X tu dr
Tq Upre g
[
o
I SR e e e e i N R T
-12 -
vhere F' = 1 - _l_.(gg) - Equation (6) can be solved upon making two
Wro
integrations. The first integration plus boundary equation (2) yields,
dt=E '—52!_ F! 3
at k{(e 1)1--.2.;;21-} (7)
A second integration gives the desired temperature solution,
=2 [ ) 5@ ) ®
where the reference temperature is, to, the wall temperature. The tenpera-
ture solution in terms of the centerline temperature rather than the wall
temperature is given by
t -t = 2 o, b
E,_?E*[GE - 'el‘)(%) -5 (&) ] (9)
where t4 1s the centerline temperature. Equation (9) is graphed in
Figure 1 for several values of the function F'.
The difference between the plate wall temperature and mixed-mean ~luid
temperature is defined by
To
\/ér u(ty - t)ar
. (10)
to -ty =
nes
b
Upon substituting the laminar velocity profile relationfiand equation (8]
into equation (10) there results,
Yo - tm _ 1TF - 14 (11)
Wr,© 35
k
-13 -
UNCLASSIFIED
ORNL-LR-DWG-176
0.75 | T | l 7‘
0.70
0.60 /
// ) |
0.50 /
//
0.40
S
//
0.30} /
//
- 0.20 /
/ . | —
~ 0.10 - F= e
fn"fq_ / //‘,
. 2 / /
‘ \LV'EQ' "] F'=3/4
o mm——— “
\ \
\
\‘\ \ F'=‘|/2
-0.40 \ \
. \ ‘-\
-0.20 ™ Fi=0
-0.30 AN
~0.40 \\\
-0.50 I ! | | \
0 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00
4 r
To
Fig. 4. Dimensioniess Radial Temperature Distributions in a Parallel Plotes System for
Laminar Flow (Equation 9)
-1k -
TURBULENT FLOW ANALYSIS
Fluid flow in pipes and channels (parallel plates systems) under
turbulent flow conditions has been characterized in terms of a laminar
sublayer contiguous to the wall, a buffer layer, and a turbulent core by
Nikursdse, von Karman, and others. This structure has been presented in a
general fashion by the well known generalized velocity profile which was
shown together with the experimental data of Nikuradse, Reichardt, and Laufer
in reference 1. Table 1 gives some of the specific hydrodynamic relations
for the various flow layers in a parallel plates system; a discussion of some
of the details of this table can be found in Appendix 1.
The differential equation describing heat transfer in a parallel plates
‘system.for the case of turbulent flow is
u(r) $% = 5= [(a re ) g;] ' 3% (12)
where,
u(r), the turbulent velocity profile (given by
the generalized velocity profile)
€ > the eddy diffusivity? given in Table 1
Upon substituting equation (5) into equation (12) for the established theraml
region, the following total differential equation resulis,
_ 1 (4q
u(r)[ To (dA)o] _ W _.@_[(“e)éfi-] (13)
ar dr
2, It is postulated that the heat and momentum transfer eddy diffusivities
are equal as proposed by Reynolds and successfully used by von Karman,
Martinelli and othens.
TABLE I
HYDRODYNAMIC RELATIONS FOR THE VARIOUS FLOW LAIERS
BETWEEN PARALLEL PLATES
REGION
GENERALIZED VELOCITY
DISTRIBUTION SHEAR STRESS STRESS EQUATION EDDY DIFFUSIVITY
Laminar Sublayer
T
< + _'o .
o y<5 u _ p y T:To T=p‘D%E ""%“—"—“O
or o< i i2led To v Y
To Re” -
P
Buffer ILayer , .
5 <y+ <30 .
or Y 2 = - 3.05 + 5.00 1n|y i T="T, T=pP+e) B | £ - 0076 Re"7 L _
131.5 89 | [T 2 ° v Fo
222 L o 2] 1 To KN
Re°9 I'O Re'9 p =
Outer Turbulent - -
Layer To '
u |y ( © T=T (1-.l)’T= du €
789 _ ¥ 2.2 + 2.5 In ,Ip o pe — —— = ,0152 Re"? (1- _Y)
Re9< <.5 To . ro dy 3 52 Re (lrfzo_
p - -
Inner Turbulent -
Layer To g
Sl 1 U _5.542.51n|" - T=To(1 - L) |T= pef— £ - .00%38 Re?
To To s To Y P
P
Laminar Sublayer
Buffer layer
Outer Turbulen
Layer
Inner Turbulent-—
Layer
\—0-
s e S
e
channel wall
y1
Yo
channel center
- 6T -
- 16 -
The boundary conditions are given by equations (2) and (3). As was done
in the case of the pipe system (reference 1) the boundary value problem
denoted by equations (13), (2) and (3) was separated into two somewhat
simpler boundary value problems whose solutions can be superposed to yield
the solution of the original problem. The two boundary value problems
to be considered are,
Jl_(_rfl’__.,_‘:’_.=(.i§_ [(a+€)9_2}
r
Y
e RA p dr
dd (. . rg) = 0 (14)
- o \W/ _ il.[(a + €) QE}
Up ch dr
(15)
% (r = r5) = (g_%)o _
t(r = rq) = td»
Equetions (14) represent a flow system with a volume heat source but with no
plate-wall heat flux, and equations (15) represent a flow system without a
volume heat source but with a uniform plate-wall heat flux. The superposition
of the solutions of (14) and (15) yields the solution of the problem defined
_17'...
by equations (13), (2) and (3), the sum of reference temperatures tgqy and
tdp being equal to the reference temperature td3. The problem defined by
equations (15) has already been analyzed by others (see Martinelli,
reference 2). The solution of equations (14) is outlined and evaluated in
the following paragraphs.
The first }?gégration of eguations (14) expressed in terms of the
radial heat flow yields,
n
% = Wro ..}...l.... d_n. - Wron (16)
Um
o
where n = Y . The evaluation of the integral in equation (16) is presented
To
in Appendix 2; the radial heat flow profiles for various Beynolds moduli are
graphed in Figure 2.
The second integration of the differential equation of (14), yielding
the desired temperature solution; was accomplished layer by layer utilizing
the hydrodynamic relations listed in Teble 1 and the radial heat flow
expressions developed in Appendix 2. The details of the procedure were
presented in the previous analysis for the pipe system (reference 1). The