diff --git a/joss.06062/10.21105.joss.06062.crossref.xml b/joss.06062/10.21105.joss.06062.crossref.xml new file mode 100644 index 0000000000..028fdad06f --- /dev/null +++ b/joss.06062/10.21105.joss.06062.crossref.xml @@ -0,0 +1,445 @@ + + + + 20240325T090939-2222b389c1b6b872836c818c252b79933a5735e5 + 20240325090939 + + JOSS Admin + admin@theoj.org + + The Open Journal + + + + + Journal of Open Source Software + JOSS + 2475-9066 + + 10.21105/joss + https://joss.theoj.org + + + + + 03 + 2024 + + + 9 + + 95 + + + + Acanthophis: a comprehensive plant hologenomics +pipeline + + + + Kevin D. + Murray + https://orcid.org/0000-0002-2466-1917 + + + Justin O. + Borevitz + https://orcid.org/0000-0001-8408-3699 + + + Detlef + Weigel + https://orcid.org/0000-0002-2114-7963 + + + Norman + Warthmann + https://orcid.org/0000-0002-1178-8409 + + + + 03 + 25 + 2024 + + + 6062 + + + 10.21105/joss.06062 + + + http://creativecommons.org/licenses/by/4.0/ + http://creativecommons.org/licenses/by/4.0/ + http://creativecommons.org/licenses/by/4.0/ + + + + Software archive + 10.5281/zenodo.10795245 + + + GitHub review issue + https://github.com/openjournals/joss-reviews/issues/6062 + + + + 10.21105/joss.06062 + https://joss.theoj.org/papers/10.21105/joss.06062 + + + https://joss.theoj.org/papers/10.21105/joss.06062.pdf + + + + + + Genomic constraints to drought +adaptation + Ahrens + 10.1101/2021.08.07.455511 + 2021 + Ahrens, C. W., Murray, K. D., +Mazanec, R. A., Ferguson, S., Bragg, J., Jones, A., Tissue, D. T., +Byrne, M., Borevitz, J. O., & Rymer, P. D. (2021, August 8). Genomic +constraints to drought adaptation. +https://doi.org/10.1101/2021.08.07.455511 + + + TAXPASTA: TAXonomic Profile Aggregation and +STAndardisation + Beber + Journal of Open Source +Software + 87 + 8 + 10.21105/joss.05627 + 2475-9066 + 2023 + Beber, M. E., Borry, M., Stamouli, +S., & Yates, J. A. F. (2023). TAXPASTA: TAXonomic Profile +Aggregation and STAndardisation. Journal of Open Source Software, 8(87), +5627. https://doi.org/10.21105/joss.05627 + + + Sensitive protein alignments at tree-of-life +scale using DIAMOND + Buchfink + Nature Methods + 4, 4 + 18 + 10.1038/s41592-021-01101-x + 1548-7105 + 2021 + Buchfink, B., Reuter, K., & +Drost, H.-G. (2021). Sensitive protein alignments at tree-of-life scale +using DIAMOND. Nature Methods, 18(4, 4), 366–368. +https://doi.org/10.1038/s41592-021-01101-x + + + Twelve years of SAMtools and +BCFtools + Danecek + GigaScience + 2 + 10 + 10.1093/gigascience/giab008 + 2047-217X + 2021 + Danecek, P., Bonfield, J. K., Liddle, +J., Marshall, J., Ohan, V., Pollard, M. O., Whitwham, A., Keane, T., +McCarthy, S. A., Davies, R. M., & Li, H. (2021). Twelve years of +SAMtools and BCFtools. GigaScience, 10(2), giab008. +https://doi.org/10.1093/gigascience/giab008 + + + MultiQC: Summarize analysis results for +multiple tools and samples in a single report + Ewels + Bioinformatics (Oxford, +England) + 19 + 32 + 10.1093/bioinformatics/btw354 + 1367-4811 + 2016 + Ewels, P., Magnusson, M., Lundin, S., +& Käller, M. (2016). MultiQC: Summarize analysis results for +multiple tools and samples in a single report. Bioinformatics (Oxford, +England), 32(19), 3047–3048. +https://doi.org/10.1093/bioinformatics/btw354 + + + Centrifuge: Rapid and sensitive +classification of metagenomic sequences + Kim + Genome Research + 10.1101/gr.210641.116 + 1088-9051 + 2016 + Kim, D., Song, L., Breitwieser, F. +P., & Salzberg, S. L. (2016). Centrifuge: Rapid and sensitive +classification of metagenomic sequences. Genome Research. +https://doi.org/10.1101/gr.210641.116 + + + Snakemake — a scalable bioinformatics +workflow engine + Köster + Bioinformatics + 19 + 28 + 10.1093/bioinformatics/bts480 + 1367-4803 + 2012 + Köster, J., & Rahmann, S. (2012). +Snakemake — a scalable bioinformatics workflow engine. Bioinformatics, +28(19), 2520–2522. +https://doi.org/10.1093/bioinformatics/bts480 + + + Snakemake-workflows/dna-seq-gatk-variant-calling + Köster + 10.5281/ZENODO.4677629 + 2021 + Köster, J., Micwessolly, Kuthe, E., +& De Coster, W. (2021). +Snakemake-workflows/dna-seq-gatk-variant-calling. +https://doi.org/10.5281/ZENODO.4677629 + + + The Sequence Alignment/Map format and +SAMtools + Li + Bioinformatics (Oxford, +England) + 16 + 25 + 10.1093/bioinformatics/btp352 + 1367-4811 + 2009 + Li, H., Handsaker, B., Wysoker, A., +Fennell, T., Ruan, J., Homer, N., Marth, G., Abecasis, G., Durbin, R., +& 1000 Genome Project Data Processing Subgroup. (2009). The Sequence +Alignment/Map format and SAMtools. Bioinformatics (Oxford, England), +25(16), 2078–2079. +https://doi.org/10.1093/bioinformatics/btp352 + + + Aligning sequence reads, clone sequences and +assembly contigs with BWA-MEM + Li + 10.48550/arXiv.1303.3997 + 2013 + Li, H. (2013). Aligning sequence +reads, clone sequences and assembly contigs with BWA-MEM. +https://doi.org/10.48550/arXiv.1303.3997 + + + Minimap2: Pairwise alignment for nucleotide +sequences + Li + Bioinformatics + 18 + 34 + 10.1093/bioinformatics/bty191 + 1367-4803 + 2018 + Li, H. (2018). Minimap2: Pairwise +alignment for nucleotide sequences. Bioinformatics, 34(18), 3094–3100. +https://doi.org/10.1093/bioinformatics/bty191 + + + New strategies to improve Minimap2 alignment +accuracy + Li + Bioinformatics + 23 + 37 + 10.1093/bioinformatics/btab705 + 1367-4803 + 2021 + Li, H. (2021). New strategies to +improve Minimap2 alignment accuracy. Bioinformatics, 37(23), 4572–4574. +https://doi.org/10.1093/bioinformatics/btab705 + + + Bracken: Estimating species abundance in +metagenomics data + Lu + PeerJ Computer Science + 3 + 10.7717/peerj-cs.104 + 2376-5992 + 2017 + Lu, J., Breitwieser, F. P., Thielen, +P., & Salzberg, S. L. (2017). Bracken: Estimating species abundance +in metagenomics data. PeerJ Computer Science, 3, e104. +https://doi.org/10.7717/peerj-cs.104 + + + Fast and sensitive taxonomic classification +for metagenomics with Kaiju + Menzel + Nature Communications + 7 + 10.1038/ncomms11257 + 2041-1723 + 2016 + Menzel, P., Ng, K. L., & Krogh, +A. (2016). Fast and sensitive taxonomic classification for metagenomics +with Kaiju. Nature Communications, 7, 11257. +https://doi.org/10.1038/ncomms11257 + + + kWIP: The k-mer weighted inner product, a de +novo estimator of genetic similarity + Murray + PLOS Computational Biology + 9 + 13 + 10.1371/journal.pcbi.1005727 + 1553-7358 + 2017 + Murray, K. D., Webers, C., Ong, C. +S., Borevitz, J., & Warthmann, N. (2017). kWIP: The k-mer weighted +inner product, a de novo estimator of genetic similarity. PLOS +Computational Biology, 13(9), e1005727. +https://doi.org/10.1371/journal.pcbi.1005727 + + + Landscape drivers of genomic diversity and +divergence in woodland Eucalyptus + Murray + Molecular Ecology + 24 + 28 + 10.1111/mec.15287 + 0962-1083 + 2019 + Murray, K. D., Janes, J. K., Jones, +A., Bothwell, H. M., Andrew, R. L., & Borevitz, J. O. (2019). +Landscape drivers of genomic diversity and divergence in woodland +Eucalyptus. Molecular Ecology, 28(24), 5232–5247. +https://doi.org/10.1111/mec.15287 + + + Mash: Fast genome and metagenome distance +estimation using MinHash + Ondov + Genome Biology + 17 + 10.1186/s13059-016-0997-x + 1474-760X + 2016 + Ondov, B. D., Treangen, T. J., +Melsted, P., Mallonee, A. B., Bergman, N. H., Koren, S., & +Phillippy, A. M. (2016). Mash: Fast genome and metagenome distance +estimation using MinHash. Genome Biology, 17, 132. +https://doi.org/10.1186/s13059-016-0997-x + + + Mosdepth: Quick coverage calculation for +genomes and exomes + Pedersen + Bioinformatics (Oxford, +England) + 5 + 34 + 10.1093/bioinformatics/btx699 + 1367-4811 + 2018 + Pedersen, B. S., & Quinlan, A. R. +(2018). Mosdepth: Quick coverage calculation for genomes and exomes. +Bioinformatics (Oxford, England), 34(5), 867–868. +https://doi.org/10.1093/bioinformatics/btx699 + + + Combining whole-genome shotgun sequencing and +rRNA gene amplicon analyses to improve detection of microbe–microbe +interaction networks in plant leaves + Regalado + The ISME Journal + 8, 8 + 14 + 10.1038/s41396-020-0665-8 + 1751-7370 + 2020 + Regalado, J., Lundberg, D. S., +Deusch, O., Kersten, S., Karasov, T., Poersch, K., Shirsekar, G., & +Weigel, D. (2020). Combining whole-genome shotgun sequencing and rRNA +gene amplicon analyses to improve detection of microbe–microbe +interaction networks in plant leaves. The ISME Journal, 14(8, 8), +2116–2130. +https://doi.org/10.1038/s41396-020-0665-8 + + + AdapterRemoval v2: Rapid adapter trimming, +identification, and read merging + Schubert + BMC Research Notes + 9 + 10.1186/s13104-016-1900-2 + 1756-0500 + 2016 + Schubert, M., Lindgreen, S., & +Orlando, L. (2016). AdapterRemoval v2: Rapid adapter trimming, +identification, and read merging. BMC Research Notes, 9, 88. +https://doi.org/10.1186/s13104-016-1900-2 + + + NextGenMap: Fast and accurate read mapping in +highly polymorphic genomes + Sedlazeck + Bioinformatics + 21 + 29 + 10.1093/bioinformatics/btt468 + 1367-4803 + 2013 + Sedlazeck, F. J., Rescheneder, P., +& Von Haeseler, A. (2013). NextGenMap: Fast and accurate read +mapping in highly polymorphic genomes. Bioinformatics, 29(21), +2790–2791. +https://doi.org/10.1093/bioinformatics/btt468 + + + Improved metagenomic analysis with Kraken +2 + Wood + Genome Biology + 1, 1 + 20 + 10.1186/s13059-019-1891-0 + 1474-760X + 2019 + Wood, D. E., Lu, J., & Langmead, +B. (2019). Improved metagenomic analysis with Kraken 2. Genome Biology, +20(1, 1), 1–13. +https://doi.org/10.1186/s13059-019-1891-0 + + + Nf-core/taxprofiler + Yates + 10.5281/ZENODO.7728364 + 2023 + Yates, J. A. F., Stamouli, S., +Andersson-Li, L., Beber, M. E., Mesilaakso, L., Nf-Core Bot, +Christensen, T. A., Mahwash Jamy, JIANHONG OU, Stepien, R., Borry, M., +Husen M. Umer, Syme, R., Hübner, A., & Zandra Fagernäs. (2023). +Nf-core/taxprofiler. +https://doi.org/10.5281/ZENODO.7728364 + + + + + + diff --git a/joss.06062/10.21105.joss.06062.jats b/joss.06062/10.21105.joss.06062.jats new file mode 100644 index 0000000000..d63a48baee --- /dev/null +++ b/joss.06062/10.21105.joss.06062.jats @@ -0,0 +1,792 @@ + + +
+ + + + +Journal of Open Source Software +JOSS + +2475-9066 + +Open Journals + + + +6062 +10.21105/joss.06062 + +Acanthophis: a comprehensive plant hologenomics +pipeline + + + +https://orcid.org/0000-0002-2466-1917 + +Murray +Kevin D. + +kdmpapers@gmail.com + +* + + +https://orcid.org/0000-0001-8408-3699 + +Borevitz +Justin O. + + + + +https://orcid.org/0000-0002-2114-7963 + +Weigel +Detlef + + + + +https://orcid.org/0000-0002-1178-8409 + +Warthmann +Norman + + + +* + + + +Max Planck Institute for Biology Tübingen, 72076 Tübingen, +Germany + + + + +Research School of Biology, Australian National University, +Canberra, Australia + + + + +FAO/IAEA Joint Centre of Nuclear Techniques in Food and +Agriculture, Plant Breeding and Genetics Laboratory, Seibersdorf, +Austria + + + + +* E-mail: kdmpapers@gmail.com +* E-mail: + + +10 +10 +2023 + +9 +95 +6062 + +Authors of papers retain copyright and release the +work under a Creative Commons Attribution 4.0 International License (CC +BY 4.0) +2022 +The article authors + +Authors of papers retain copyright and release the work under +a Creative Commons Attribution 4.0 International License (CC BY +4.0) + + + +python +snakemake +plants +metagenomics +variant calling +population genomics +reference-free classification + + + + + + Summary +

Acanthophis is a comprehensive pipeline for the joint analysis of + both host genetic variation and variation in the composition and + abundance of host-associated microbiomes (together, the “hologenome”). + Implemented in Snakemake + (Köster + & Rahmann, 2012), Acanthophis handles data from raw FASTQ + read files through quality control, alignment of the reads to a plant + reference, variant calling, taxonomic classification and + quantification of microbes, and metagenome analysis. The workflow + contains numerous practical optimisations, both to reduce disk space + usage and maximise utilisation of computational resources. Acanthophis + is available under the Mozilla Public Licence v2 at + https://github.com/kdm9/Acanthophis + as a python package installable from conda or PyPI + (pip install acanthophis).

+
+ + Statement of Need +

Understanding plant biology benefits from ecosystem-scale analysis + of genetic variation, and increasingly demands the characterisation of + not only plant genomes but also the genomes of their associated + microbes. Such analyses are often data intensive, particularly at the + scale required for quantitative analyses, i.e. hundreds to thousands + of samples + (Regalado + et al., 2020). They demand computationally-efficient pipelines + that perform both host genotyping and host-associated microbiome + characterisation in a consistent, flexible, and reproducible + fashion.

+

Currently, no such unified pipelines exist. Previous pipelines + perform only a subset of these tasks (e.g. Snakemake’s variant calling + pipeline; Köster et al. + (2021)). + In addition, most host-aware microbiome analysis pipelines do not + allow for genotyping and/or assume an animal host (e.g. Taxprofiler; + Yates et al. + (2023)). + Acanthophis has attracted many users, and has been used in + peer-reviewed journal articles and preprints (e.g. Murray et al. + (2019); + Ahrens et al. + (2021)).

+
+ + Components and Features +

Acanthophis is a pipeline for the analysis of plant population + resequencing data. It expects short-read shotgun whole (meta-)genome + sequencing data, typically of plants collected in the field (nothing + fundamentally prevents Acanthophis operating on long-read data, + however additional tools would need to be incorporated, which will + happen given sufficient user demand). A typical dataset might be + 10s-1000s of samples from one or multiple closely related species, + sequenced with 2x150bp paired-end short read sequencing. In a + plant-microbe interaction genomics study, these plants and therefore + sequencing libraries can contain microbial DNA (a “hologenome”), but + datasets focusing only on host genome variation are also possible. + Acanthophis can be configured to do any of the following analyses: + mapping reads to a reference, calling variants, annotating variant + effects, estimating genetic distances directly from sequence reads + (de novo), and profiling and/or assembling + metagenomes. While we developed Acanthophis to handle plant data, + there is no reason why it cannot be applied to other taxa, although + some parameters may need adjustment (see below). Philosophically, + Acanthophis aims for maximum efficiency and flexibility, and therefore + does not bake any particular biological question into its outputs. As + such, each user should for example filter the resulting variant files + as appropriate for their biological question(s), and likewise apply + other post-processing as needed.

+

Across the entire pipeline, Acanthophis operates on ‘sample sets’, + named groups of one or more samples, and each sample can be in any + number of sample sets. The pipeline is configured via a global + config.yaml file, in which one can configure + the pipeline per sample-set. This way, one can configure the analyses + to be run (most of the below analysis stages can be skipped if not + needed), as well as tool-specific settings or thresholds. We provide a + documented template as well as a reproducible workflow to simulate + test data, which can be used as a basis for customisation. While + Acanthophis is cross-platform, most of the underlying tools are only + packaged for and/or only operate on GNU/Linux operating systems. + Therefore, Acanthophis is only actively supported for users on Linux + systems.

+ + Stage 1: Raw reads to per-sample reads +

Input data consists of FASTQ files per run of each + library corresponding to a sample. For + each run of each library, Acanthophis uses + AdapterRemoval + (Schubert + et al., 2016) to remove low quality and adapter sequences, + and optionally to merge overlapping read pairs. It then uses + FastQC to summarise sequence QC before and + after AdapterRemoval.

+
+ + Stage 2: Alignment to reference(s) +

To align reads to reference genomes, Acanthophis can use any of + BWA MEM + (Li, + 2013), NGM + (Sedlazeck + et al., 2013), and minimap2 + (Li, + 2018, + 2021). + Then, Acanthophis merges per-runlib BAMs to per-sample BAMs, and + uses samtools markdup + (Danecek + et al., 2021; + Li + et al., 2009) to mark duplicate reads. Input reference + genomes should be uncompressed, + samtools faidxed FASTA files.

+
+ + Stage 3: Variant Calling +

Acanthophis uses bcftools mpileup and/or + freebayes to call raw variants, using priors + and thresholds configurable for each sample set. It then normalises + variants with bcftools norm, splits + multi-allelic variants, filters each allele with per-sample set + filters, and combines filter-passing bialelic sites back into single + multi-allelic sites, merges region-level VCFs, indexes, and + calculates statistics on these final VCF files. Acanthophis provides + two alternative approaches to parallelise variant calling: either a + static list of non-overlapping genome windows (supplied in a BED + file), or genome bins with approximately equal amounts of data, + which are automatically generated using mosdepth + (Pedersen + & Quinlan, 2018).

+
+ + Stage 4: Taxon profiling +

Acanthophis can create taxonomic profiles of each sample with + reference to either public sequence databases (e.g. NCBI’s + nt or refseq), or + user-supplied databases. Acanthophis can utilise any of Kraken 2 + (Wood + et al., 2019), Bracken + (Lu + et al., 2017), Kaiju + (Menzel + et al., 2016), Centrifuge + (Kim + et al., 2016), and Diamond + (Buchfink + et al., 2021) to create taxonomic profiles for each sample + against any number of taxon identification databases; most tools + supply pre-computed indices for public databases. Acanthophis can + then optionally use taxpasta + (Beber + et al., 2023) to merge multiple profiles into a single + combined table for easy downstream use.

+
+ + Stage 5: <italic>De novo</italic> Estimates of Genetic + Dissimilarity +

Acanthophis can use either kWIP + (Murray + et al., 2017) or Mash + (Ondov + et al., 2016) to estimate genetic distances between samples + without alignment to a reference genome. These features first count + reads into k-mer sketches, and then calculate pairwise distances + among samples.

+
+ + Stage 6: Reporting and Statistics +

Throughout all pipeline stages, various tools output summaries of + their actions and/or outputs. We optionally combine these into + unified reports by pipeline stage and sample set using MultiQC + (Ewels + et al., 2016), allowing plotting of raw sequence QC + statistics, alignment QC statistics, variant QC statistics, and + summarisation of taxonomic identification analyses.

+
+
+ + Acknowledgements +

We thank Brice Letcher, George Bouras, Abhishek Tiwari, Luisa + Teasdale, Anne-Cecile Colin, Rose Andrew, Johannes Köster, and Scott + Ferguson for comments or advice on Acanthophis and/or on this + manuscript. KDM is supported by a Marie Skłodowska-Curie Actions + fellowship. This project has received funding from the European + Research Council (ERC) under the European Union’s Horizon 2020 + research and innovation program (grant agreement No. 951444-PATHOCOM + to DW). This work was supported financially by the Australian Research + Council (CE140100008; DP150103591; DE190100326). The research was + undertaken with the assistance of resources from the National + Computational Infrastructure (NCI), which is supported by the + Australian Government.

+
+ + + + + + + AhrensCollin W. + MurrayKevin D. + MazanecRichard A. + FergusonScott + BraggJason + JonesAshley + TissueDavid T. + ByrneMargaret + BorevitzJustin O. + RymerPaul D. + + Genomic constraints to drought adaptation + 20210808 + 20231009 + https://www.biorxiv.org/content/10.1101/2021.08.07.455511v1 + 10.1101/2021.08.07.455511 + 2021.08.07.455511 + + + + + + + BeberMoritz E. + BorryMaxime + StamouliSofia + YatesJames A. Fellows + + TAXPASTA: TAXonomic Profile Aggregation and STAndardisation + Journal of Open Source Software + 20230711 + 20231004 + 8 + 87 + 2475-9066 + https://joss.theoj.org/papers/10.21105/joss.05627 + 10.21105/joss.05627 + 5627 + + + + + + + BuchfinkBenjamin + ReuterKlaus + DrostHajk-Georg + + Sensitive protein alignments at tree-of-life scale using DIAMOND + Nature Methods + Nature Publishing Group + 202104 + 20240201 + 18 + 4, 4 + 1548-7105 + https://www.nature.com/articles/s41592-021-01101-x + 10.1038/s41592-021-01101-x + 366 + 368 + + + + + + DanecekPetr + BonfieldJames K. + LiddleJennifer + MarshallJohn + OhanValeriu + PollardMartin O. + WhitwhamAndrew + KeaneThomas + McCarthyShane A. + DaviesRobert M. + LiHeng + + Twelve years of SAMtools and BCFtools + GigaScience + 20210216 + 10 + 2 + 2047-217X + 10.1093/gigascience/giab008 + giab008 + + + + + + + EwelsPhilip + MagnussonMåns + LundinSverker + KällerMax + + MultiQC: Summarize analysis results for multiple tools and samples in a single report + Bioinformatics (Oxford, England) + 20161001 + 32 + 19 + 1367-4811 + 10.1093/bioinformatics/btw354 + 3047 + 3048 + + + + + + KimDaehwan + SongLi + BreitwieserFlorian P. + SalzbergSteven L. + + Centrifuge: Rapid and sensitive classification of metagenomic sequences + Genome Research + Cold Spring Harbor Lab + 20161017 + 20231004 + 1088-9051 + https://genome.cshlp.org/content/early/2016/11/16/gr.210641.116 + 10.1101/gr.210641.116 + + + + + + KösterJohannes + RahmannSven + + Snakemake — a scalable bioinformatics workflow engine + Bioinformatics + 20120110 + 20160330 + 28 + 19 + 1367-4803 + http://bioinformatics.oxfordjournals.org/content/28/19/2520 + 10.1093/bioinformatics/bts480 + 2520 + 2522 + + + + + + KösterJohannes + Micwessolly + KutheElias + De CosterWouter + + Snakemake-workflows/dna-seq-gatk-variant-calling + 20210502 + 20231009 + https://zenodo.org/record/4677629 + 10.5281/ZENODO.4677629 + + + + + + LiHeng + HandsakerBob + WysokerAlec + FennellTim + RuanJue + HomerNils + MarthGabor + AbecasisGoncalo + DurbinRichard + 1000 Genome Project Data Processing Subgroup + + The Sequence Alignment/Map format and SAMtools + Bioinformatics (Oxford, England) + 20090815 + 25 + 16 + 1367-4811 + 10.1093/bioinformatics/btp352 + 2078 + 2079 + + + + + + LiHeng + + Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM + 20130316 + 20190102 + https://arxiv.org/abs/1303.3997v2 + 10.48550/arXiv.1303.3997 + + + + + + LiHeng + + Minimap2: Pairwise alignment for nucleotide sequences + Bioinformatics + + BirolInanc + + 20180915 + 20231004 + 34 + 18 + 1367-4803 + https://academic.oup.com/bioinformatics/article/34/18/3094/4994778 + 10.1093/bioinformatics/bty191 + 3094 + 3100 + + + + + + LiHeng + + New strategies to improve Minimap2 alignment accuracy + Bioinformatics + + AlkanCan + + 20211207 + 20231004 + 37 + 23 + 1367-4803 + https://academic.oup.com/bioinformatics/article/37/23/4572/6384570 + 10.1093/bioinformatics/btab705 + 4572 + 4574 + + + + + + LuJennifer + BreitwieserFlorian P. + ThielenPeter + SalzbergSteven L. + + Bracken: Estimating species abundance in metagenomics data + PeerJ Computer Science + 20170102 + 20170808 + 3 + 2376-5992 + https://peerj.com/articles/cs-104 + 10.7717/peerj-cs.104 + e104 + + + + + + + MenzelPeter + NgKim Lee + KroghAnders + + Fast and sensitive taxonomic classification for metagenomics with Kaiju + Nature Communications + 20160413 + 20160927 + 7 + 2041-1723 + http://www.nature.com/doifinder/10.1038/ncomms11257 + 10.1038/ncomms11257 + 11257 + + + + + + + MurrayKevin D. + WebersChristfried + OngCheng Soon + BorevitzJustin + WarthmannNorman + + kWIP: The k-mer weighted inner product, a de novo estimator of genetic similarity + PLOS Computational Biology + 20170905 + 20170910 + 13 + 9 + 1553-7358 + http://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1005727 + 10.1371/journal.pcbi.1005727 + e1005727 + + + + + + + MurrayKevin D. + JanesJasmine K + JonesAshley + BothwellHelen M + AndrewRose L + BorevitzJustin O + + Landscape drivers of genomic diversity and divergence in woodland Eucalyptus + Molecular Ecology + 201912 + 20200826 + 28 + 24 + 0962-1083 + https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7065176/ + 10.1111/mec.15287 + 5232 + 5247 + + + + + + OndovBrian D. + TreangenTodd J. + MelstedPáll + MalloneeAdam B. + BergmanNicholas H. + KorenSergey + PhillippyAdam M. + + Mash: Fast genome and metagenome distance estimation using MinHash + Genome Biology + 2016 + 20160830 + 17 + 1474-760X + http://dx.doi.org/10.1186/s13059-016-0997-x + 10.1186/s13059-016-0997-x + 132 + + + + + + + PedersenBrent S. + QuinlanAaron R. + + Mosdepth: Quick coverage calculation for genomes and exomes + Bioinformatics (Oxford, England) + 20180301 + 34 + 5 + 1367-4811 + 10.1093/bioinformatics/btx699 + 867 + 868 + + + + + + RegaladoJulian + LundbergDerek S. + DeuschOliver + KerstenSonja + KarasovTalia + PoerschKarin + ShirsekarGautam + WeigelDetlef + + Combining whole-genome shotgun sequencing and rRNA gene amplicon analyses to improve detection of microbe–microbe interaction networks in plant leaves + The ISME Journal + Nature Publishing Group + 202008 + 20230529 + 14 + 8, 8 + 1751-7370 + https://www.nature.com/articles/s41396-020-0665-8 + 10.1038/s41396-020-0665-8 + 2116 + 2130 + + + + + + SchubertMikkel + LindgreenStinus + OrlandoLudovic + + AdapterRemoval v2: Rapid adapter trimming, identification, and read merging + BMC Research Notes + 2016 + 20160607 + 9 + 1756-0500 + http://dx.doi.org/10.1186/s13104-016-1900-2 + 10.1186/s13104-016-1900-2 + 88 + + + + + + + SedlazeckFritz J. + ReschenederPhilipp + Von HaeselerArndt + + NextGenMap: Fast and accurate read mapping in highly polymorphic genomes + Bioinformatics + 20131101 + 20231004 + 29 + 21 + 1367-4803 + https://academic.oup.com/bioinformatics/article/29/21/2790/195626 + 10.1093/bioinformatics/btt468 + 2790 + 2791 + + + + + + WoodDerrick E. + LuJennifer + LangmeadBen + + Improved metagenomic analysis with Kraken 2 + Genome Biology + BioMed Central + 201912 + 20231009 + 20 + 1, 1 + 1474-760X + https://genomebiology.biomedcentral.com/articles/10.1186/s13059-019-1891-0 + 10.1186/s13059-019-1891-0 + 1 + 13 + + + + + + YatesJames A. Fellows + StamouliSofia + Andersson-LiLili + BeberMoritz E. + MesilaaksoLauri + Nf-Core Bot + ChristensenThomas A. + Mahwash Jamy + JIANHONG OU + StepienRafal + BorryMaxime + Husen M. Umer + SymeRobert + HübnerAlex + Zandra Fagernäs + + Nf-core/taxprofiler + 20230919 + 20231009 + https://zenodo.org/record/7728364 + 10.5281/ZENODO.7728364 + + + + +
diff --git a/joss.06062/10.21105.joss.06062.pdf b/joss.06062/10.21105.joss.06062.pdf new file mode 100644 index 0000000000..09fb2071de Binary files /dev/null and b/joss.06062/10.21105.joss.06062.pdf differ