diff --git a/gee_catalog.json b/gee_catalog.json index 2acaceb..8de5093 100644 --- a/gee_catalog.json +++ b/gee_catalog.json @@ -672,7 +672,7 @@ "snippet": "ee.ImageCollection('COPERNICUS/S1_GRD')", "provider": "European Union/ESA/Copernicus", "state_date": "2014-10-03", - "end_date": "2023-11-24", + "end_date": "2023-11-25", "bbox": "-180, -90, 180, 90", "deprecated": false, "keywords": "backscatter, copernicus, esa, eu, polarization, radar, sar, sentinel", @@ -690,7 +690,7 @@ "snippet": "ee.ImageCollection('COPERNICUS/S2')", "provider": "European Union/ESA/Copernicus", "state_date": "2015-06-23", - "end_date": "2023-11-24", + "end_date": "2023-11-25", "bbox": "-180, -56, 180, 83", "deprecated": false, "keywords": "copernicus, esa, eu, msi, radiance, sentinel", @@ -708,7 +708,7 @@ "snippet": "ee.ImageCollection('COPERNICUS/S2_CLOUD_PROBABILITY')", "provider": "European Union/ESA/Copernicus/SentinelHub", "state_date": "2015-06-23", - "end_date": "2023-11-24", + "end_date": "2023-11-25", "bbox": "-180, -56, 180, 83", "deprecated": false, "keywords": "cloud, copernicus, esa, eu, msi, radiance, sentinel, sentinelhub", @@ -726,7 +726,7 @@ "snippet": "ee.ImageCollection('COPERNICUS/S2_HARMONIZED')", "provider": "European Union/ESA/Copernicus", "state_date": "2015-06-23", - "end_date": "2023-11-24", + "end_date": "2023-11-25", "bbox": "-180, -56, 180, 83", "deprecated": false, "keywords": "copernicus, esa, eu, msi, radiance, sentinel", @@ -744,7 +744,7 @@ "snippet": "ee.ImageCollection('COPERNICUS/S2_SR')", "provider": "European Union/ESA/Copernicus", "state_date": "2017-03-28", - "end_date": "2023-11-24", + "end_date": "2023-11-25", "bbox": "-180, -56, 180, 83", "deprecated": false, "keywords": "copernicus, esa, eu, msi, reflectance, sentinel, sr", @@ -762,7 +762,7 @@ "snippet": "ee.ImageCollection('COPERNICUS/S2_SR_HARMONIZED')", "provider": "European Union/ESA/Copernicus", "state_date": "2017-03-28", - "end_date": "2023-11-24", + "end_date": "2023-11-25", "bbox": "-180, -56, 180, 83", "deprecated": false, "keywords": "copernicus, esa, eu, msi, reflectance, sentinel, sr", @@ -780,7 +780,7 @@ "snippet": "ee.ImageCollection('COPERNICUS/S3/OLCI')", "provider": "European Union/ESA/Copernicus", "state_date": "2016-10-18", - "end_date": "2023-11-23", + "end_date": "2023-11-24", "bbox": "-180, -90, 180, 90", "deprecated": false, "keywords": "copernicus, esa, eu, olci, radiance, sentinel, toa", @@ -798,7 +798,7 @@ "snippet": "ee.ImageCollection('COPERNICUS/S5P/NRTI/L3_AER_AI')", "provider": "European Union/ESA/Copernicus", "state_date": "2018-07-10", - "end_date": "2023-11-24", + "end_date": "2023-11-25", "bbox": "-180, -90, 180, 90", "deprecated": false, "keywords": "aai, aerosol, air_quality, copernicus, esa, eu, knmi, pollution, s5p, sentinel, tropomi, uvai", @@ -816,7 +816,7 @@ "snippet": "ee.ImageCollection('COPERNICUS/S5P/NRTI/L3_AER_LH')", "provider": "European Union/ESA/Copernicus", "state_date": "2018-07-10", - "end_date": "2023-11-24", + "end_date": "2023-11-25", "bbox": "-180, -90, 180, 90", "deprecated": false, "keywords": "aerosol, air_quality, alh, copernicus, esa, eu, knmi, pollution, s5p, sentinel, tropomi, uvai", @@ -834,7 +834,7 @@ "snippet": "ee.ImageCollection('COPERNICUS/S5P/NRTI/L3_CLOUD')", "provider": "European Union/ESA/Copernicus", "state_date": "2018-07-05", - "end_date": "2023-11-24", + "end_date": "2023-11-25", "bbox": "-180, -90, 180, 90", "deprecated": false, "keywords": "climate, cloud, copernicus, dlr, esa, eu, s5p, sentinel, tropomi", @@ -852,7 +852,7 @@ "snippet": "ee.ImageCollection('COPERNICUS/S5P/NRTI/L3_CO')", "provider": "European Union/ESA/Copernicus", "state_date": "2018-11-22", - "end_date": "2023-11-24", + "end_date": "2023-11-25", "bbox": "-180, -90, 180, 90", "deprecated": false, "keywords": "air_quality, carbon_monoxide, copernicus, esa, eu, knmi, pollution, s5p, sentinel, sron, tropomi", @@ -870,7 +870,7 @@ "snippet": "ee.ImageCollection('COPERNICUS/S5P/NRTI/L3_HCHO')", "provider": "European Union/ESA/Copernicus", "state_date": "2018-10-02", - "end_date": "2023-11-24", + "end_date": "2023-11-25", "bbox": "-180, -90, 180, 90", "deprecated": false, "keywords": "air_quality, bira, copernicus, dlr, esa, eu, formaldehyde, hcho, pollution, s5p, sentinel, tropomi", @@ -888,7 +888,7 @@ "snippet": "ee.ImageCollection('COPERNICUS/S5P/NRTI/L3_NO2')", "provider": "European Union/ESA/Copernicus", "state_date": "2018-07-10", - "end_date": "2023-11-24", + "end_date": "2023-11-25", "bbox": "-180, -90, 180, 90", "deprecated": false, "keywords": "air_quality, copernicus, esa, eu, knmi, nitrogen_dioxide, no2, pollution, s5p, sentinel, tropomi", @@ -906,7 +906,7 @@ "snippet": "ee.ImageCollection('COPERNICUS/S5P/NRTI/L3_O3')", "provider": "European Union/ESA/Copernicus", "state_date": "2018-07-10", - "end_date": "2023-11-24", + "end_date": "2023-11-25", "bbox": "-180, -90, 180, 90", "deprecated": false, "keywords": "air_quality, copernicus, esa, eu, o3, ozone, pollution, s5p, sentinel, tropomi", @@ -924,7 +924,7 @@ "snippet": "ee.ImageCollection('COPERNICUS/S5P/NRTI/L3_SO2')", "provider": "European Union/ESA/Copernicus", "state_date": "2018-07-10", - "end_date": "2023-11-24", + "end_date": "2023-11-25", "bbox": "-180, -90, 180, 90", "deprecated": false, "keywords": "air_quality, bira, copernicus, dlr, esa, eu, pollution, s5p, sentinel, so2, sulfur_dioxide, tropomi", @@ -942,7 +942,7 @@ "snippet": "ee.ImageCollection('COPERNICUS/S5P/OFFL/L3_AER_AI')", "provider": "European Union/ESA/Copernicus", "state_date": "2018-07-04", - "end_date": "2023-11-21", + "end_date": "2023-11-23", "bbox": "-180, -90, 180, 90", "deprecated": false, "keywords": "aai, aerosol, air_quality, copernicus, esa, eu, knmi, pollution, s5p, sentinel, tropomi, uvai", @@ -978,7 +978,7 @@ "snippet": "ee.ImageCollection('COPERNICUS/S5P/OFFL/L3_CH4')", "provider": "European Union/ESA/Copernicus", "state_date": "2019-02-08", - "end_date": "2023-11-21", + "end_date": "2023-11-22", "bbox": "-180, -90, 180, 90", "deprecated": false, "keywords": "climate, copernicus, esa, eu, knmi, methane, s5p, sentinel, sron, tropomi", @@ -996,7 +996,7 @@ "snippet": "ee.ImageCollection('COPERNICUS/S5P/OFFL/L3_CLOUD')", "provider": "European Union/ESA/Copernicus", "state_date": "2018-07-04", - "end_date": "2023-11-21", + "end_date": "2023-11-23", "bbox": "-180, -90, 180, 90", "deprecated": false, "keywords": "climate, cloud, copernicus, dlr, esa, eu, s5p, sentinel, tropomi", @@ -1014,7 +1014,7 @@ "snippet": "ee.ImageCollection('COPERNICUS/S5P/OFFL/L3_CO')", "provider": "European Union/ESA/Copernicus", "state_date": "2018-06-28", - "end_date": "2023-11-21", + "end_date": "2023-11-23", "bbox": "-180, -90, 180, 90", "deprecated": false, "keywords": "air_quality, carbon_monoxide, copernicus, esa, eu, knmi, pollution, s5p, sentinel, sron, tropomi", @@ -1032,7 +1032,7 @@ "snippet": "ee.ImageCollection('COPERNICUS/S5P/OFFL/L3_HCHO')", "provider": "European Union/ESA/Copernicus", "state_date": "2018-12-05", - "end_date": "2023-11-21", + "end_date": "2023-11-23", "bbox": "-180, -90, 180, 90", "deprecated": false, "keywords": "air_quality, bira, copernicus, dlr, esa, eu, formaldehyde, hcho, pollution, s5p, sentinel, tropomi", @@ -1050,7 +1050,7 @@ "snippet": "ee.ImageCollection('COPERNICUS/S5P/OFFL/L3_NO2')", "provider": "European Union/ESA/Copernicus", "state_date": "2018-06-28", - "end_date": "2023-11-14", + "end_date": "2023-11-15", "bbox": "-180, -90, 180, 90", "deprecated": false, "keywords": "air_quality, copernicus, esa, eu, knmi, nitrogen_dioxide, no2, pollution, s5p, sentinel, tropomi", @@ -1068,7 +1068,7 @@ "snippet": "ee.ImageCollection('COPERNICUS/S5P/OFFL/L3_O3')", "provider": "European Union/ESA/Copernicus", "state_date": "2018-09-08", - "end_date": "2023-11-22", + "end_date": "2023-11-23", "bbox": "-180, -90, 180, 90", "deprecated": false, "keywords": "air_quality, copernicus, esa, eu, o3, ozone, pollution, s5p, sentinel, tropomi", @@ -1086,7 +1086,7 @@ "snippet": "ee.ImageCollection('COPERNICUS/S5P/OFFL/L3_O3_TCL')", "provider": "European Union/ESA/Copernicus", "state_date": "2018-04-30", - "end_date": "2023-11-09", + "end_date": "2023-11-10", "bbox": "-180, -90, 180, 90", "deprecated": false, "keywords": "air_quality, copernicus, esa, eu, o3, ozone, pollution, s5p, sentinel, tropomi", @@ -1104,7 +1104,7 @@ "snippet": "ee.ImageCollection('COPERNICUS/S5P/OFFL/L3_SO2')", "provider": "European Union/ESA/Copernicus", "state_date": "2018-12-05", - "end_date": "2023-11-22", + "end_date": "2023-11-23", "bbox": "-180, -90, 180, 90", "deprecated": false, "keywords": "air_quality, bira, copernicus, dlr, esa, eu, pollution, s5p, sentinel, so2, sulfur_dioxide, tropomi", @@ -1500,7 +1500,7 @@ "snippet": "ee.ImageCollection('ECMWF/CAMS/NRT')", "provider": "European Centre for Medium-Range Weather Forecasts (ECMWF)", "state_date": "2016-06-22", - "end_date": "2023-11-22", + "end_date": "2023-11-24", "bbox": "-180, -90, 180, 90", "deprecated": false, "keywords": "aerosol, atmosphere, climate, copernicus, ecmwf, forecast, particulate_matter", @@ -1554,7 +1554,7 @@ "snippet": "ee.ImageCollection('ECMWF/ERA5_LAND/DAILY_AGGR')", "provider": "Daily Aggregates: Google and Copernicus Climate Data Store", "state_date": "1950-01-02", - "end_date": "2023-11-15", + "end_date": "2023-11-16", "bbox": "-180, -90, 180, 90", "deprecated": false, "keywords": "cds, climate, copernicus, ecmwf, era5_land, evaporation, heat, lakes, precipitation, pressure, radiation, reanalysis, runoff, snow, soil_water, temperature, vegetation, wind", @@ -2166,7 +2166,7 @@ "snippet": "ee.ImageCollection('FIRMS')", "provider": "NASA / LANCE / EOSDIS", "state_date": "2000-11-01", - "end_date": "2023-11-22", + "end_date": "2023-11-23", "bbox": "-180, -90, 180, 90", "deprecated": false, "keywords": "eosdis, fire, firms, geophysical, hotspot, lance, modis, nasa, thermal", @@ -2418,7 +2418,7 @@ "snippet": "ee.ImageCollection('GOOGLE/CLOUD_SCORE_PLUS/V1/S2_HARMONIZED')", "provider": "Google Earth Engine", "state_date": "2020-01-01", - "end_date": "2023-11-23", + "end_date": "2023-11-24", "bbox": "-180, -90, 180, 90", "deprecated": false, "keywords": "google, cloud, sentinel2_derived", @@ -2436,7 +2436,7 @@ "snippet": "ee.ImageCollection('GOOGLE/DYNAMICWORLD/V1')", "provider": "World Resources Institute", "state_date": "2015-06-23", - "end_date": "2023-11-24", + "end_date": "2023-11-25", "bbox": "-180, -90, 180, 90", "deprecated": false, "keywords": "global, google, landcover, landuse, nrt, sentinel2_derived", @@ -3354,7 +3354,7 @@ "snippet": "ee.ImageCollection('JAXA/GCOM-C/L3/LAND/LAI/V3')", "provider": "Global Change Observation Mission (GCOM)", "state_date": "2021-11-29", - "end_date": "2023-11-22", + "end_date": "2023-11-23", "bbox": "-180, -90, 180, 90", "deprecated": false, "keywords": "climate, g_portal, gcom, gcom_c, jaxa, lai, land, leaf_area_index", @@ -3408,7 +3408,7 @@ "snippet": "ee.ImageCollection('JAXA/GCOM-C/L3/LAND/LST/V3')", "provider": "Global Change Observation Mission (GCOM)", "state_date": "2021-11-29", - "end_date": "2023-11-22", + "end_date": "2023-11-23", "bbox": "-180, -90, 180, 90", "deprecated": false, "keywords": "climate, g_portal, gcom, gcom_c, jaxa, land, land_surface_temperature, lst", @@ -5334,7 +5334,7 @@ "snippet": "ee.ImageCollection('LANDSAT/LC08/C02/T1_RT')", "provider": "USGS", "state_date": "2013-03-18", - "end_date": "2023-11-24", + "end_date": "2023-11-25", "bbox": "-180, -90, 180, 90", "deprecated": false, "keywords": "c2, global, l8, landsat, lc8, nrt, oli_tirs, radiance, rt, t1, tier1, usgs", @@ -5352,7 +5352,7 @@ "snippet": "ee.ImageCollection('LANDSAT/LC08/C02/T1_RT_TOA')", "provider": "USGS/Google", "state_date": "2013-03-18", - "end_date": "2023-11-24", + "end_date": "2023-11-25", "bbox": "-180, -90, 180, 90", "deprecated": false, "keywords": "c2, global, l8, landsat, lc8, toa, usgs", @@ -5442,7 +5442,7 @@ "snippet": "ee.ImageCollection('LANDSAT/LC09/C02/T1')", "provider": "USGS", "state_date": "2021-10-31", - "end_date": "2023-11-24", + "end_date": "2023-11-25", "bbox": "-180, -90, 180, 90", "deprecated": false, "keywords": "c2, global, l9, landsat, lc9, oli_tirs, radiance, t1, tier1, usgs", @@ -5478,7 +5478,7 @@ "snippet": "ee.ImageCollection('LANDSAT/LC09/C02/T1_TOA')", "provider": "USGS/Google", "state_date": "2021-10-31", - "end_date": "2023-11-24", + "end_date": "2023-11-25", "bbox": "-180, -90, 180, 90", "deprecated": false, "keywords": "c2, global, landsat, toa, usgs", @@ -5496,7 +5496,7 @@ "snippet": "ee.ImageCollection('LANDSAT/LC09/C02/T2')", "provider": "USGS", "state_date": "2021-11-02", - "end_date": "2023-11-24", + "end_date": "2023-11-25", "bbox": "-180, -90, 180, 90", "deprecated": false, "keywords": "c2, global, l9, landsat, lc9, oli_tirs, radiance, t2, tier2, usgs", @@ -5532,7 +5532,7 @@ "snippet": "ee.ImageCollection('LANDSAT/LC09/C02/T2_TOA')", "provider": "USGS/Google", "state_date": "2021-11-02", - "end_date": "2023-11-24", + "end_date": "2023-11-25", "bbox": "-180, -90, 180, 90", "deprecated": false, "keywords": "c2, global, l9, landsat, lc9, toa, usgs", @@ -6648,7 +6648,7 @@ "snippet": "ee.ImageCollection('LANDSAT/LE07/C02/T1')", "provider": "USGS", "state_date": "1999-05-28", - "end_date": "2023-10-29", + "end_date": "2023-10-30", "bbox": "-180, -90, 180, 90", "deprecated": false, "keywords": "c2, etm, global, l7, landsat, le7, radiance, t1, tier1, usgs", @@ -6666,7 +6666,7 @@ "snippet": "ee.ImageCollection('LANDSAT/LE07/C02/T1_L2')", "provider": "USGS", "state_date": "1999-05-28", - "end_date": "2023-10-29", + "end_date": "2023-10-30", "bbox": "-180, -90, 180, 90", "deprecated": false, "keywords": "cfmask, cloud, etm, fmask, global, landsat, lasrc, le07, lst, reflectance, sr, usgs", @@ -6684,7 +6684,7 @@ "snippet": "ee.ImageCollection('LANDSAT/LE07/C02/T1_RT')", "provider": "USGS", "state_date": "1999-05-28", - "end_date": "2023-11-24", + "end_date": "2023-11-25", "bbox": "-180, -90, 180, 90", "deprecated": false, "keywords": "c2, etm, global, l7, landsat, le7, nrt, radiance, rt, t1, tier1, usgs", @@ -6702,7 +6702,7 @@ "snippet": "ee.ImageCollection('LANDSAT/LE07/C02/T1_RT_TOA')", "provider": "USGS/Google", "state_date": "1999-05-28", - "end_date": "2023-11-24", + "end_date": "2023-11-25", "bbox": "-180, -90, 180, 90", "deprecated": false, "keywords": "c2, global, landsat, toa, usgs", @@ -6720,7 +6720,7 @@ "snippet": "ee.ImageCollection('LANDSAT/LE07/C02/T1_TOA')", "provider": "USGS/Google", "state_date": "1999-05-28", - "end_date": "2023-10-29", + "end_date": "2023-10-30", "bbox": "-180, -90, 180, 90", "deprecated": false, "keywords": "c2, global, landsat, toa, usgs", @@ -6738,7 +6738,7 @@ "snippet": "ee.ImageCollection('LANDSAT/LE07/C02/T2')", "provider": "USGS", "state_date": "1999-05-28", - "end_date": "2023-10-28", + "end_date": "2023-10-30", "bbox": "-180, -90, 180, 90", "deprecated": false, "keywords": "c2, etm, global, l7, landsat, le7, radiance, t2, tier2, usgs", @@ -6756,7 +6756,7 @@ "snippet": "ee.ImageCollection('LANDSAT/LE07/C02/T2_L2')", "provider": "USGS", "state_date": "1999-05-28", - "end_date": "2023-10-28", + "end_date": "2023-10-30", "bbox": "-180, -90, 180, 90", "deprecated": false, "keywords": "cfmask, cloud, etm, fmask, global, landsat, lasrc, le07, lst, reflectance, sr, usgs", @@ -6774,7 +6774,7 @@ "snippet": "ee.ImageCollection('LANDSAT/LE07/C02/T2_TOA')", "provider": "USGS/Google", "state_date": "2003-12-01", - "end_date": "2023-10-28", + "end_date": "2023-10-30", "bbox": "-180, -90, 180, 90", "deprecated": false, "keywords": "c2, global, landsat, toa, usgs", @@ -11580,7 +11580,7 @@ "snippet": "ee.ImageCollection('MODIS/061/MCD19A1_GRANULES')", "provider": "NASA LP DAAC at the USGS EROS Center", "state_date": "2000-12-21", - "end_date": "2013-03-11", + "end_date": "2013-03-14", "bbox": "-180, -90, 180, 90", "deprecated": false, "keywords": "aerosol, aod, aqua, daily, global, maiac, modis, nasa, terra, usgs", @@ -11832,7 +11832,7 @@ "snippet": "ee.ImageCollection('MODIS/061/MOD10A1')", "provider": "NASA NSIDC DAAC at CIRES", "state_date": "2000-02-24", - "end_date": "2023-11-20", + "end_date": "2023-11-23", "bbox": "-180, -90, 180, 90", "deprecated": false, "keywords": "albedo, daily, geophysical, global, mod10a1, modis, nasa, nsidc, snow, terra", @@ -12264,7 +12264,7 @@ "snippet": "ee.ImageCollection('MODIS/061/MYD10A1')", "provider": "NASA NSIDC DAAC at CIRES", "state_date": "2002-07-04", - "end_date": "2023-11-21", + "end_date": "2023-11-22", "bbox": "-180, -90, 180, 90", "deprecated": false, "keywords": "albedo, aqua, daily, geophysical, global, modis, myd10a1, nasa, nsidc, snow", @@ -13596,7 +13596,7 @@ "snippet": "ee.ImageCollection('NASA/GEOS-CF/v1/fcst/tavg1hr')", "provider": "NASA / GMAO", "state_date": "2022-10-01", - "end_date": "2023-11-22", + "end_date": "2023-11-23", "bbox": "-180, -90, 180, 90", "deprecated": false, "keywords": "composition, forecast, geos, gmao, nasa", @@ -13740,7 +13740,7 @@ "snippet": "ee.ImageCollection('NASA/GPM_L3/IMERG_V06')", "provider": "NASA GES DISC at NASA Goddard Space Flight Center", "state_date": "2000-06-01", - "end_date": "2023-11-23", + "end_date": "2023-11-24", "bbox": "-180, -90, 180, 90", "deprecated": false, "keywords": "climate, geophysical, gpm, half_hourly, imerg, jaxa, nasa, precipitation, weather", @@ -13938,7 +13938,7 @@ "snippet": "ee.ImageCollection('NASA/HLS/HLSL30/v002')", "provider": "USGS", "state_date": "2013-04-11", - "end_date": "2023-11-22", + "end_date": "2023-11-23", "bbox": "-180, -90, 180, 90", "deprecated": false, "keywords": "landsat, nasa, sentinel, usgs", @@ -14064,7 +14064,7 @@ "snippet": "ee.ImageCollection('NASA/NLDAS/FORA0125_H002')", "provider": "NASA GES DISC at NASA Goddard Space Flight Center", "state_date": "1979-01-01", - "end_date": "2023-11-20", + "end_date": "2023-11-21", "bbox": "-125.15, 24.85, -66.85, 53.28", "deprecated": false, "keywords": "climate, evaporation, forcing, geophysical, hourly, humidity, ldas, nasa, nldas, precipitation, pressure, radiation, temperature, wind", @@ -14190,7 +14190,7 @@ "snippet": "ee.ImageCollection('NASA/SMAP/SPL3SMP_E/005')", "provider": "Google and NSIDC", "state_date": "2015-03-31", - "end_date": "2023-11-22", + "end_date": "2023-11-23", "bbox": "-180, -84, 180, 84", "deprecated": false, "keywords": "drought, nasa, smap, soil_moisture, surface, weather", @@ -14208,7 +14208,7 @@ "snippet": "ee.ImageCollection('NASA/SMAP/SPL4SMGP/007')", "provider": "Google and NSIDC", "state_date": "2015-03-31", - "end_date": "2023-11-19", + "end_date": "2023-11-21", "bbox": "-180, -84, 180, 84", "deprecated": false, "keywords": "drought, nasa, smap, soil_moisture, surface, weather", @@ -14676,7 +14676,7 @@ "snippet": "ee.ImageCollection('NOAA/GFS0P25')", "provider": "NOAA/NCEP/EMC", "state_date": "2015-07-01", - "end_date": "2023-11-24", + "end_date": "2023-11-25", "bbox": "-180, -90, 180, 90", "deprecated": false, "keywords": "climate, cloud, emc, flux, forecast, geophysical, gfs, humidity, ncep, noaa, precipitation, radiation, temperature, vapor, weather, wind", @@ -14694,7 +14694,7 @@ "snippet": "ee.ImageCollection('NOAA/GOES/16/FDCC')", "provider": "NOAA", "state_date": "2017-05-24", - "end_date": "2023-11-24", + "end_date": "2023-11-25", "bbox": "-152.11, 14, -49.18, 56.77", "deprecated": false, "keywords": "abi, climate, fdc, fire, goes, goes_16, goes_east, goes_r, hotspot, nesdis, noaa, ospo, wildfire", @@ -14712,7 +14712,7 @@ "snippet": "ee.ImageCollection('NOAA/GOES/16/FDCF')", "provider": "NOAA", "state_date": "2017-05-24", - "end_date": "2023-11-24", + "end_date": "2023-11-25", "bbox": "-180, -90, 180, 90", "deprecated": false, "keywords": "abi, climate, fdc, fire, goes, goes_16, goes_east, goes_r, hotspot, nesdis, noaa, ospo, wildfire", @@ -14730,7 +14730,7 @@ "snippet": "ee.ImageCollection('NOAA/GOES/16/MCMIPC')", "provider": "NOAA", "state_date": "2017-07-10", - "end_date": "2023-11-24", + "end_date": "2023-11-25", "bbox": "-152.11, 14, -49.18, 56.77", "deprecated": false, "keywords": "abi, climate, goes, goes_16, goes_east, goes_r, mcmip, nesdis, noaa, ospo, weather", @@ -14748,7 +14748,7 @@ "snippet": "ee.ImageCollection('NOAA/GOES/16/MCMIPF')", "provider": "NOAA", "state_date": "2017-07-10", - "end_date": "2023-11-24", + "end_date": "2023-11-25", "bbox": "-180, -90, 180, 90", "deprecated": false, "keywords": "abi, climate, goes, goes_16, goes_east, goes_r, mcmip, nesdis, noaa, ospo, weather", @@ -14766,7 +14766,7 @@ "snippet": "ee.ImageCollection('NOAA/GOES/16/MCMIPM')", "provider": "NOAA", "state_date": "2017-07-10", - "end_date": "2023-11-24", + "end_date": "2023-11-25", "bbox": "-180, -90, 180, 90", "deprecated": false, "keywords": "abi, climate, goes, goes_16, goes_east, goes_r, mcmip, nesdis, noaa, ospo, weather", @@ -14874,7 +14874,7 @@ "snippet": "ee.ImageCollection('NOAA/GOES/18/FDCC')", "provider": "NOAA", "state_date": "2022-10-13", - "end_date": "2023-11-24", + "end_date": "2023-11-25", "bbox": "-180, 14.57, 180, 53.51", "deprecated": false, "keywords": "abi, climate, fdc, fire, goes, goes_18, goes_t, goes_west, hotspot, nesdis, noaa, ospo, wildfire", @@ -14892,7 +14892,7 @@ "snippet": "ee.ImageCollection('NOAA/GOES/18/FDCF')", "provider": "NOAA", "state_date": "2022-10-13", - "end_date": "2023-11-24", + "end_date": "2023-11-25", "bbox": "-180, -90, 180, 90", "deprecated": false, "keywords": "abi, climate, fdc, fire, goes, goes_18, goes_t, goes_west, hotspot, nesdis, noaa, ospo, wildfire", @@ -14910,7 +14910,7 @@ "snippet": "ee.ImageCollection('NOAA/GOES/18/MCMIPC')", "provider": "NOAA", "state_date": "2018-12-04", - "end_date": "2023-11-24", + "end_date": "2023-11-25", "bbox": "-180, 14.57, 180, 53.51", "deprecated": false, "keywords": "abi, climate, goes, goes_18, goes_t, goes_west, mcmip, nesdis, noaa, ospo, weather", @@ -14928,7 +14928,7 @@ "snippet": "ee.ImageCollection('NOAA/GOES/18/MCMIPF')", "provider": "NOAA", "state_date": "2018-12-04", - "end_date": "2023-11-24", + "end_date": "2023-11-25", "bbox": "-180, -90, 180, 90", "deprecated": false, "keywords": "abi, climate, goes, goes_18, goes_t, goes_west, mcmip, nesdis, noaa, ospo, weather", @@ -14946,7 +14946,7 @@ "snippet": "ee.ImageCollection('NOAA/GOES/18/MCMIPM')", "provider": "NOAA", "state_date": "2018-12-04", - "end_date": "2023-11-24", + "end_date": "2023-11-25", "bbox": "-180, -90, 180, 90", "deprecated": false, "keywords": "abi, climate, goes, goes_18, goes_t, goes_west, mcmip, nesdis, noaa, ospo, weather", diff --git a/gee_catalog.tsv b/gee_catalog.tsv index 741e1fa..0ab8321 100644 --- a/gee_catalog.tsv +++ b/gee_catalog.tsv @@ -36,31 +36,31 @@ COPERNICUS/CORINE/V20/100m Copernicus CORINE Land Cover image_collection ee.Imag COPERNICUS/DEM/GLO30 Copernicus DEM GLO-30: Global 30m Digital Elevation Model image_collection ee.ImageCollection('COPERNICUS/DEM/GLO30') Copernicus 2010-12-01 2015-01-31 -180, -90, 180, 90 False copernicus, dem, elevation, geophysical https://storage.googleapis.com/earthengine-stac/catalog/COPERNICUS/COPERNICUS_DEM_GLO30.json https://developers.google.com/earth-engine/datasets/catalog/COPERNICUS_DEM_GLO30 proprietary COPERNICUS/Landcover/100m/Proba-V-C3/Global Copernicus Global Land Cover Layers: CGLS-LC100 Collection 3 image_collection ee.ImageCollection('COPERNICUS/Landcover/100m/Proba-V-C3/Global') Copernicus 2015-01-01 2019-12-31 -180, -90, 180, 90 False copernicus, eea, esa, eu, landcover, proba, probav, vito https://storage.googleapis.com/earthengine-stac/catalog/COPERNICUS/COPERNICUS_Landcover_100m_Proba-V-C3_Global.json https://developers.google.com/earth-engine/datasets/catalog/COPERNICUS_Landcover_100m_Proba-V-C3_Global proprietary COPERNICUS/Landcover/100m/Proba-V/Global Copernicus Global Land Cover Layers: CGLS-LC100 Collection 2 [deprecated] image_collection ee.ImageCollection('COPERNICUS/Landcover/100m/Proba-V/Global') Copernicus 2015-01-01 2015-01-01 -180, -90, 180, 90 True copernicus, eea, esa, eu, landcover, proba, probav, vito https://storage.googleapis.com/earthengine-stac/catalog/COPERNICUS/COPERNICUS_Landcover_100m_Proba-V_Global.json https://developers.google.com/earth-engine/datasets/catalog/COPERNICUS_Landcover_100m_Proba-V_Global proprietary -COPERNICUS/S1_GRD Sentinel-1 SAR GRD: C-band Synthetic Aperture Radar Ground Range Detected, log scaling image_collection ee.ImageCollection('COPERNICUS/S1_GRD') European Union/ESA/Copernicus 2014-10-03 2023-11-24 -180, -90, 180, 90 False backscatter, copernicus, esa, eu, polarization, radar, sar, sentinel https://storage.googleapis.com/earthengine-stac/catalog/COPERNICUS/COPERNICUS_S1_GRD.json https://developers.google.com/earth-engine/datasets/catalog/COPERNICUS_S1_GRD proprietary -COPERNICUS/S2 Sentinel-2 MSI: MultiSpectral Instrument, Level-1C image_collection ee.ImageCollection('COPERNICUS/S2') European Union/ESA/Copernicus 2015-06-23 2023-11-24 -180, -56, 180, 83 False copernicus, esa, eu, msi, radiance, sentinel https://storage.googleapis.com/earthengine-stac/catalog/COPERNICUS/COPERNICUS_S2.json https://developers.google.com/earth-engine/datasets/catalog/COPERNICUS_S2 proprietary -COPERNICUS/S2_CLOUD_PROBABILITY Sentinel-2: Cloud Probability image_collection ee.ImageCollection('COPERNICUS/S2_CLOUD_PROBABILITY') European Union/ESA/Copernicus/SentinelHub 2015-06-23 2023-11-24 -180, -56, 180, 83 False cloud, copernicus, esa, eu, msi, radiance, sentinel, sentinelhub https://storage.googleapis.com/earthengine-stac/catalog/COPERNICUS/COPERNICUS_S2_CLOUD_PROBABILITY.json https://developers.google.com/earth-engine/datasets/catalog/COPERNICUS_S2_CLOUD_PROBABILITY proprietary -COPERNICUS/S2_HARMONIZED Harmonized Sentinel-2 MSI: MultiSpectral Instrument, Level-1C image_collection ee.ImageCollection('COPERNICUS/S2_HARMONIZED') European Union/ESA/Copernicus 2015-06-23 2023-11-24 -180, -56, 180, 83 False copernicus, esa, eu, msi, radiance, sentinel https://storage.googleapis.com/earthengine-stac/catalog/COPERNICUS/COPERNICUS_S2_HARMONIZED.json https://developers.google.com/earth-engine/datasets/catalog/COPERNICUS_S2_HARMONIZED proprietary -COPERNICUS/S2_SR Sentinel-2 MSI: MultiSpectral Instrument, Level-2A image_collection ee.ImageCollection('COPERNICUS/S2_SR') European Union/ESA/Copernicus 2017-03-28 2023-11-24 -180, -56, 180, 83 False copernicus, esa, eu, msi, reflectance, sentinel, sr https://storage.googleapis.com/earthengine-stac/catalog/COPERNICUS/COPERNICUS_S2_SR.json https://developers.google.com/earth-engine/datasets/catalog/COPERNICUS_S2_SR proprietary -COPERNICUS/S2_SR_HARMONIZED Harmonized Sentinel-2 MSI: MultiSpectral Instrument, Level-2A image_collection ee.ImageCollection('COPERNICUS/S2_SR_HARMONIZED') European Union/ESA/Copernicus 2017-03-28 2023-11-24 -180, -56, 180, 83 False copernicus, esa, eu, msi, reflectance, sentinel, sr https://storage.googleapis.com/earthengine-stac/catalog/COPERNICUS/COPERNICUS_S2_SR_HARMONIZED.json https://developers.google.com/earth-engine/datasets/catalog/COPERNICUS_S2_SR_HARMONIZED proprietary -COPERNICUS/S3/OLCI Sentinel-3 OLCI EFR: Ocean and Land Color Instrument Earth Observation Full Resolution image_collection ee.ImageCollection('COPERNICUS/S3/OLCI') European Union/ESA/Copernicus 2016-10-18 2023-11-23 -180, -90, 180, 90 False copernicus, esa, eu, olci, radiance, sentinel, toa https://storage.googleapis.com/earthengine-stac/catalog/COPERNICUS/COPERNICUS_S3_OLCI.json https://developers.google.com/earth-engine/datasets/catalog/COPERNICUS_S3_OLCI proprietary -COPERNICUS/S5P/NRTI/L3_AER_AI Sentinel-5P NRTI AER AI: Near Real-Time UV Aerosol Index image_collection ee.ImageCollection('COPERNICUS/S5P/NRTI/L3_AER_AI') European Union/ESA/Copernicus 2018-07-10 2023-11-24 -180, -90, 180, 90 False aai, aerosol, air_quality, copernicus, esa, eu, knmi, pollution, s5p, sentinel, tropomi, uvai https://storage.googleapis.com/earthengine-stac/catalog/COPERNICUS/COPERNICUS_S5P_NRTI_L3_AER_AI.json https://developers.google.com/earth-engine/datasets/catalog/COPERNICUS_S5P_NRTI_L3_AER_AI proprietary -COPERNICUS/S5P/NRTI/L3_AER_LH Sentinel-5P NRTI AER LH: Near Real-Time UV Aerosol Layer Height image_collection ee.ImageCollection('COPERNICUS/S5P/NRTI/L3_AER_LH') European Union/ESA/Copernicus 2018-07-10 2023-11-24 -180, -90, 180, 90 False aerosol, air_quality, alh, copernicus, esa, eu, knmi, pollution, s5p, sentinel, tropomi, uvai https://storage.googleapis.com/earthengine-stac/catalog/COPERNICUS/COPERNICUS_S5P_NRTI_L3_AER_LH.json https://developers.google.com/earth-engine/datasets/catalog/COPERNICUS_S5P_NRTI_L3_AER_LH proprietary -COPERNICUS/S5P/NRTI/L3_CLOUD Sentinel-5P NRTI CLOUD: Near Real-Time Cloud image_collection ee.ImageCollection('COPERNICUS/S5P/NRTI/L3_CLOUD') European Union/ESA/Copernicus 2018-07-05 2023-11-24 -180, -90, 180, 90 False climate, cloud, copernicus, dlr, esa, eu, s5p, sentinel, tropomi https://storage.googleapis.com/earthengine-stac/catalog/COPERNICUS/COPERNICUS_S5P_NRTI_L3_CLOUD.json https://developers.google.com/earth-engine/datasets/catalog/COPERNICUS_S5P_NRTI_L3_CLOUD proprietary -COPERNICUS/S5P/NRTI/L3_CO Sentinel-5P NRTI CO: Near Real-Time Carbon Monoxide image_collection ee.ImageCollection('COPERNICUS/S5P/NRTI/L3_CO') European Union/ESA/Copernicus 2018-11-22 2023-11-24 -180, -90, 180, 90 False air_quality, carbon_monoxide, copernicus, esa, eu, knmi, pollution, s5p, sentinel, sron, tropomi https://storage.googleapis.com/earthengine-stac/catalog/COPERNICUS/COPERNICUS_S5P_NRTI_L3_CO.json https://developers.google.com/earth-engine/datasets/catalog/COPERNICUS_S5P_NRTI_L3_CO proprietary -COPERNICUS/S5P/NRTI/L3_HCHO Sentinel-5P NRTI HCHO: Near Real-Time Formaldehyde image_collection ee.ImageCollection('COPERNICUS/S5P/NRTI/L3_HCHO') European Union/ESA/Copernicus 2018-10-02 2023-11-24 -180, -90, 180, 90 False air_quality, bira, copernicus, dlr, esa, eu, formaldehyde, hcho, pollution, s5p, sentinel, tropomi https://storage.googleapis.com/earthengine-stac/catalog/COPERNICUS/COPERNICUS_S5P_NRTI_L3_HCHO.json https://developers.google.com/earth-engine/datasets/catalog/COPERNICUS_S5P_NRTI_L3_HCHO proprietary -COPERNICUS/S5P/NRTI/L3_NO2 Sentinel-5P NRTI NO2: Near Real-Time Nitrogen Dioxide image_collection ee.ImageCollection('COPERNICUS/S5P/NRTI/L3_NO2') European Union/ESA/Copernicus 2018-07-10 2023-11-24 -180, -90, 180, 90 False air_quality, copernicus, esa, eu, knmi, nitrogen_dioxide, no2, pollution, s5p, sentinel, tropomi https://storage.googleapis.com/earthengine-stac/catalog/COPERNICUS/COPERNICUS_S5P_NRTI_L3_NO2.json https://developers.google.com/earth-engine/datasets/catalog/COPERNICUS_S5P_NRTI_L3_NO2 proprietary -COPERNICUS/S5P/NRTI/L3_O3 Sentinel-5P NRTI O3: Near Real-Time Ozone image_collection ee.ImageCollection('COPERNICUS/S5P/NRTI/L3_O3') European Union/ESA/Copernicus 2018-07-10 2023-11-24 -180, -90, 180, 90 False air_quality, copernicus, esa, eu, o3, ozone, pollution, s5p, sentinel, tropomi https://storage.googleapis.com/earthengine-stac/catalog/COPERNICUS/COPERNICUS_S5P_NRTI_L3_O3.json https://developers.google.com/earth-engine/datasets/catalog/COPERNICUS_S5P_NRTI_L3_O3 proprietary -COPERNICUS/S5P/NRTI/L3_SO2 Sentinel-5P NRTI SO2: Near Real-Time Sulfur Dioxide image_collection ee.ImageCollection('COPERNICUS/S5P/NRTI/L3_SO2') European Union/ESA/Copernicus 2018-07-10 2023-11-24 -180, -90, 180, 90 False air_quality, bira, copernicus, dlr, esa, eu, pollution, s5p, sentinel, so2, sulfur_dioxide, tropomi https://storage.googleapis.com/earthengine-stac/catalog/COPERNICUS/COPERNICUS_S5P_NRTI_L3_SO2.json https://developers.google.com/earth-engine/datasets/catalog/COPERNICUS_S5P_NRTI_L3_SO2 proprietary -COPERNICUS/S5P/OFFL/L3_AER_AI Sentinel-5P OFFL AER AI: Offline UV Aerosol Index image_collection ee.ImageCollection('COPERNICUS/S5P/OFFL/L3_AER_AI') European Union/ESA/Copernicus 2018-07-04 2023-11-21 -180, -90, 180, 90 False aai, aerosol, air_quality, copernicus, esa, eu, knmi, pollution, s5p, sentinel, tropomi, uvai https://storage.googleapis.com/earthengine-stac/catalog/COPERNICUS/COPERNICUS_S5P_OFFL_L3_AER_AI.json https://developers.google.com/earth-engine/datasets/catalog/COPERNICUS_S5P_OFFL_L3_AER_AI proprietary +COPERNICUS/S1_GRD Sentinel-1 SAR GRD: C-band Synthetic Aperture Radar Ground Range Detected, log scaling image_collection ee.ImageCollection('COPERNICUS/S1_GRD') European Union/ESA/Copernicus 2014-10-03 2023-11-25 -180, -90, 180, 90 False backscatter, copernicus, esa, eu, polarization, radar, sar, sentinel https://storage.googleapis.com/earthengine-stac/catalog/COPERNICUS/COPERNICUS_S1_GRD.json https://developers.google.com/earth-engine/datasets/catalog/COPERNICUS_S1_GRD proprietary +COPERNICUS/S2 Sentinel-2 MSI: MultiSpectral Instrument, Level-1C image_collection ee.ImageCollection('COPERNICUS/S2') European Union/ESA/Copernicus 2015-06-23 2023-11-25 -180, -56, 180, 83 False copernicus, esa, eu, msi, radiance, sentinel https://storage.googleapis.com/earthengine-stac/catalog/COPERNICUS/COPERNICUS_S2.json https://developers.google.com/earth-engine/datasets/catalog/COPERNICUS_S2 proprietary +COPERNICUS/S2_CLOUD_PROBABILITY Sentinel-2: Cloud Probability image_collection ee.ImageCollection('COPERNICUS/S2_CLOUD_PROBABILITY') European Union/ESA/Copernicus/SentinelHub 2015-06-23 2023-11-25 -180, -56, 180, 83 False cloud, copernicus, esa, eu, msi, radiance, sentinel, sentinelhub https://storage.googleapis.com/earthengine-stac/catalog/COPERNICUS/COPERNICUS_S2_CLOUD_PROBABILITY.json https://developers.google.com/earth-engine/datasets/catalog/COPERNICUS_S2_CLOUD_PROBABILITY proprietary +COPERNICUS/S2_HARMONIZED Harmonized Sentinel-2 MSI: MultiSpectral Instrument, Level-1C image_collection ee.ImageCollection('COPERNICUS/S2_HARMONIZED') European Union/ESA/Copernicus 2015-06-23 2023-11-25 -180, -56, 180, 83 False copernicus, esa, eu, msi, radiance, sentinel https://storage.googleapis.com/earthengine-stac/catalog/COPERNICUS/COPERNICUS_S2_HARMONIZED.json https://developers.google.com/earth-engine/datasets/catalog/COPERNICUS_S2_HARMONIZED proprietary +COPERNICUS/S2_SR Sentinel-2 MSI: MultiSpectral Instrument, Level-2A image_collection ee.ImageCollection('COPERNICUS/S2_SR') European Union/ESA/Copernicus 2017-03-28 2023-11-25 -180, -56, 180, 83 False copernicus, esa, eu, msi, reflectance, sentinel, sr https://storage.googleapis.com/earthengine-stac/catalog/COPERNICUS/COPERNICUS_S2_SR.json https://developers.google.com/earth-engine/datasets/catalog/COPERNICUS_S2_SR proprietary +COPERNICUS/S2_SR_HARMONIZED Harmonized Sentinel-2 MSI: MultiSpectral Instrument, Level-2A image_collection ee.ImageCollection('COPERNICUS/S2_SR_HARMONIZED') European Union/ESA/Copernicus 2017-03-28 2023-11-25 -180, -56, 180, 83 False copernicus, esa, eu, msi, reflectance, sentinel, sr https://storage.googleapis.com/earthengine-stac/catalog/COPERNICUS/COPERNICUS_S2_SR_HARMONIZED.json https://developers.google.com/earth-engine/datasets/catalog/COPERNICUS_S2_SR_HARMONIZED proprietary +COPERNICUS/S3/OLCI Sentinel-3 OLCI EFR: Ocean and Land Color Instrument Earth Observation Full Resolution image_collection ee.ImageCollection('COPERNICUS/S3/OLCI') European Union/ESA/Copernicus 2016-10-18 2023-11-24 -180, -90, 180, 90 False copernicus, esa, eu, olci, radiance, sentinel, toa https://storage.googleapis.com/earthengine-stac/catalog/COPERNICUS/COPERNICUS_S3_OLCI.json https://developers.google.com/earth-engine/datasets/catalog/COPERNICUS_S3_OLCI proprietary +COPERNICUS/S5P/NRTI/L3_AER_AI Sentinel-5P NRTI AER AI: Near Real-Time UV Aerosol Index image_collection ee.ImageCollection('COPERNICUS/S5P/NRTI/L3_AER_AI') European Union/ESA/Copernicus 2018-07-10 2023-11-25 -180, -90, 180, 90 False aai, aerosol, air_quality, copernicus, esa, eu, knmi, pollution, s5p, sentinel, tropomi, uvai https://storage.googleapis.com/earthengine-stac/catalog/COPERNICUS/COPERNICUS_S5P_NRTI_L3_AER_AI.json https://developers.google.com/earth-engine/datasets/catalog/COPERNICUS_S5P_NRTI_L3_AER_AI proprietary +COPERNICUS/S5P/NRTI/L3_AER_LH Sentinel-5P NRTI AER LH: Near Real-Time UV Aerosol Layer Height image_collection ee.ImageCollection('COPERNICUS/S5P/NRTI/L3_AER_LH') European Union/ESA/Copernicus 2018-07-10 2023-11-25 -180, -90, 180, 90 False aerosol, air_quality, alh, copernicus, esa, eu, knmi, pollution, s5p, sentinel, tropomi, uvai https://storage.googleapis.com/earthengine-stac/catalog/COPERNICUS/COPERNICUS_S5P_NRTI_L3_AER_LH.json https://developers.google.com/earth-engine/datasets/catalog/COPERNICUS_S5P_NRTI_L3_AER_LH proprietary +COPERNICUS/S5P/NRTI/L3_CLOUD Sentinel-5P NRTI CLOUD: Near Real-Time Cloud image_collection ee.ImageCollection('COPERNICUS/S5P/NRTI/L3_CLOUD') European Union/ESA/Copernicus 2018-07-05 2023-11-25 -180, -90, 180, 90 False climate, cloud, copernicus, dlr, esa, eu, s5p, sentinel, tropomi https://storage.googleapis.com/earthengine-stac/catalog/COPERNICUS/COPERNICUS_S5P_NRTI_L3_CLOUD.json https://developers.google.com/earth-engine/datasets/catalog/COPERNICUS_S5P_NRTI_L3_CLOUD proprietary +COPERNICUS/S5P/NRTI/L3_CO Sentinel-5P NRTI CO: Near Real-Time Carbon Monoxide image_collection ee.ImageCollection('COPERNICUS/S5P/NRTI/L3_CO') European Union/ESA/Copernicus 2018-11-22 2023-11-25 -180, -90, 180, 90 False air_quality, carbon_monoxide, copernicus, esa, eu, knmi, pollution, s5p, sentinel, sron, tropomi https://storage.googleapis.com/earthengine-stac/catalog/COPERNICUS/COPERNICUS_S5P_NRTI_L3_CO.json https://developers.google.com/earth-engine/datasets/catalog/COPERNICUS_S5P_NRTI_L3_CO proprietary +COPERNICUS/S5P/NRTI/L3_HCHO Sentinel-5P NRTI HCHO: Near Real-Time Formaldehyde image_collection ee.ImageCollection('COPERNICUS/S5P/NRTI/L3_HCHO') European Union/ESA/Copernicus 2018-10-02 2023-11-25 -180, -90, 180, 90 False air_quality, bira, copernicus, dlr, esa, eu, formaldehyde, hcho, pollution, s5p, sentinel, tropomi https://storage.googleapis.com/earthengine-stac/catalog/COPERNICUS/COPERNICUS_S5P_NRTI_L3_HCHO.json https://developers.google.com/earth-engine/datasets/catalog/COPERNICUS_S5P_NRTI_L3_HCHO proprietary +COPERNICUS/S5P/NRTI/L3_NO2 Sentinel-5P NRTI NO2: Near Real-Time Nitrogen Dioxide image_collection ee.ImageCollection('COPERNICUS/S5P/NRTI/L3_NO2') European Union/ESA/Copernicus 2018-07-10 2023-11-25 -180, -90, 180, 90 False air_quality, copernicus, esa, eu, knmi, nitrogen_dioxide, no2, pollution, s5p, sentinel, tropomi https://storage.googleapis.com/earthengine-stac/catalog/COPERNICUS/COPERNICUS_S5P_NRTI_L3_NO2.json https://developers.google.com/earth-engine/datasets/catalog/COPERNICUS_S5P_NRTI_L3_NO2 proprietary +COPERNICUS/S5P/NRTI/L3_O3 Sentinel-5P NRTI O3: Near Real-Time Ozone image_collection ee.ImageCollection('COPERNICUS/S5P/NRTI/L3_O3') European Union/ESA/Copernicus 2018-07-10 2023-11-25 -180, -90, 180, 90 False air_quality, copernicus, esa, eu, o3, ozone, pollution, s5p, sentinel, tropomi https://storage.googleapis.com/earthengine-stac/catalog/COPERNICUS/COPERNICUS_S5P_NRTI_L3_O3.json https://developers.google.com/earth-engine/datasets/catalog/COPERNICUS_S5P_NRTI_L3_O3 proprietary +COPERNICUS/S5P/NRTI/L3_SO2 Sentinel-5P NRTI SO2: Near Real-Time Sulfur Dioxide image_collection ee.ImageCollection('COPERNICUS/S5P/NRTI/L3_SO2') European Union/ESA/Copernicus 2018-07-10 2023-11-25 -180, -90, 180, 90 False air_quality, bira, copernicus, dlr, esa, eu, pollution, s5p, sentinel, so2, sulfur_dioxide, tropomi https://storage.googleapis.com/earthengine-stac/catalog/COPERNICUS/COPERNICUS_S5P_NRTI_L3_SO2.json https://developers.google.com/earth-engine/datasets/catalog/COPERNICUS_S5P_NRTI_L3_SO2 proprietary +COPERNICUS/S5P/OFFL/L3_AER_AI Sentinel-5P OFFL AER AI: Offline UV Aerosol Index image_collection ee.ImageCollection('COPERNICUS/S5P/OFFL/L3_AER_AI') European Union/ESA/Copernicus 2018-07-04 2023-11-23 -180, -90, 180, 90 False aai, aerosol, air_quality, copernicus, esa, eu, knmi, pollution, s5p, sentinel, tropomi, uvai https://storage.googleapis.com/earthengine-stac/catalog/COPERNICUS/COPERNICUS_S5P_OFFL_L3_AER_AI.json https://developers.google.com/earth-engine/datasets/catalog/COPERNICUS_S5P_OFFL_L3_AER_AI proprietary COPERNICUS/S5P/OFFL/L3_AER_LH Sentinel-5P OFFL AER LH: Offline UV Aerosol Layer Height image_collection ee.ImageCollection('COPERNICUS/S5P/OFFL/L3_AER_LH') European Union/ESA/Copernicus 2018-07-04 2023-11-22 -180, -90, 180, 90 False aerosol, air_quality, alh, copernicus, esa, eu, knmi, pollution, s5p, sentinel, tropomi, uvai https://storage.googleapis.com/earthengine-stac/catalog/COPERNICUS/COPERNICUS_S5P_OFFL_L3_AER_LH.json https://developers.google.com/earth-engine/datasets/catalog/COPERNICUS_S5P_OFFL_L3_AER_LH proprietary -COPERNICUS/S5P/OFFL/L3_CH4 Sentinel-5P OFFL CH4: Offline Methane image_collection ee.ImageCollection('COPERNICUS/S5P/OFFL/L3_CH4') European Union/ESA/Copernicus 2019-02-08 2023-11-21 -180, -90, 180, 90 False climate, copernicus, esa, eu, knmi, methane, s5p, sentinel, sron, tropomi https://storage.googleapis.com/earthengine-stac/catalog/COPERNICUS/COPERNICUS_S5P_OFFL_L3_CH4.json https://developers.google.com/earth-engine/datasets/catalog/COPERNICUS_S5P_OFFL_L3_CH4 proprietary -COPERNICUS/S5P/OFFL/L3_CLOUD Sentinel-5P OFFL CLOUD: Near Real-Time Cloud image_collection ee.ImageCollection('COPERNICUS/S5P/OFFL/L3_CLOUD') European Union/ESA/Copernicus 2018-07-04 2023-11-21 -180, -90, 180, 90 False climate, cloud, copernicus, dlr, esa, eu, s5p, sentinel, tropomi https://storage.googleapis.com/earthengine-stac/catalog/COPERNICUS/COPERNICUS_S5P_OFFL_L3_CLOUD.json https://developers.google.com/earth-engine/datasets/catalog/COPERNICUS_S5P_OFFL_L3_CLOUD proprietary -COPERNICUS/S5P/OFFL/L3_CO Sentinel-5P OFFL CO: Offline Carbon Monoxide image_collection ee.ImageCollection('COPERNICUS/S5P/OFFL/L3_CO') European Union/ESA/Copernicus 2018-06-28 2023-11-21 -180, -90, 180, 90 False air_quality, carbon_monoxide, copernicus, esa, eu, knmi, pollution, s5p, sentinel, sron, tropomi https://storage.googleapis.com/earthengine-stac/catalog/COPERNICUS/COPERNICUS_S5P_OFFL_L3_CO.json https://developers.google.com/earth-engine/datasets/catalog/COPERNICUS_S5P_OFFL_L3_CO proprietary -COPERNICUS/S5P/OFFL/L3_HCHO Sentinel-5P OFFL HCHO: Offline Formaldehyde image_collection ee.ImageCollection('COPERNICUS/S5P/OFFL/L3_HCHO') European Union/ESA/Copernicus 2018-12-05 2023-11-21 -180, -90, 180, 90 False air_quality, bira, copernicus, dlr, esa, eu, formaldehyde, hcho, pollution, s5p, sentinel, tropomi https://storage.googleapis.com/earthengine-stac/catalog/COPERNICUS/COPERNICUS_S5P_OFFL_L3_HCHO.json https://developers.google.com/earth-engine/datasets/catalog/COPERNICUS_S5P_OFFL_L3_HCHO proprietary -COPERNICUS/S5P/OFFL/L3_NO2 Sentinel-5P OFFL NO2: Offline Nitrogen Dioxide image_collection ee.ImageCollection('COPERNICUS/S5P/OFFL/L3_NO2') European Union/ESA/Copernicus 2018-06-28 2023-11-14 -180, -90, 180, 90 False air_quality, copernicus, esa, eu, knmi, nitrogen_dioxide, no2, pollution, s5p, sentinel, tropomi https://storage.googleapis.com/earthengine-stac/catalog/COPERNICUS/COPERNICUS_S5P_OFFL_L3_NO2.json https://developers.google.com/earth-engine/datasets/catalog/COPERNICUS_S5P_OFFL_L3_NO2 proprietary -COPERNICUS/S5P/OFFL/L3_O3 Sentinel-5P OFFL O3: Offline Ozone image_collection ee.ImageCollection('COPERNICUS/S5P/OFFL/L3_O3') European Union/ESA/Copernicus 2018-09-08 2023-11-22 -180, -90, 180, 90 False air_quality, copernicus, esa, eu, o3, ozone, pollution, s5p, sentinel, tropomi https://storage.googleapis.com/earthengine-stac/catalog/COPERNICUS/COPERNICUS_S5P_OFFL_L3_O3.json https://developers.google.com/earth-engine/datasets/catalog/COPERNICUS_S5P_OFFL_L3_O3 proprietary -COPERNICUS/S5P/OFFL/L3_O3_TCL Sentinel-5P OFFL O3 TCL: Offline Tropospheric Ozone image_collection ee.ImageCollection('COPERNICUS/S5P/OFFL/L3_O3_TCL') European Union/ESA/Copernicus 2018-04-30 2023-11-09 -180, -90, 180, 90 False air_quality, copernicus, esa, eu, o3, ozone, pollution, s5p, sentinel, tropomi https://storage.googleapis.com/earthengine-stac/catalog/COPERNICUS/COPERNICUS_S5P_OFFL_L3_O3_TCL.json https://developers.google.com/earth-engine/datasets/catalog/COPERNICUS_S5P_OFFL_L3_O3_TCL proprietary -COPERNICUS/S5P/OFFL/L3_SO2 Sentinel-5P OFFL SO2: Offline Sulfur Dioxide image_collection ee.ImageCollection('COPERNICUS/S5P/OFFL/L3_SO2') European Union/ESA/Copernicus 2018-12-05 2023-11-22 -180, -90, 180, 90 False air_quality, bira, copernicus, dlr, esa, eu, pollution, s5p, sentinel, so2, sulfur_dioxide, tropomi https://storage.googleapis.com/earthengine-stac/catalog/COPERNICUS/COPERNICUS_S5P_OFFL_L3_SO2.json https://developers.google.com/earth-engine/datasets/catalog/COPERNICUS_S5P_OFFL_L3_SO2 proprietary +COPERNICUS/S5P/OFFL/L3_CH4 Sentinel-5P OFFL CH4: Offline Methane image_collection ee.ImageCollection('COPERNICUS/S5P/OFFL/L3_CH4') European Union/ESA/Copernicus 2019-02-08 2023-11-22 -180, -90, 180, 90 False climate, copernicus, esa, eu, knmi, methane, s5p, sentinel, sron, tropomi https://storage.googleapis.com/earthengine-stac/catalog/COPERNICUS/COPERNICUS_S5P_OFFL_L3_CH4.json https://developers.google.com/earth-engine/datasets/catalog/COPERNICUS_S5P_OFFL_L3_CH4 proprietary +COPERNICUS/S5P/OFFL/L3_CLOUD Sentinel-5P OFFL CLOUD: Near Real-Time Cloud image_collection ee.ImageCollection('COPERNICUS/S5P/OFFL/L3_CLOUD') European Union/ESA/Copernicus 2018-07-04 2023-11-23 -180, -90, 180, 90 False climate, cloud, copernicus, dlr, esa, eu, s5p, sentinel, tropomi https://storage.googleapis.com/earthengine-stac/catalog/COPERNICUS/COPERNICUS_S5P_OFFL_L3_CLOUD.json https://developers.google.com/earth-engine/datasets/catalog/COPERNICUS_S5P_OFFL_L3_CLOUD proprietary +COPERNICUS/S5P/OFFL/L3_CO Sentinel-5P OFFL CO: Offline Carbon Monoxide image_collection ee.ImageCollection('COPERNICUS/S5P/OFFL/L3_CO') European Union/ESA/Copernicus 2018-06-28 2023-11-23 -180, -90, 180, 90 False air_quality, carbon_monoxide, copernicus, esa, eu, knmi, pollution, s5p, sentinel, sron, tropomi https://storage.googleapis.com/earthengine-stac/catalog/COPERNICUS/COPERNICUS_S5P_OFFL_L3_CO.json https://developers.google.com/earth-engine/datasets/catalog/COPERNICUS_S5P_OFFL_L3_CO proprietary +COPERNICUS/S5P/OFFL/L3_HCHO Sentinel-5P OFFL HCHO: Offline Formaldehyde image_collection ee.ImageCollection('COPERNICUS/S5P/OFFL/L3_HCHO') European Union/ESA/Copernicus 2018-12-05 2023-11-23 -180, -90, 180, 90 False air_quality, bira, copernicus, dlr, esa, eu, formaldehyde, hcho, pollution, s5p, sentinel, tropomi https://storage.googleapis.com/earthengine-stac/catalog/COPERNICUS/COPERNICUS_S5P_OFFL_L3_HCHO.json https://developers.google.com/earth-engine/datasets/catalog/COPERNICUS_S5P_OFFL_L3_HCHO proprietary +COPERNICUS/S5P/OFFL/L3_NO2 Sentinel-5P OFFL NO2: Offline Nitrogen Dioxide image_collection ee.ImageCollection('COPERNICUS/S5P/OFFL/L3_NO2') European Union/ESA/Copernicus 2018-06-28 2023-11-15 -180, -90, 180, 90 False air_quality, copernicus, esa, eu, knmi, nitrogen_dioxide, no2, pollution, s5p, sentinel, tropomi https://storage.googleapis.com/earthengine-stac/catalog/COPERNICUS/COPERNICUS_S5P_OFFL_L3_NO2.json https://developers.google.com/earth-engine/datasets/catalog/COPERNICUS_S5P_OFFL_L3_NO2 proprietary +COPERNICUS/S5P/OFFL/L3_O3 Sentinel-5P OFFL O3: Offline Ozone image_collection ee.ImageCollection('COPERNICUS/S5P/OFFL/L3_O3') European Union/ESA/Copernicus 2018-09-08 2023-11-23 -180, -90, 180, 90 False air_quality, copernicus, esa, eu, o3, ozone, pollution, s5p, sentinel, tropomi https://storage.googleapis.com/earthengine-stac/catalog/COPERNICUS/COPERNICUS_S5P_OFFL_L3_O3.json https://developers.google.com/earth-engine/datasets/catalog/COPERNICUS_S5P_OFFL_L3_O3 proprietary +COPERNICUS/S5P/OFFL/L3_O3_TCL Sentinel-5P OFFL O3 TCL: Offline Tropospheric Ozone image_collection ee.ImageCollection('COPERNICUS/S5P/OFFL/L3_O3_TCL') European Union/ESA/Copernicus 2018-04-30 2023-11-10 -180, -90, 180, 90 False air_quality, copernicus, esa, eu, o3, ozone, pollution, s5p, sentinel, tropomi https://storage.googleapis.com/earthengine-stac/catalog/COPERNICUS/COPERNICUS_S5P_OFFL_L3_O3_TCL.json https://developers.google.com/earth-engine/datasets/catalog/COPERNICUS_S5P_OFFL_L3_O3_TCL proprietary +COPERNICUS/S5P/OFFL/L3_SO2 Sentinel-5P OFFL SO2: Offline Sulfur Dioxide image_collection ee.ImageCollection('COPERNICUS/S5P/OFFL/L3_SO2') European Union/ESA/Copernicus 2018-12-05 2023-11-23 -180, -90, 180, 90 False air_quality, bira, copernicus, dlr, esa, eu, pollution, s5p, sentinel, so2, sulfur_dioxide, tropomi https://storage.googleapis.com/earthengine-stac/catalog/COPERNICUS/COPERNICUS_S5P_OFFL_L3_SO2.json https://developers.google.com/earth-engine/datasets/catalog/COPERNICUS_S5P_OFFL_L3_SO2 proprietary CPOM/CryoSat2/ANTARCTICA_DEM CryoSat-2 Antarctica 1km DEM image ee.Image('CPOM/CryoSat2/ANTARCTICA_DEM') CPOM 2010-07-01 2016-07-01 -180, -88, 180, -60 False antarctica, cpom, cryosat_2, dem, elevation, polar https://storage.googleapis.com/earthengine-stac/catalog/CPOM/CPOM_CryoSat2_ANTARCTICA_DEM.json https://developers.google.com/earth-engine/datasets/catalog/CPOM_CryoSat2_ANTARCTICA_DEM proprietary CSIC/SPEI/2_8 SPEIbase: Standardised Precipitation-Evapotranspiration Index database, Version 2.8 image_collection ee.ImageCollection('CSIC/SPEI/2_8') Spanish National Research Council (CSIC) 1901-01-01 2021-01-01 -180, -90, 180, 90 False climate, climate_change, drought, evapotranspiration, global, monthly, palmer, precipitation, temperature https://storage.googleapis.com/earthengine-stac/catalog/CSIC/CSIC_SPEI_2_8.json https://developers.google.com/earth-engine/datasets/catalog/CSIC_SPEI_2_8 CC-BY-4.0 CSIRO/SLGA SLGA: Soil and Landscape Grid of Australia (Soil Attributes) image_collection ee.ImageCollection('CSIRO/SLGA') CSIRO/SLGA 1950-01-01 2013-12-31 113, -44.15, 154, -9.97 False australia, csiro, digital_soil_mapping, globalsoilmap, slga, soil, soil_depth, tern https://storage.googleapis.com/earthengine-stac/catalog/CSIRO/CSIRO_SLGA.json https://developers.google.com/earth-engine/datasets/catalog/CSIRO_SLGA CC-BY-4.0 @@ -82,10 +82,10 @@ CSP/ERGo/1_0/US/topoDiversity US NED Topographic Diversity image ee.Image('CSP/E CSP/HM/GlobalHumanModification CSP gHM: Global Human Modification image_collection ee.ImageCollection('CSP/HM/GlobalHumanModification') Conservation Science Partners 2016-01-01 2016-12-31 -180, -90, 180, 90 False csp, fragmentation, human_modification, landcover, landscape_gradient, stressors, tnc https://storage.googleapis.com/earthengine-stac/catalog/CSP/CSP_HM_GlobalHumanModification.json https://developers.google.com/earth-engine/datasets/catalog/CSP_HM_GlobalHumanModification CC-BY-NC-SA-4.0 DLR/WSF/WSF2015/v1 World Settlement Footprint 2015 image ee.Image('DLR/WSF/WSF2015/v1') Deutsches Zentrum für Luft- und Raumfahrt (DLR) 2015-01-01 2016-01-01 -180, -90, 180, 90 False landcover, landsat_derived, sentinel1_derived, settlement, urban https://storage.googleapis.com/earthengine-stac/catalog/DLR/DLR_WSF_WSF2015_v1.json https://developers.google.com/earth-engine/datasets/catalog/DLR_WSF_WSF2015_v1 CC0-1.0 DOE/ORNL/LandScan_HD/Ukraine_202201 LandScan High Definition Data for Ukraine, January 2022 image ee.Image('DOE/ORNL/LandScan_HD/Ukraine_202201') Oak Ridge National Laboratory 2022-01-01 2022-02-01 22.125, 44.175, 40.225, 52.4 False landscan, population, ukraine https://storage.googleapis.com/earthengine-stac/catalog/DOE/DOE_ORNL_LandScan_HD_Ukraine_202201.json https://developers.google.com/earth-engine/datasets/catalog/DOE_ORNL_LandScan_HD_Ukraine_202201 CC-BY-4.0 -ECMWF/CAMS/NRT Copernicus Atmosphere Monitoring Service (CAMS) Global Near-Real-Time image_collection ee.ImageCollection('ECMWF/CAMS/NRT') European Centre for Medium-Range Weather Forecasts (ECMWF) 2016-06-22 2023-11-22 -180, -90, 180, 90 False aerosol, atmosphere, climate, copernicus, ecmwf, forecast, particulate_matter https://storage.googleapis.com/earthengine-stac/catalog/ECMWF/ECMWF_CAMS_NRT.json https://developers.google.com/earth-engine/datasets/catalog/ECMWF_CAMS_NRT proprietary +ECMWF/CAMS/NRT Copernicus Atmosphere Monitoring Service (CAMS) Global Near-Real-Time image_collection ee.ImageCollection('ECMWF/CAMS/NRT') European Centre for Medium-Range Weather Forecasts (ECMWF) 2016-06-22 2023-11-24 -180, -90, 180, 90 False aerosol, atmosphere, climate, copernicus, ecmwf, forecast, particulate_matter https://storage.googleapis.com/earthengine-stac/catalog/ECMWF/ECMWF_CAMS_NRT.json https://developers.google.com/earth-engine/datasets/catalog/ECMWF_CAMS_NRT proprietary ECMWF/ERA5/DAILY ERA5 Daily Aggregates - Latest Climate Reanalysis Produced by ECMWF / Copernicus Climate Change Service image_collection ee.ImageCollection('ECMWF/ERA5/DAILY') ECMWF / Copernicus Climate Change Service 1979-01-02 2020-07-09 -180, -90, 180, 90 False climate, copernicus, dewpoint, ecmwf, era5, precipitation, pressure, reanalysis, surface, temperature, wind https://storage.googleapis.com/earthengine-stac/catalog/ECMWF/ECMWF_ERA5_DAILY.json https://developers.google.com/earth-engine/datasets/catalog/ECMWF_ERA5_DAILY proprietary ECMWF/ERA5/MONTHLY ERA5 Monthly Aggregates - Latest Climate Reanalysis Produced by ECMWF / Copernicus Climate Change Service image_collection ee.ImageCollection('ECMWF/ERA5/MONTHLY') ECMWF / Copernicus Climate Change Service 1979-01-01 2020-06-01 -180, -90, 180, 90 False climate, copernicus, dewpoint, ecmwf, era5, precipitation, pressure, reanalysis, surface, temperature, wind https://storage.googleapis.com/earthengine-stac/catalog/ECMWF/ECMWF_ERA5_MONTHLY.json https://developers.google.com/earth-engine/datasets/catalog/ECMWF_ERA5_MONTHLY proprietary -ECMWF/ERA5_LAND/DAILY_AGGR ERA5-Land Daily Aggregated - ECMWF Climate Reanalysis image_collection ee.ImageCollection('ECMWF/ERA5_LAND/DAILY_AGGR') Daily Aggregates: Google and Copernicus Climate Data Store 1950-01-02 2023-11-15 -180, -90, 180, 90 False cds, climate, copernicus, ecmwf, era5_land, evaporation, heat, lakes, precipitation, pressure, radiation, reanalysis, runoff, snow, soil_water, temperature, vegetation, wind https://storage.googleapis.com/earthengine-stac/catalog/ECMWF/ECMWF_ERA5_LAND_DAILY_AGGR.json https://developers.google.com/earth-engine/datasets/catalog/ECMWF_ERA5_LAND_DAILY_AGGR proprietary +ECMWF/ERA5_LAND/DAILY_AGGR ERA5-Land Daily Aggregated - ECMWF Climate Reanalysis image_collection ee.ImageCollection('ECMWF/ERA5_LAND/DAILY_AGGR') Daily Aggregates: Google and Copernicus Climate Data Store 1950-01-02 2023-11-16 -180, -90, 180, 90 False cds, climate, copernicus, ecmwf, era5_land, evaporation, heat, lakes, precipitation, pressure, radiation, reanalysis, runoff, snow, soil_water, temperature, vegetation, wind https://storage.googleapis.com/earthengine-stac/catalog/ECMWF/ECMWF_ERA5_LAND_DAILY_AGGR.json https://developers.google.com/earth-engine/datasets/catalog/ECMWF_ERA5_LAND_DAILY_AGGR proprietary ECMWF/ERA5_LAND/HOURLY ERA5-Land Hourly - ECMWF Climate Reanalysis image_collection ee.ImageCollection('ECMWF/ERA5_LAND/HOURLY') Copernicus Climate Data Store 1950-01-01 2023-11-17 -180, -90, 180, 90 False cds, climate, copernicus, ecmwf, era5_land, evaporation, heat, lakes, precipitation, pressure, radiation, reanalysis, runoff, snow, soil_water, temperature, vegetation, wind https://storage.googleapis.com/earthengine-stac/catalog/ECMWF/ECMWF_ERA5_LAND_HOURLY.json https://developers.google.com/earth-engine/datasets/catalog/ECMWF_ERA5_LAND_HOURLY proprietary ECMWF/ERA5_LAND/MONTHLY ERA5-Land Monthly Averaged - ECMWF Climate Reanalysis [deprecated] image_collection ee.ImageCollection('ECMWF/ERA5_LAND/MONTHLY') Copernicus Climate Data Store 1950-02-01 2023-04-01 -180, -90, 180, 90 True cds, climate, copernicus, ecmwf, era5_land, evaporation, heat, lakes, precipitation, pressure, radiation, reanalysis, runoff, snow, soil_water, temperature, vegetation, wind https://storage.googleapis.com/earthengine-stac/catalog/ECMWF/ECMWF_ERA5_LAND_MONTHLY.json https://developers.google.com/earth-engine/datasets/catalog/ECMWF_ERA5_LAND_MONTHLY proprietary ECMWF/ERA5_LAND/MONTHLY_AGGR ERA5-Land Monthly Aggregated - ECMWF Climate Reanalysis image_collection ee.ImageCollection('ECMWF/ERA5_LAND/MONTHLY_AGGR') Monthly Aggregates: Google and Copernicus Climate Data Store 1950-02-01 2023-10-01 -180, -90, 180, 90 False cds, climate, copernicus, ecmwf, era5_land, evaporation, heat, lakes, precipitation, pressure, radiation, reanalysis, runoff, snow, soil_water, temperature, vegetation, wind https://storage.googleapis.com/earthengine-stac/catalog/ECMWF/ECMWF_ERA5_LAND_MONTHLY_AGGR.json https://developers.google.com/earth-engine/datasets/catalog/ECMWF_ERA5_LAND_MONTHLY_AGGR proprietary @@ -119,7 +119,7 @@ FAO/WAPOR/2/L1_NPP_D WAPOR Dekadal Net Primary Production 2.0 image_collection e FAO/WAPOR/2/L1_RET_D WAPOR Dekadal Reference Evapotranspiration 2.0 image_collection ee.ImageCollection('FAO/WAPOR/2/L1_RET_D') FAO UN 2009-01-01 2023-03-11 -30.15, -39.9953437, 65.13, 40.0044643 False agriculture, fao, wapor, water https://storage.googleapis.com/earthengine-stac/catalog/FAO/FAO_WAPOR_2_L1_RET_D.json https://developers.google.com/earth-engine/datasets/catalog/FAO_WAPOR_2_L1_RET_D proprietary FAO/WAPOR/2/L1_RET_E WAPOR Daily Reference Evapotranspiration 2.0 image_collection ee.ImageCollection('FAO/WAPOR/2/L1_RET_E') FAO UN 2009-01-01 2023-03-20 -30.15, -39.9953437, 65.13, 40.0044643 False agriculture, fao, wapor, water https://storage.googleapis.com/earthengine-stac/catalog/FAO/FAO_WAPOR_2_L1_RET_E.json https://developers.google.com/earth-engine/datasets/catalog/FAO_WAPOR_2_L1_RET_E proprietary FAO/WAPOR/2/L1_T_D WAPOR Dekadal Transpiration 2.0 image_collection ee.ImageCollection('FAO/WAPOR/2/L1_T_D') FAO UN 2009-01-01 2023-03-01 -30.0044643, -40.0044644, 65.0044644, 40.0044643 False agriculture, fao, wapor, water https://storage.googleapis.com/earthengine-stac/catalog/FAO/FAO_WAPOR_2_L1_T_D.json https://developers.google.com/earth-engine/datasets/catalog/FAO_WAPOR_2_L1_T_D proprietary -FIRMS FIRMS: Fire Information for Resource Management System image_collection ee.ImageCollection('FIRMS') NASA / LANCE / EOSDIS 2000-11-01 2023-11-22 -180, -90, 180, 90 False eosdis, fire, firms, geophysical, hotspot, lance, modis, nasa, thermal https://storage.googleapis.com/earthengine-stac/catalog/FIRMS/FIRMS.json https://developers.google.com/earth-engine/datasets/catalog/FIRMS proprietary +FIRMS FIRMS: Fire Information for Resource Management System image_collection ee.ImageCollection('FIRMS') NASA / LANCE / EOSDIS 2000-11-01 2023-11-23 -180, -90, 180, 90 False eosdis, fire, firms, geophysical, hotspot, lance, modis, nasa, thermal https://storage.googleapis.com/earthengine-stac/catalog/FIRMS/FIRMS.json https://developers.google.com/earth-engine/datasets/catalog/FIRMS proprietary FORMA/FORMA_500m FORMA Global Forest Watch Deforestation Alerts, 500m [deprecated] image ee.Image('FORMA/FORMA_500m') Global Forest Watch, World Resources Institute 2006-01-01 2015-06-10 -180, -90, 180, 90 True alerts, deforestation, forest, forma, geophysical, gfw, modis, nasa, wri https://storage.googleapis.com/earthengine-stac/catalog/FORMA/FORMA_FORMA_500m.json https://developers.google.com/earth-engine/datasets/catalog/FORMA_FORMA_500m proprietary Finland/MAVI/VV/50cm Finland NRG NLS orthophotos 50 cm by Mavi image_collection ee.ImageCollection('Finland/MAVI/VV/50cm') NLS orthophotos 2015-01-01 2018-01-01 59, 18, 69.4, 29.2 False falsecolor, finland, mavi, nrg, orthophoto https://storage.googleapis.com/earthengine-stac/catalog/Finland/Finland_MAVI_VV_50cm.json https://developers.google.com/earth-engine/datasets/catalog/Finland_MAVI_VV_50cm CC-BY-4.0 Finland/SMK/V/50cm Finland RGB NLS orthophotos 50 cm by SMK image_collection ee.ImageCollection('Finland/SMK/V/50cm') NLS orthophotos 2015-01-01 2023-01-01 59, 18, 69.4, 29.2 False finland, orthophoto, rgb, smk https://storage.googleapis.com/earthengine-stac/catalog/Finland/Finland_SMK_V_50cm.json https://developers.google.com/earth-engine/datasets/catalog/Finland_SMK_V_50cm proprietary @@ -133,8 +133,8 @@ GLIMS/20171027 GLIMS 2017: Global Land Ice Measurements From Space [deprecated] GLIMS/20210914 GLIMS 2021: Global Land Ice Measurements From Space table ee.FeatureCollection('GLIMS/20210914') National Snow and Ice Data Center (NSDIC) 1750-01-01 2019-07-18 -180, -90, 180, 90 False glacier, glims, ice, landcover, nasa, nsidc, snow https://storage.googleapis.com/earthengine-stac/catalog/GLIMS/GLIMS_20210914.json https://developers.google.com/earth-engine/datasets/catalog/GLIMS_20210914 proprietary GLIMS/current GLIMS Current: Global Land Ice Measurements From Space table ee.FeatureCollection('GLIMS/current') National Snow and Ice Data Center (NSDIC) 1750-01-01 2019-07-18 -180, -90, 180, 90 False glacier, glims, ice, landcover, nasa, nsidc, snow https://storage.googleapis.com/earthengine-stac/catalog/GLIMS/GLIMS_current.json https://developers.google.com/earth-engine/datasets/catalog/GLIMS_current proprietary GLOBAL_FLOOD_DB/MODIS_EVENTS/V1 Global Flood Database v1 (2000-2018) image_collection ee.ImageCollection('GLOBAL_FLOOD_DB/MODIS_EVENTS/V1') Cloud to Street (C2S) / Dartmouth Flood Observatory (DFO) 2000-02-17 2018-12-10 -180, -90, 180, 90 False c2s, cloudtostreet, dartmouth, dfo, flood, gfd, inundation, surface, water https://storage.googleapis.com/earthengine-stac/catalog/GLOBAL_FLOOD_DB/GLOBAL_FLOOD_DB_MODIS_EVENTS_V1.json https://developers.google.com/earth-engine/datasets/catalog/GLOBAL_FLOOD_DB_MODIS_EVENTS_V1 CC-BY-NC-4.0 -GOOGLE/CLOUD_SCORE_PLUS/V1/S2_HARMONIZED Cloud Score+ S2_HARMONIZED V1 image_collection ee.ImageCollection('GOOGLE/CLOUD_SCORE_PLUS/V1/S2_HARMONIZED') Google Earth Engine 2020-01-01 2023-11-23 -180, -90, 180, 90 False google, cloud, sentinel2_derived https://storage.googleapis.com/earthengine-stac/catalog/GOOGLE/GOOGLE_CLOUD_SCORE_PLUS_V1_S2_HARMONIZED.json https://developers.google.com/earth-engine/datasets/catalog/GOOGLE_CLOUD_SCORE_PLUS_V1_S2_HARMONIZED CC-BY-4.0 -GOOGLE/DYNAMICWORLD/V1 Dynamic World V1 image_collection ee.ImageCollection('GOOGLE/DYNAMICWORLD/V1') World Resources Institute 2015-06-23 2023-11-24 -180, -90, 180, 90 False global, google, landcover, landuse, nrt, sentinel2_derived https://storage.googleapis.com/earthengine-stac/catalog/GOOGLE/GOOGLE_DYNAMICWORLD_V1.json https://developers.google.com/earth-engine/datasets/catalog/GOOGLE_DYNAMICWORLD_V1 CC-BY-4.0 +GOOGLE/CLOUD_SCORE_PLUS/V1/S2_HARMONIZED Cloud Score+ S2_HARMONIZED V1 image_collection ee.ImageCollection('GOOGLE/CLOUD_SCORE_PLUS/V1/S2_HARMONIZED') Google Earth Engine 2020-01-01 2023-11-24 -180, -90, 180, 90 False google, cloud, sentinel2_derived https://storage.googleapis.com/earthengine-stac/catalog/GOOGLE/GOOGLE_CLOUD_SCORE_PLUS_V1_S2_HARMONIZED.json https://developers.google.com/earth-engine/datasets/catalog/GOOGLE_CLOUD_SCORE_PLUS_V1_S2_HARMONIZED CC-BY-4.0 +GOOGLE/DYNAMICWORLD/V1 Dynamic World V1 image_collection ee.ImageCollection('GOOGLE/DYNAMICWORLD/V1') World Resources Institute 2015-06-23 2023-11-25 -180, -90, 180, 90 False global, google, landcover, landuse, nrt, sentinel2_derived https://storage.googleapis.com/earthengine-stac/catalog/GOOGLE/GOOGLE_DYNAMICWORLD_V1.json https://developers.google.com/earth-engine/datasets/catalog/GOOGLE_DYNAMICWORLD_V1 CC-BY-4.0 GOOGLE/Research/open-buildings/v1/polygons Open Buildings V1 Polygons [deprecated] table ee.FeatureCollection('GOOGLE/Research/open-buildings/v1/polygons') Google Research - Open Buildings 2021-04-30 2021-04-30 -180, -90, 180, 90 True africa, building, built_up, open_buildings, structure https://storage.googleapis.com/earthengine-stac/catalog/GOOGLE/GOOGLE_Research_open-buildings_v1_polygons.json https://developers.google.com/earth-engine/datasets/catalog/GOOGLE_Research_open-buildings_v1_polygons CC-BY-4.0 GOOGLE/Research/open-buildings/v2/polygons Open Buildings V2 Polygons [deprecated] table ee.FeatureCollection('GOOGLE/Research/open-buildings/v2/polygons') Google Research - Open Buildings 2022-08-30 2022-08-30 -180, -90, 180, 90 True africa, asia, building, built_up, open_buildings, south_asia, southeast_asia, structure https://storage.googleapis.com/earthengine-stac/catalog/GOOGLE/GOOGLE_Research_open-buildings_v2_polygons.json https://developers.google.com/earth-engine/datasets/catalog/GOOGLE_Research_open-buildings_v2_polygons CC-BY-4.0 GOOGLE/Research/open-buildings/v3/polygons Open Buildings V3 Polygons table ee.FeatureCollection('GOOGLE/Research/open-buildings/v3/polygons') Google Research - Open Buildings 2023-05-30 2023-05-30 -180, -90, 180, 90 False africa, asia, building, built_up, open_buildings, south_asia, southeast_asia, structure https://storage.googleapis.com/earthengine-stac/catalog/GOOGLE/GOOGLE_Research_open-buildings_v3_polygons.json https://developers.google.com/earth-engine/datasets/catalog/GOOGLE_Research_open-buildings_v3_polygons CC-BY-4.0 @@ -185,10 +185,10 @@ JAXA/ALOS/PALSAR/YEARLY/SAR Global PALSAR-2/PALSAR Yearly Mosaic, version 1 imag JAXA/ALOS/PALSAR/YEARLY/SAR_EPOCH Global PALSAR-2/PALSAR Yearly Mosaic, version 2 image_collection ee.ImageCollection('JAXA/ALOS/PALSAR/YEARLY/SAR_EPOCH') JAXA EORC 2015-01-01 2022-01-01 -180, -90, 180, 90 False alos, alos2, eroc, jaxa, palsar, palsar2, sar https://storage.googleapis.com/earthengine-stac/catalog/JAXA/JAXA_ALOS_PALSAR_YEARLY_SAR_EPOCH.json https://developers.google.com/earth-engine/datasets/catalog/JAXA_ALOS_PALSAR_YEARLY_SAR_EPOCH proprietary JAXA/GCOM-C/L3/LAND/LAI/V1 GCOM-C/SGLI L3 Leaf Area Index (V1) image_collection ee.ImageCollection('JAXA/GCOM-C/L3/LAND/LAI/V1') Global Change Observation Mission (GCOM) 2018-01-01 2020-06-28 -180, -90, 180, 90 False climate, g_portal, gcom, gcom_c, jaxa, lai, land, leaf_area_index https://storage.googleapis.com/earthengine-stac/catalog/JAXA/JAXA_GCOM-C_L3_LAND_LAI_V1.json https://developers.google.com/earth-engine/datasets/catalog/JAXA_GCOM-C_L3_LAND_LAI_V1 proprietary JAXA/GCOM-C/L3/LAND/LAI/V2 GCOM-C/SGLI L3 Leaf Area Index (V2) image_collection ee.ImageCollection('JAXA/GCOM-C/L3/LAND/LAI/V2') Global Change Observation Mission (GCOM) 2018-01-01 2021-11-28 -180, -90, 180, 90 False climate, g_portal, gcom, gcom_c, jaxa, lai, land, leaf_area_index https://storage.googleapis.com/earthengine-stac/catalog/JAXA/JAXA_GCOM-C_L3_LAND_LAI_V2.json https://developers.google.com/earth-engine/datasets/catalog/JAXA_GCOM-C_L3_LAND_LAI_V2 proprietary -JAXA/GCOM-C/L3/LAND/LAI/V3 GCOM-C/SGLI L3 Leaf Area Index (V3) image_collection ee.ImageCollection('JAXA/GCOM-C/L3/LAND/LAI/V3') Global Change Observation Mission (GCOM) 2021-11-29 2023-11-22 -180, -90, 180, 90 False climate, g_portal, gcom, gcom_c, jaxa, lai, land, leaf_area_index https://storage.googleapis.com/earthengine-stac/catalog/JAXA/JAXA_GCOM-C_L3_LAND_LAI_V3.json https://developers.google.com/earth-engine/datasets/catalog/JAXA_GCOM-C_L3_LAND_LAI_V3 proprietary +JAXA/GCOM-C/L3/LAND/LAI/V3 GCOM-C/SGLI L3 Leaf Area Index (V3) image_collection ee.ImageCollection('JAXA/GCOM-C/L3/LAND/LAI/V3') Global Change Observation Mission (GCOM) 2021-11-29 2023-11-23 -180, -90, 180, 90 False climate, g_portal, gcom, gcom_c, jaxa, lai, land, leaf_area_index https://storage.googleapis.com/earthengine-stac/catalog/JAXA/JAXA_GCOM-C_L3_LAND_LAI_V3.json https://developers.google.com/earth-engine/datasets/catalog/JAXA_GCOM-C_L3_LAND_LAI_V3 proprietary JAXA/GCOM-C/L3/LAND/LST/V1 GCOM-C/SGLI L3 Land Surface Temperature (V1) image_collection ee.ImageCollection('JAXA/GCOM-C/L3/LAND/LST/V1') Global Change Observation Mission (GCOM) 2018-01-01 2020-06-28 -180, -90, 180, 90 False climate, g_portal, gcom, gcom_c, jaxa, land, land_surface_temperature, lst https://storage.googleapis.com/earthengine-stac/catalog/JAXA/JAXA_GCOM-C_L3_LAND_LST_V1.json https://developers.google.com/earth-engine/datasets/catalog/JAXA_GCOM-C_L3_LAND_LST_V1 proprietary JAXA/GCOM-C/L3/LAND/LST/V2 GCOM-C/SGLI L3 Land Surface Temperature (V2) image_collection ee.ImageCollection('JAXA/GCOM-C/L3/LAND/LST/V2') Global Change Observation Mission (GCOM) 2018-01-01 2021-11-28 -180, -90, 180, 90 False climate, g_portal, gcom, gcom_c, jaxa, land, land_surface_temperature, lst https://storage.googleapis.com/earthengine-stac/catalog/JAXA/JAXA_GCOM-C_L3_LAND_LST_V2.json https://developers.google.com/earth-engine/datasets/catalog/JAXA_GCOM-C_L3_LAND_LST_V2 proprietary -JAXA/GCOM-C/L3/LAND/LST/V3 GCOM-C/SGLI L3 Land Surface Temperature (V3) image_collection ee.ImageCollection('JAXA/GCOM-C/L3/LAND/LST/V3') Global Change Observation Mission (GCOM) 2021-11-29 2023-11-22 -180, -90, 180, 90 False climate, g_portal, gcom, gcom_c, jaxa, land, land_surface_temperature, lst https://storage.googleapis.com/earthengine-stac/catalog/JAXA/JAXA_GCOM-C_L3_LAND_LST_V3.json https://developers.google.com/earth-engine/datasets/catalog/JAXA_GCOM-C_L3_LAND_LST_V3 proprietary +JAXA/GCOM-C/L3/LAND/LST/V3 GCOM-C/SGLI L3 Land Surface Temperature (V3) image_collection ee.ImageCollection('JAXA/GCOM-C/L3/LAND/LST/V3') Global Change Observation Mission (GCOM) 2021-11-29 2023-11-23 -180, -90, 180, 90 False climate, g_portal, gcom, gcom_c, jaxa, land, land_surface_temperature, lst https://storage.googleapis.com/earthengine-stac/catalog/JAXA/JAXA_GCOM-C_L3_LAND_LST_V3.json https://developers.google.com/earth-engine/datasets/catalog/JAXA_GCOM-C_L3_LAND_LST_V3 proprietary JAXA/GCOM-C/L3/OCEAN/CHLA/V1 GCOM-C/SGLI L3 Chlorophyll-a Concentration (V1) image_collection ee.ImageCollection('JAXA/GCOM-C/L3/OCEAN/CHLA/V1') Global Change Observation Mission (GCOM) 2018-01-01 2020-06-28 -180, -90, 180, 90 False chla, chlorophyll_a, climate, g_portal, gcom, gcom_c, jaxa, ocean, ocean_color https://storage.googleapis.com/earthengine-stac/catalog/JAXA/JAXA_GCOM-C_L3_OCEAN_CHLA_V1.json https://developers.google.com/earth-engine/datasets/catalog/JAXA_GCOM-C_L3_OCEAN_CHLA_V1 proprietary JAXA/GCOM-C/L3/OCEAN/CHLA/V2 GCOM-C/SGLI L3 Chlorophyll-a Concentration (V2) image_collection ee.ImageCollection('JAXA/GCOM-C/L3/OCEAN/CHLA/V2') Global Change Observation Mission (GCOM) 2018-01-01 2021-11-28 -180, -90, 180, 90 False chla, chlorophyll_a, climate, g_portal, gcom, gcom_c, jaxa, ocean, ocean_color https://storage.googleapis.com/earthengine-stac/catalog/JAXA/JAXA_GCOM-C_L3_OCEAN_CHLA_V2.json https://developers.google.com/earth-engine/datasets/catalog/JAXA_GCOM-C_L3_OCEAN_CHLA_V2 proprietary JAXA/GCOM-C/L3/OCEAN/CHLA/V3 GCOM-C/SGLI L3 Chlorophyll-a Concentration (V3) image_collection ee.ImageCollection('JAXA/GCOM-C/L3/OCEAN/CHLA/V3') Global Change Observation Mission (GCOM) 2021-11-29 2023-11-22 -180, -90, 180, 90 False chla, chlorophyll_a, climate, g_portal, gcom, gcom_c, jaxa, ocean, ocean_color https://storage.googleapis.com/earthengine-stac/catalog/JAXA/JAXA_GCOM-C_L3_OCEAN_CHLA_V3.json https://developers.google.com/earth-engine/datasets/catalog/JAXA_GCOM-C_L3_OCEAN_CHLA_V3 proprietary @@ -295,18 +295,18 @@ LANDSAT/LC08/C01/T2_SR USGS Landsat 8 Surface Reflectance Tier 2 [deprecated] im LANDSAT/LC08/C01/T2_TOA USGS Landsat 8 Collection 1 Tier 2 TOA Reflectance [deprecated] image_collection ee.ImageCollection('LANDSAT/LC08/C01/T2_TOA') USGS/Google 2013-03-18 2022-01-02 -180, -90, 180, 90 True global, landsat, toa, usgs https://storage.googleapis.com/earthengine-stac/catalog/LANDSAT/LANDSAT_LC08_C01_T2_TOA.json https://developers.google.com/earth-engine/datasets/catalog/LANDSAT_LC08_C01_T2_TOA PDDL-1.0 LANDSAT/LC08/C02/T1 USGS Landsat 8 Collection 2 Tier 1 Raw Scenes image_collection ee.ImageCollection('LANDSAT/LC08/C02/T1') USGS 2013-03-18 2023-11-20 -180, -90, 180, 90 False c2, global, l8, landsat, lc8, oli_tirs, radiance, t1, tier1, usgs https://storage.googleapis.com/earthengine-stac/catalog/LANDSAT/LANDSAT_LC08_C02_T1.json https://developers.google.com/earth-engine/datasets/catalog/LANDSAT_LC08_C02_T1 PDDL-1.0 LANDSAT/LC08/C02/T1_L2 USGS Landsat 8 Level 2, Collection 2, Tier 1 image_collection ee.ImageCollection('LANDSAT/LC08/C02/T1_L2') USGS 2013-03-18 2023-11-20 -180, -90, 180, 90 False cfmask, cloud, fmask, global, l8sr, landsat, lasrc, lc08, lst, reflectance, sr, usgs https://storage.googleapis.com/earthengine-stac/catalog/LANDSAT/LANDSAT_LC08_C02_T1_L2.json https://developers.google.com/earth-engine/datasets/catalog/LANDSAT_LC08_C02_T1_L2 proprietary -LANDSAT/LC08/C02/T1_RT USGS Landsat 8 Collection 2 Tier 1 and Real-Time data Raw Scenes image_collection ee.ImageCollection('LANDSAT/LC08/C02/T1_RT') USGS 2013-03-18 2023-11-24 -180, -90, 180, 90 False c2, global, l8, landsat, lc8, nrt, oli_tirs, radiance, rt, t1, tier1, usgs https://storage.googleapis.com/earthengine-stac/catalog/LANDSAT/LANDSAT_LC08_C02_T1_RT.json https://developers.google.com/earth-engine/datasets/catalog/LANDSAT_LC08_C02_T1_RT PDDL-1.0 -LANDSAT/LC08/C02/T1_RT_TOA USGS Landsat 8 Collection 2 Tier 1 and Real-Time data TOA Reflectance image_collection ee.ImageCollection('LANDSAT/LC08/C02/T1_RT_TOA') USGS/Google 2013-03-18 2023-11-24 -180, -90, 180, 90 False c2, global, l8, landsat, lc8, toa, usgs https://storage.googleapis.com/earthengine-stac/catalog/LANDSAT/LANDSAT_LC08_C02_T1_RT_TOA.json https://developers.google.com/earth-engine/datasets/catalog/LANDSAT_LC08_C02_T1_RT_TOA PDDL-1.0 +LANDSAT/LC08/C02/T1_RT USGS Landsat 8 Collection 2 Tier 1 and Real-Time data Raw Scenes image_collection ee.ImageCollection('LANDSAT/LC08/C02/T1_RT') USGS 2013-03-18 2023-11-25 -180, -90, 180, 90 False c2, global, l8, landsat, lc8, nrt, oli_tirs, radiance, rt, t1, tier1, usgs https://storage.googleapis.com/earthengine-stac/catalog/LANDSAT/LANDSAT_LC08_C02_T1_RT.json https://developers.google.com/earth-engine/datasets/catalog/LANDSAT_LC08_C02_T1_RT PDDL-1.0 +LANDSAT/LC08/C02/T1_RT_TOA USGS Landsat 8 Collection 2 Tier 1 and Real-Time data TOA Reflectance image_collection ee.ImageCollection('LANDSAT/LC08/C02/T1_RT_TOA') USGS/Google 2013-03-18 2023-11-25 -180, -90, 180, 90 False c2, global, l8, landsat, lc8, toa, usgs https://storage.googleapis.com/earthengine-stac/catalog/LANDSAT/LANDSAT_LC08_C02_T1_RT_TOA.json https://developers.google.com/earth-engine/datasets/catalog/LANDSAT_LC08_C02_T1_RT_TOA PDDL-1.0 LANDSAT/LC08/C02/T1_TOA USGS Landsat 8 Collection 2 Tier 1 TOA Reflectance image_collection ee.ImageCollection('LANDSAT/LC08/C02/T1_TOA') USGS/Google 2013-03-18 2023-11-20 -180, -90, 180, 90 False c2, global, landsat, toa, usgs https://storage.googleapis.com/earthengine-stac/catalog/LANDSAT/LANDSAT_LC08_C02_T1_TOA.json https://developers.google.com/earth-engine/datasets/catalog/LANDSAT_LC08_C02_T1_TOA PDDL-1.0 LANDSAT/LC08/C02/T2 USGS Landsat 8 Collection 2 Tier 2 Raw Scenes image_collection ee.ImageCollection('LANDSAT/LC08/C02/T2') USGS 2021-10-28 2023-11-20 -180, -90, 180, 90 False c2, global, l8, landsat, lc8, oli_tirs, radiance, t2, tier2, usgs https://storage.googleapis.com/earthengine-stac/catalog/LANDSAT/LANDSAT_LC08_C02_T2.json https://developers.google.com/earth-engine/datasets/catalog/LANDSAT_LC08_C02_T2 PDDL-1.0 LANDSAT/LC08/C02/T2_L2 USGS Landsat 8 Level 2, Collection 2, Tier 2 image_collection ee.ImageCollection('LANDSAT/LC08/C02/T2_L2') USGS 2013-03-18 2023-11-20 -180, -90, 180, 90 False cfmask, cloud, fmask, global, l8sr, landsat, lasrc, lc08, lst, reflectance, sr, usgs https://storage.googleapis.com/earthengine-stac/catalog/LANDSAT/LANDSAT_LC08_C02_T2_L2.json https://developers.google.com/earth-engine/datasets/catalog/LANDSAT_LC08_C02_T2_L2 proprietary LANDSAT/LC08/C02/T2_TOA USGS Landsat 8 Collection 2 Tier 2 TOA Reflectance image_collection ee.ImageCollection('LANDSAT/LC08/C02/T2_TOA') USGS/Google 2021-10-28 2023-11-20 -180, -90, 180, 90 False c2, global, landsat, toa, usgs https://storage.googleapis.com/earthengine-stac/catalog/LANDSAT/LANDSAT_LC08_C02_T2_TOA.json https://developers.google.com/earth-engine/datasets/catalog/LANDSAT_LC08_C02_T2_TOA PDDL-1.0 -LANDSAT/LC09/C02/T1 USGS Landsat 9 Collection 2 Tier 1 Raw Scenes image_collection ee.ImageCollection('LANDSAT/LC09/C02/T1') USGS 2021-10-31 2023-11-24 -180, -90, 180, 90 False c2, global, l9, landsat, lc9, oli_tirs, radiance, t1, tier1, usgs https://storage.googleapis.com/earthengine-stac/catalog/LANDSAT/LANDSAT_LC09_C02_T1.json https://developers.google.com/earth-engine/datasets/catalog/LANDSAT_LC09_C02_T1 PDDL-1.0 +LANDSAT/LC09/C02/T1 USGS Landsat 9 Collection 2 Tier 1 Raw Scenes image_collection ee.ImageCollection('LANDSAT/LC09/C02/T1') USGS 2021-10-31 2023-11-25 -180, -90, 180, 90 False c2, global, l9, landsat, lc9, oli_tirs, radiance, t1, tier1, usgs https://storage.googleapis.com/earthengine-stac/catalog/LANDSAT/LANDSAT_LC09_C02_T1.json https://developers.google.com/earth-engine/datasets/catalog/LANDSAT_LC09_C02_T1 PDDL-1.0 LANDSAT/LC09/C02/T1_L2 USGS Landsat 9 Level 2, Collection 2, Tier 1 image_collection ee.ImageCollection('LANDSAT/LC09/C02/T1_L2') USGS 2021-10-31 2023-11-21 -180, -90, 180, 90 False cfmask, cloud, fmask, global, l9sr, landsat, lasrc, lc09, lst, reflectance, sr, usgs https://storage.googleapis.com/earthengine-stac/catalog/LANDSAT/LANDSAT_LC09_C02_T1_L2.json https://developers.google.com/earth-engine/datasets/catalog/LANDSAT_LC09_C02_T1_L2 proprietary -LANDSAT/LC09/C02/T1_TOA USGS Landsat 9 Collection 2 Tier 1 TOA Reflectance image_collection ee.ImageCollection('LANDSAT/LC09/C02/T1_TOA') USGS/Google 2021-10-31 2023-11-24 -180, -90, 180, 90 False c2, global, landsat, toa, usgs https://storage.googleapis.com/earthengine-stac/catalog/LANDSAT/LANDSAT_LC09_C02_T1_TOA.json https://developers.google.com/earth-engine/datasets/catalog/LANDSAT_LC09_C02_T1_TOA PDDL-1.0 -LANDSAT/LC09/C02/T2 USGS Landsat 9 Collection 2 Tier 2 Raw Scenes image_collection ee.ImageCollection('LANDSAT/LC09/C02/T2') USGS 2021-11-02 2023-11-24 -180, -90, 180, 90 False c2, global, l9, landsat, lc9, oli_tirs, radiance, t2, tier2, usgs https://storage.googleapis.com/earthengine-stac/catalog/LANDSAT/LANDSAT_LC09_C02_T2.json https://developers.google.com/earth-engine/datasets/catalog/LANDSAT_LC09_C02_T2 PDDL-1.0 +LANDSAT/LC09/C02/T1_TOA USGS Landsat 9 Collection 2 Tier 1 TOA Reflectance image_collection ee.ImageCollection('LANDSAT/LC09/C02/T1_TOA') USGS/Google 2021-10-31 2023-11-25 -180, -90, 180, 90 False c2, global, landsat, toa, usgs https://storage.googleapis.com/earthengine-stac/catalog/LANDSAT/LANDSAT_LC09_C02_T1_TOA.json https://developers.google.com/earth-engine/datasets/catalog/LANDSAT_LC09_C02_T1_TOA PDDL-1.0 +LANDSAT/LC09/C02/T2 USGS Landsat 9 Collection 2 Tier 2 Raw Scenes image_collection ee.ImageCollection('LANDSAT/LC09/C02/T2') USGS 2021-11-02 2023-11-25 -180, -90, 180, 90 False c2, global, l9, landsat, lc9, oli_tirs, radiance, t2, tier2, usgs https://storage.googleapis.com/earthengine-stac/catalog/LANDSAT/LANDSAT_LC09_C02_T2.json https://developers.google.com/earth-engine/datasets/catalog/LANDSAT_LC09_C02_T2 PDDL-1.0 LANDSAT/LC09/C02/T2_L2 USGS Landsat 9 Level 2, Collection 2, Tier 2 image_collection ee.ImageCollection('LANDSAT/LC09/C02/T2_L2') USGS 2021-10-31 2023-11-21 -180, -90, 180, 90 False cfmask, cloud, fmask, global, l9sr, landsat, lasrc, lc09, lst, reflectance, sr, usgs https://storage.googleapis.com/earthengine-stac/catalog/LANDSAT/LANDSAT_LC09_C02_T2_L2.json https://developers.google.com/earth-engine/datasets/catalog/LANDSAT_LC09_C02_T2_L2 proprietary -LANDSAT/LC09/C02/T2_TOA USGS Landsat 9 Collection 2 Tier 2 TOA Reflectance image_collection ee.ImageCollection('LANDSAT/LC09/C02/T2_TOA') USGS/Google 2021-11-02 2023-11-24 -180, -90, 180, 90 False c2, global, l9, landsat, lc9, toa, usgs https://storage.googleapis.com/earthengine-stac/catalog/LANDSAT/LANDSAT_LC09_C02_T2_TOA.json https://developers.google.com/earth-engine/datasets/catalog/LANDSAT_LC09_C02_T2_TOA PDDL-1.0 +LANDSAT/LC09/C02/T2_TOA USGS Landsat 9 Collection 2 Tier 2 TOA Reflectance image_collection ee.ImageCollection('LANDSAT/LC09/C02/T2_TOA') USGS/Google 2021-11-02 2023-11-25 -180, -90, 180, 90 False c2, global, l9, landsat, lc9, toa, usgs https://storage.googleapis.com/earthengine-stac/catalog/LANDSAT/LANDSAT_LC09_C02_T2_TOA.json https://developers.google.com/earth-engine/datasets/catalog/LANDSAT_LC09_C02_T2_TOA PDDL-1.0 LANDSAT/LC8 USGS Landsat 8 Raw Scenes [deprecated] image_collection ee.ImageCollection('LANDSAT/LC8') USGS 2013-04-11 2017-05-01 -180, -90, 180, 90 True global, l8, landsat, lc8, oli_tirs, radiance, usgs https://storage.googleapis.com/earthengine-stac/catalog/LANDSAT/LANDSAT_LC8.json https://developers.google.com/earth-engine/datasets/catalog/LANDSAT_LC8 PDDL-1.0 LANDSAT/LC8_L1T USGS Landsat 8 Raw Scenes (Orthorectified) [deprecated] image_collection ee.ImageCollection('LANDSAT/LC8_L1T') USGS 2013-04-11 2017-05-01 -180, -90, 180, 90 True global, l8, landsat, lc8, oli_tirs, radiance, usgs https://storage.googleapis.com/earthengine-stac/catalog/LANDSAT/LANDSAT_LC8_L1T.json https://developers.google.com/earth-engine/datasets/catalog/LANDSAT_LC8_L1T PDDL-1.0 LANDSAT/LC8_L1T_32DAY_BAI Landsat 8 32-Day BAI Composite [deprecated] image_collection ee.ImageCollection('LANDSAT/LC8_L1T_32DAY_BAI') USGS 2013-04-07 2017-04-07 -180, -90, 180, 90 True bai, landsat, usgs https://storage.googleapis.com/earthengine-stac/catalog/LANDSAT/LANDSAT_LC8_L1T_32DAY_BAI.json https://developers.google.com/earth-engine/datasets/catalog/LANDSAT_LC8_L1T_32DAY_BAI PDDL-1.0 @@ -368,14 +368,14 @@ LANDSAT/LE07/C01/T1_TOA USGS Landsat 7 Collection 1 Tier 1 TOA Reflectance [depr LANDSAT/LE07/C01/T2 USGS Landsat 7 Collection 1 Tier 2 Raw Scenes [deprecated] image_collection ee.ImageCollection('LANDSAT/LE07/C01/T2') USGS 1999-05-28 2021-12-31 -180, -90, 180, 90 True c1, etm, global, l7, landsat, le7, radiance, t2, tier2, usgs https://storage.googleapis.com/earthengine-stac/catalog/LANDSAT/LANDSAT_LE07_C01_T2.json https://developers.google.com/earth-engine/datasets/catalog/LANDSAT_LE07_C01_T2 PDDL-1.0 LANDSAT/LE07/C01/T2_SR USGS Landsat 7 Surface Reflectance Tier 2 [deprecated] image_collection ee.ImageCollection('LANDSAT/LE07/C01/T2_SR') USGS 1999-05-28 2021-10-17 -180, -90, 180, 90 True cfmask, cloud, fmask, global, landsat, le07, ledaps, reflectance, sr, usgs https://storage.googleapis.com/earthengine-stac/catalog/LANDSAT/LANDSAT_LE07_C01_T2_SR.json https://developers.google.com/earth-engine/datasets/catalog/LANDSAT_LE07_C01_T2_SR proprietary LANDSAT/LE07/C01/T2_TOA USGS Landsat 7 Collection 1 Tier 2 TOA Reflectance [deprecated] image_collection ee.ImageCollection('LANDSAT/LE07/C01/T2_TOA') USGS/Google 1999-05-28 2021-12-31 -180, -90, 180, 90 True global, landsat, toa, usgs https://storage.googleapis.com/earthengine-stac/catalog/LANDSAT/LANDSAT_LE07_C01_T2_TOA.json https://developers.google.com/earth-engine/datasets/catalog/LANDSAT_LE07_C01_T2_TOA PDDL-1.0 -LANDSAT/LE07/C02/T1 USGS Landsat 7 Collection 2 Tier 1 Raw Scenes image_collection ee.ImageCollection('LANDSAT/LE07/C02/T1') USGS 1999-05-28 2023-10-29 -180, -90, 180, 90 False c2, etm, global, l7, landsat, le7, radiance, t1, tier1, usgs https://storage.googleapis.com/earthengine-stac/catalog/LANDSAT/LANDSAT_LE07_C02_T1.json https://developers.google.com/earth-engine/datasets/catalog/LANDSAT_LE07_C02_T1 PDDL-1.0 -LANDSAT/LE07/C02/T1_L2 USGS Landsat 7 Level 2, Collection 2, Tier 1 image_collection ee.ImageCollection('LANDSAT/LE07/C02/T1_L2') USGS 1999-05-28 2023-10-29 -180, -90, 180, 90 False cfmask, cloud, etm, fmask, global, landsat, lasrc, le07, lst, reflectance, sr, usgs https://storage.googleapis.com/earthengine-stac/catalog/LANDSAT/LANDSAT_LE07_C02_T1_L2.json https://developers.google.com/earth-engine/datasets/catalog/LANDSAT_LE07_C02_T1_L2 proprietary -LANDSAT/LE07/C02/T1_RT USGS Landsat 7 Collection 2 Tier 1 and Real-Time data Raw Scenes image_collection ee.ImageCollection('LANDSAT/LE07/C02/T1_RT') USGS 1999-05-28 2023-11-24 -180, -90, 180, 90 False c2, etm, global, l7, landsat, le7, nrt, radiance, rt, t1, tier1, usgs https://storage.googleapis.com/earthengine-stac/catalog/LANDSAT/LANDSAT_LE07_C02_T1_RT.json https://developers.google.com/earth-engine/datasets/catalog/LANDSAT_LE07_C02_T1_RT PDDL-1.0 -LANDSAT/LE07/C02/T1_RT_TOA USGS Landsat 7 Collection 2 Tier 1 and Real-Time data TOA Reflectance image_collection ee.ImageCollection('LANDSAT/LE07/C02/T1_RT_TOA') USGS/Google 1999-05-28 2023-11-24 -180, -90, 180, 90 False c2, global, landsat, toa, usgs https://storage.googleapis.com/earthengine-stac/catalog/LANDSAT/LANDSAT_LE07_C02_T1_RT_TOA.json https://developers.google.com/earth-engine/datasets/catalog/LANDSAT_LE07_C02_T1_RT_TOA PDDL-1.0 -LANDSAT/LE07/C02/T1_TOA USGS Landsat 7 Collection 2 Tier 1 TOA Reflectance image_collection ee.ImageCollection('LANDSAT/LE07/C02/T1_TOA') USGS/Google 1999-05-28 2023-10-29 -180, -90, 180, 90 False c2, global, landsat, toa, usgs https://storage.googleapis.com/earthengine-stac/catalog/LANDSAT/LANDSAT_LE07_C02_T1_TOA.json https://developers.google.com/earth-engine/datasets/catalog/LANDSAT_LE07_C02_T1_TOA PDDL-1.0 -LANDSAT/LE07/C02/T2 USGS Landsat 7 Collection 2 Tier 2 Raw Scenes image_collection ee.ImageCollection('LANDSAT/LE07/C02/T2') USGS 1999-05-28 2023-10-28 -180, -90, 180, 90 False c2, etm, global, l7, landsat, le7, radiance, t2, tier2, usgs https://storage.googleapis.com/earthengine-stac/catalog/LANDSAT/LANDSAT_LE07_C02_T2.json https://developers.google.com/earth-engine/datasets/catalog/LANDSAT_LE07_C02_T2 PDDL-1.0 -LANDSAT/LE07/C02/T2_L2 USGS Landsat 7 Level 2, Collection 2, Tier 2 image_collection ee.ImageCollection('LANDSAT/LE07/C02/T2_L2') USGS 1999-05-28 2023-10-28 -180, -90, 180, 90 False cfmask, cloud, etm, fmask, global, landsat, lasrc, le07, lst, reflectance, sr, usgs https://storage.googleapis.com/earthengine-stac/catalog/LANDSAT/LANDSAT_LE07_C02_T2_L2.json https://developers.google.com/earth-engine/datasets/catalog/LANDSAT_LE07_C02_T2_L2 proprietary -LANDSAT/LE07/C02/T2_TOA USGS Landsat 7 Collection 2 Tier 2 TOA Reflectance image_collection ee.ImageCollection('LANDSAT/LE07/C02/T2_TOA') USGS/Google 2003-12-01 2023-10-28 -180, -90, 180, 90 False c2, global, landsat, toa, usgs https://storage.googleapis.com/earthengine-stac/catalog/LANDSAT/LANDSAT_LE07_C02_T2_TOA.json https://developers.google.com/earth-engine/datasets/catalog/LANDSAT_LE07_C02_T2_TOA PDDL-1.0 +LANDSAT/LE07/C02/T1 USGS Landsat 7 Collection 2 Tier 1 Raw Scenes image_collection ee.ImageCollection('LANDSAT/LE07/C02/T1') USGS 1999-05-28 2023-10-30 -180, -90, 180, 90 False c2, etm, global, l7, landsat, le7, radiance, t1, tier1, usgs https://storage.googleapis.com/earthengine-stac/catalog/LANDSAT/LANDSAT_LE07_C02_T1.json https://developers.google.com/earth-engine/datasets/catalog/LANDSAT_LE07_C02_T1 PDDL-1.0 +LANDSAT/LE07/C02/T1_L2 USGS Landsat 7 Level 2, Collection 2, Tier 1 image_collection ee.ImageCollection('LANDSAT/LE07/C02/T1_L2') USGS 1999-05-28 2023-10-30 -180, -90, 180, 90 False cfmask, cloud, etm, fmask, global, landsat, lasrc, le07, lst, reflectance, sr, usgs https://storage.googleapis.com/earthengine-stac/catalog/LANDSAT/LANDSAT_LE07_C02_T1_L2.json https://developers.google.com/earth-engine/datasets/catalog/LANDSAT_LE07_C02_T1_L2 proprietary +LANDSAT/LE07/C02/T1_RT USGS Landsat 7 Collection 2 Tier 1 and Real-Time data Raw Scenes image_collection ee.ImageCollection('LANDSAT/LE07/C02/T1_RT') USGS 1999-05-28 2023-11-25 -180, -90, 180, 90 False c2, etm, global, l7, landsat, le7, nrt, radiance, rt, t1, tier1, usgs https://storage.googleapis.com/earthengine-stac/catalog/LANDSAT/LANDSAT_LE07_C02_T1_RT.json https://developers.google.com/earth-engine/datasets/catalog/LANDSAT_LE07_C02_T1_RT PDDL-1.0 +LANDSAT/LE07/C02/T1_RT_TOA USGS Landsat 7 Collection 2 Tier 1 and Real-Time data TOA Reflectance image_collection ee.ImageCollection('LANDSAT/LE07/C02/T1_RT_TOA') USGS/Google 1999-05-28 2023-11-25 -180, -90, 180, 90 False c2, global, landsat, toa, usgs https://storage.googleapis.com/earthengine-stac/catalog/LANDSAT/LANDSAT_LE07_C02_T1_RT_TOA.json https://developers.google.com/earth-engine/datasets/catalog/LANDSAT_LE07_C02_T1_RT_TOA PDDL-1.0 +LANDSAT/LE07/C02/T1_TOA USGS Landsat 7 Collection 2 Tier 1 TOA Reflectance image_collection ee.ImageCollection('LANDSAT/LE07/C02/T1_TOA') USGS/Google 1999-05-28 2023-10-30 -180, -90, 180, 90 False c2, global, landsat, toa, usgs https://storage.googleapis.com/earthengine-stac/catalog/LANDSAT/LANDSAT_LE07_C02_T1_TOA.json https://developers.google.com/earth-engine/datasets/catalog/LANDSAT_LE07_C02_T1_TOA PDDL-1.0 +LANDSAT/LE07/C02/T2 USGS Landsat 7 Collection 2 Tier 2 Raw Scenes image_collection ee.ImageCollection('LANDSAT/LE07/C02/T2') USGS 1999-05-28 2023-10-30 -180, -90, 180, 90 False c2, etm, global, l7, landsat, le7, radiance, t2, tier2, usgs https://storage.googleapis.com/earthengine-stac/catalog/LANDSAT/LANDSAT_LE07_C02_T2.json https://developers.google.com/earth-engine/datasets/catalog/LANDSAT_LE07_C02_T2 PDDL-1.0 +LANDSAT/LE07/C02/T2_L2 USGS Landsat 7 Level 2, Collection 2, Tier 2 image_collection ee.ImageCollection('LANDSAT/LE07/C02/T2_L2') USGS 1999-05-28 2023-10-30 -180, -90, 180, 90 False cfmask, cloud, etm, fmask, global, landsat, lasrc, le07, lst, reflectance, sr, usgs https://storage.googleapis.com/earthengine-stac/catalog/LANDSAT/LANDSAT_LE07_C02_T2_L2.json https://developers.google.com/earth-engine/datasets/catalog/LANDSAT_LE07_C02_T2_L2 proprietary +LANDSAT/LE07/C02/T2_TOA USGS Landsat 7 Collection 2 Tier 2 TOA Reflectance image_collection ee.ImageCollection('LANDSAT/LE07/C02/T2_TOA') USGS/Google 2003-12-01 2023-10-30 -180, -90, 180, 90 False c2, global, landsat, toa, usgs https://storage.googleapis.com/earthengine-stac/catalog/LANDSAT/LANDSAT_LE07_C02_T2_TOA.json https://developers.google.com/earth-engine/datasets/catalog/LANDSAT_LE07_C02_T2_TOA PDDL-1.0 LANDSAT/LE7 USGS Landsat 7 Raw Scenes [deprecated] image_collection ee.ImageCollection('LANDSAT/LE7') USGS 1999-05-28 2017-04-30 -180, -90, 180, 90 True etm, global, l7, landsat, le7, radiance, usgs https://storage.googleapis.com/earthengine-stac/catalog/LANDSAT/LANDSAT_LE7.json https://developers.google.com/earth-engine/datasets/catalog/LANDSAT_LE7 PDDL-1.0 LANDSAT/LE7_L1T USGS Landsat 7 Raw Scenes (Orthorectified) [deprecated] image_collection ee.ImageCollection('LANDSAT/LE7_L1T') USGS 1999-05-28 2017-04-30 -180, -90, 180, 90 True etm, global, l7, landsat, le7, radiance, usgs https://storage.googleapis.com/earthengine-stac/catalog/LANDSAT/LANDSAT_LE7_L1T.json https://developers.google.com/earth-engine/datasets/catalog/LANDSAT_LE7_L1T PDDL-1.0 LANDSAT/LE7_L1T_32DAY_BAI Landsat 7 32-Day BAI Composite [deprecated] image_collection ee.ImageCollection('LANDSAT/LE7_L1T_32DAY_BAI') USGS 1999-01-01 2017-04-07 -180, -90, 180, 90 True bai, landsat, usgs https://storage.googleapis.com/earthengine-stac/catalog/LANDSAT/LANDSAT_LE7_L1T_32DAY_BAI.json https://developers.google.com/earth-engine/datasets/catalog/LANDSAT_LE7_L1T_32DAY_BAI PDDL-1.0 @@ -642,7 +642,7 @@ MODIS/061/MCD12Q2 MCD12Q2.006 Land Cover Dynamics Yearly Global 500m image_colle MODIS/061/MCD15A3H MCD15A3H.061 MODIS Leaf Area Index/FPAR 4-Day Global 500m image_collection ee.ImageCollection('MODIS/061/MCD15A3H') NASA LP DAAC at the USGS EROS Center 2002-07-04 2023-11-13 -180, -90, 180, 90 False 4_day, fpar, global, lai, mcd15a3h, modis, nasa, usgs, vegetation https://storage.googleapis.com/earthengine-stac/catalog/MODIS/MODIS_061_MCD15A3H.json https://developers.google.com/earth-engine/datasets/catalog/MODIS_061_MCD15A3H proprietary MODIS/061/MCD18A1 MCD18A1.061 Surface Radiation Daily/3-Hour image_collection ee.ImageCollection('MODIS/061/MCD18A1') NASA LP DAAC at the USGS EROS Center 2000-02-24 2023-10-01 -180, -90, 180, 90 False par, radiation https://storage.googleapis.com/earthengine-stac/catalog/MODIS/MODIS_061_MCD18A1.json https://developers.google.com/earth-engine/datasets/catalog/MODIS_061_MCD18A1 proprietary MODIS/061/MCD18C2 MCD18C2.061 Photosynthetically Active Radiation Daily 3-Hour image_collection ee.ImageCollection('MODIS/061/MCD18C2') NASA LP DAAC at the USGS EROS Center 2002-02-24 2023-10-01 -180, -90, 180, 90 False par, radiation https://storage.googleapis.com/earthengine-stac/catalog/MODIS/MODIS_061_MCD18C2.json https://developers.google.com/earth-engine/datasets/catalog/MODIS_061_MCD18C2 proprietary -MODIS/061/MCD19A1_GRANULES MCD19A1.061: Land Surface BRF Daily L2G Global 500m and 1km image_collection ee.ImageCollection('MODIS/061/MCD19A1_GRANULES') NASA LP DAAC at the USGS EROS Center 2000-12-21 2013-03-11 -180, -90, 180, 90 False aerosol, aod, aqua, daily, global, maiac, modis, nasa, terra, usgs https://storage.googleapis.com/earthengine-stac/catalog/MODIS/MODIS_061_MCD19A1_GRANULES.json https://developers.google.com/earth-engine/datasets/catalog/MODIS_061_MCD19A1_GRANULES proprietary +MODIS/061/MCD19A1_GRANULES MCD19A1.061: Land Surface BRF Daily L2G Global 500m and 1km image_collection ee.ImageCollection('MODIS/061/MCD19A1_GRANULES') NASA LP DAAC at the USGS EROS Center 2000-12-21 2013-03-14 -180, -90, 180, 90 False aerosol, aod, aqua, daily, global, maiac, modis, nasa, terra, usgs https://storage.googleapis.com/earthengine-stac/catalog/MODIS/MODIS_061_MCD19A1_GRANULES.json https://developers.google.com/earth-engine/datasets/catalog/MODIS_061_MCD19A1_GRANULES proprietary MODIS/061/MCD19A2_GRANULES MCD19A2.061: Terra & Aqua MAIAC Land Aerosol Optical Depth Daily 1km image_collection ee.ImageCollection('MODIS/061/MCD19A2_GRANULES') NASA LP DAAC at the USGS EROS Center 2000-02-24 2023-11-20 -180, -90, 180, 90 False aerosol, aod, aqua, daily, global, maiac, mcd19a2, modis, nasa, terra, usgs https://storage.googleapis.com/earthengine-stac/catalog/MODIS/MODIS_061_MCD19A2_GRANULES.json https://developers.google.com/earth-engine/datasets/catalog/MODIS_061_MCD19A2_GRANULES proprietary MODIS/061/MCD43A1 MCD43A1.061 MODIS BRDF-Albedo Model Parameters Daily 500m image_collection ee.ImageCollection('MODIS/061/MCD43A1') NASA LP DAAC at the USGS EROS Center 2000-02-24 2023-11-13 -180, -90, 180, 90 False albedo, brdf, daily, global, mcd43a1, modis, nasa, reflectance, usgs https://storage.googleapis.com/earthengine-stac/catalog/MODIS/MODIS_061_MCD43A1.json https://developers.google.com/earth-engine/datasets/catalog/MODIS_061_MCD43A1 proprietary MODIS/061/MCD43A2 MCD43A2.061 MODIS BRDF-Albedo Quality Daily 500m image_collection ee.ImageCollection('MODIS/061/MCD43A2') NASA LP DAAC at the USGS EROS Center 2000-02-24 2023-11-13 -180, -90, 180, 90 False albedo, brdf, daily, global, modis, nasa, quality, reflectance, usgs https://storage.googleapis.com/earthengine-stac/catalog/MODIS/MODIS_061_MCD43A2.json https://developers.google.com/earth-engine/datasets/catalog/MODIS_061_MCD43A2 proprietary @@ -656,7 +656,7 @@ MODIS/061/MOD09CMG MOD09CMG.061 Surface Reflectance Daily L3 Global 0.05 Deg CMG MODIS/061/MOD09GA MOD09GA.061 Terra Surface Reflectance Daily Global 1km and 500m image_collection ee.ImageCollection('MODIS/061/MOD09GA') NASA LP DAAC at the USGS EROS Center 2000-02-24 2023-11-20 -180, -90, 180, 90 False daily, global, mod09ga, modis, nasa, sr, surface_reflectance, terra, usgs https://storage.googleapis.com/earthengine-stac/catalog/MODIS/MODIS_061_MOD09GA.json https://developers.google.com/earth-engine/datasets/catalog/MODIS_061_MOD09GA proprietary MODIS/061/MOD09GQ MOD09GQ.061 Terra Surface Reflectance Daily Global 250m image_collection ee.ImageCollection('MODIS/061/MOD09GQ') NASA LP DAAC at the USGS EROS Center 2000-02-24 2023-11-20 -180, -90, 180, 90 False daily, global, mod09gq, modis, nasa, sr, surface_reflectance, terra, usgs https://storage.googleapis.com/earthengine-stac/catalog/MODIS/MODIS_061_MOD09GQ.json https://developers.google.com/earth-engine/datasets/catalog/MODIS_061_MOD09GQ proprietary MODIS/061/MOD09Q1 MOD09Q1.061 Terra Surface Reflectance 8-Day Global 250m image_collection ee.ImageCollection('MODIS/061/MOD09Q1') NASA LP DAAC at the USGS EROS Center 2000-02-18 2023-11-09 -180, -90, 180, 90 False 8_day, global, mod09q1, modis, nasa, sr, surface_reflectance, terra, usgs https://storage.googleapis.com/earthengine-stac/catalog/MODIS/MODIS_061_MOD09Q1.json https://developers.google.com/earth-engine/datasets/catalog/MODIS_061_MOD09Q1 proprietary -MODIS/061/MOD10A1 MOD10A1.061 Terra Snow Cover Daily Global 500m image_collection ee.ImageCollection('MODIS/061/MOD10A1') NASA NSIDC DAAC at CIRES 2000-02-24 2023-11-20 -180, -90, 180, 90 False albedo, daily, geophysical, global, mod10a1, modis, nasa, nsidc, snow, terra https://storage.googleapis.com/earthengine-stac/catalog/MODIS/MODIS_061_MOD10A1.json https://developers.google.com/earth-engine/datasets/catalog/MODIS_061_MOD10A1 proprietary +MODIS/061/MOD10A1 MOD10A1.061 Terra Snow Cover Daily Global 500m image_collection ee.ImageCollection('MODIS/061/MOD10A1') NASA NSIDC DAAC at CIRES 2000-02-24 2023-11-23 -180, -90, 180, 90 False albedo, daily, geophysical, global, mod10a1, modis, nasa, nsidc, snow, terra https://storage.googleapis.com/earthengine-stac/catalog/MODIS/MODIS_061_MOD10A1.json https://developers.google.com/earth-engine/datasets/catalog/MODIS_061_MOD10A1 proprietary MODIS/061/MOD11A1 MOD11A1.061 Terra Land Surface Temperature and Emissivity Daily Global 1km image_collection ee.ImageCollection('MODIS/061/MOD11A1') NASA LP DAAC at the USGS EROS Center 2000-02-24 2023-11-20 -180, -90, 180, 90 False daily, emissivity, global, lst, mod11a1, modis, nasa, surface_temperature, terra, usgs https://storage.googleapis.com/earthengine-stac/catalog/MODIS/MODIS_061_MOD11A1.json https://developers.google.com/earth-engine/datasets/catalog/MODIS_061_MOD11A1 proprietary MODIS/061/MOD11A2 MOD11A2.061 Terra Land Surface Temperature and Emissivity 8-Day Global 1km image_collection ee.ImageCollection('MODIS/061/MOD11A2') NASA LP DAAC at the USGS EROS Center 2000-02-18 2023-11-09 -180, -90, 180, 90 False 8_day, emissivity, global, lst, mod11a2, modis, nasa, surface_temperature, terra, usgs https://storage.googleapis.com/earthengine-stac/catalog/MODIS/MODIS_061_MOD11A2.json https://developers.google.com/earth-engine/datasets/catalog/MODIS_061_MOD11A2 proprietary MODIS/061/MOD13A1 MOD13A1.061 Terra Vegetation Indices 16-Day Global 500m image_collection ee.ImageCollection('MODIS/061/MOD13A1') NASA LP DAAC at the USGS EROS Center 2000-02-18 2023-11-01 -180, -90, 180, 90 False 16_day, evi, global, mod13a1, modis, nasa, ndvi, terra, usgs, vegetation https://storage.googleapis.com/earthengine-stac/catalog/MODIS/MODIS_061_MOD13A1.json https://developers.google.com/earth-engine/datasets/catalog/MODIS_061_MOD13A1 proprietary @@ -680,7 +680,7 @@ MODIS/061/MYD09A1 MYD09A1.061 Aqua Surface Reflectance 8-Day Global 500m image_c MODIS/061/MYD09GA MYD09GA.061 Aqua Surface Reflectance Daily Global 1km and 500m image_collection ee.ImageCollection('MODIS/061/MYD09GA') NASA LP DAAC at the USGS EROS Center 2002-07-04 2023-11-20 -180, -90, 180, 90 False aqua, daily, global, modis, myd09ga, nasa, sr, surface_reflectance, usgs https://storage.googleapis.com/earthengine-stac/catalog/MODIS/MODIS_061_MYD09GA.json https://developers.google.com/earth-engine/datasets/catalog/MODIS_061_MYD09GA proprietary MODIS/061/MYD09GQ MYD09GQ.061 Aqua Surface Reflectance Daily Global 250m image_collection ee.ImageCollection('MODIS/061/MYD09GQ') NASA LP DAAC at the USGS EROS Center 2002-07-04 2023-11-20 -180, -90, 180, 90 False aqua, daily, global, modis, myd09gq, nasa, sr, surface_reflectance, usgs https://storage.googleapis.com/earthengine-stac/catalog/MODIS/MODIS_061_MYD09GQ.json https://developers.google.com/earth-engine/datasets/catalog/MODIS_061_MYD09GQ proprietary MODIS/061/MYD09Q1 MYD09Q1.061 Aqua Surface Reflectance 8-Day Global 250m image_collection ee.ImageCollection('MODIS/061/MYD09Q1') NASA LP DAAC at the USGS EROS Center 2002-07-04 2023-11-09 -180, -90, 180, 90 False 8_day, aqua, global, modis, myd09q1, nasa, sr, surface_reflectance, usgs https://storage.googleapis.com/earthengine-stac/catalog/MODIS/MODIS_061_MYD09Q1.json https://developers.google.com/earth-engine/datasets/catalog/MODIS_061_MYD09Q1 proprietary -MODIS/061/MYD10A1 MYD10A1.061 Aqua Snow Cover Daily Global 500m image_collection ee.ImageCollection('MODIS/061/MYD10A1') NASA NSIDC DAAC at CIRES 2002-07-04 2023-11-21 -180, -90, 180, 90 False albedo, aqua, daily, geophysical, global, modis, myd10a1, nasa, nsidc, snow https://storage.googleapis.com/earthengine-stac/catalog/MODIS/MODIS_061_MYD10A1.json https://developers.google.com/earth-engine/datasets/catalog/MODIS_061_MYD10A1 proprietary +MODIS/061/MYD10A1 MYD10A1.061 Aqua Snow Cover Daily Global 500m image_collection ee.ImageCollection('MODIS/061/MYD10A1') NASA NSIDC DAAC at CIRES 2002-07-04 2023-11-22 -180, -90, 180, 90 False albedo, aqua, daily, geophysical, global, modis, myd10a1, nasa, nsidc, snow https://storage.googleapis.com/earthengine-stac/catalog/MODIS/MODIS_061_MYD10A1.json https://developers.google.com/earth-engine/datasets/catalog/MODIS_061_MYD10A1 proprietary MODIS/061/MYD11A1 MYD11A1.061 Aqua Land Surface Temperature and Emissivity Daily Global 1km image_collection ee.ImageCollection('MODIS/061/MYD11A1') NASA LP DAAC at the USGS EROS Center 2002-07-04 2023-11-20 -180, -90, 180, 90 False aqua, daily, emissivity, global, lst, modis, myd11a1, nasa, surface_temperature, usgs https://storage.googleapis.com/earthengine-stac/catalog/MODIS/MODIS_061_MYD11A1.json https://developers.google.com/earth-engine/datasets/catalog/MODIS_061_MYD11A1 proprietary MODIS/061/MYD11A2 MYD11A2.061 Aqua Land Surface Temperature and Emissivity 8-Day Global 1km image_collection ee.ImageCollection('MODIS/061/MYD11A2') NASA LP DAAC at the USGS EROS Center 2002-07-04 2023-11-09 -180, -90, 180, 90 False 8_day, aqua, emissivity, global, lst, modis, myd11a2, nasa, surface_temperature, usgs https://storage.googleapis.com/earthengine-stac/catalog/MODIS/MODIS_061_MYD11A2.json https://developers.google.com/earth-engine/datasets/catalog/MODIS_061_MYD11A2 proprietary MODIS/061/MYD13A1 MYD13A1.061 Aqua Vegetation Indices 16-Day Global 500m image_collection ee.ImageCollection('MODIS/061/MYD13A1') NASA LP DAAC at the USGS EROS Center 2002-07-04 2023-10-24 -180, -90, 180, 90 False 16_day, aqua, evi, global, modis, myd13a1, nasa, ndvi, usgs, vegetation https://storage.googleapis.com/earthengine-stac/catalog/MODIS/MODIS_061_MYD13A1.json https://developers.google.com/earth-engine/datasets/catalog/MODIS_061_MYD13A1 proprietary @@ -754,7 +754,7 @@ NASA/ASTER_GED/AG100_003 AG100: ASTER Global Emissivity Dataset 100-meter V003 i NASA/FLDAS/NOAH01/C/GL/M/V001 FLDAS: Famine Early Warning Systems Network (FEWS NET) Land Data Assimilation System image_collection ee.ImageCollection('NASA/FLDAS/NOAH01/C/GL/M/V001') NASA GES DISC at NASA Goddard Space Flight Center 1982-01-01 2023-10-01 -180, -60, 180, 90 False climate, evapotranspiration, famine, fldas, humidity, ldas, monthly, nasa, runoff, snow, soil_moisture, soil_temperature, temperature, wind https://storage.googleapis.com/earthengine-stac/catalog/NASA/NASA_FLDAS_NOAH01_C_GL_M_V001.json https://developers.google.com/earth-engine/datasets/catalog/NASA_FLDAS_NOAH01_C_GL_M_V001 proprietary NASA/GDDP-CMIP6 NEX-GDDP-CMIP6: NASA Earth Exchange Global Daily Downscaled Climate Projections image_collection ee.ImageCollection('NASA/GDDP-CMIP6') NASA / Climate Analytics Group 1950-01-01 2100-12-31 -180, -90, 180, 90 False cag, climate, gddp, geophysical, nasa, nex, precipitation, temperature https://storage.googleapis.com/earthengine-stac/catalog/NASA/NASA_GDDP-CMIP6.json https://developers.google.com/earth-engine/datasets/catalog/NASA_GDDP-CMIP6 various NASA/GEOS-CF/v1/fcst/htf GEOS-CF fcst htf v1: Goddard Earth Observing System Composition Forecast image_collection ee.ImageCollection('NASA/GEOS-CF/v1/fcst/htf') NASA / GMAO 2022-10-01 2023-11-23 -180, -90, 180, 90 False composition, forecast, geos, gmao, nasa https://storage.googleapis.com/earthengine-stac/catalog/NASA/NASA_GEOS-CF_v1_fcst_htf.json https://developers.google.com/earth-engine/datasets/catalog/NASA_GEOS-CF_v1_fcst_htf proprietary -NASA/GEOS-CF/v1/fcst/tavg1hr GEOS-CF fcst tavg1hr v1: Goddard Earth Observing System Composition Forecast image_collection ee.ImageCollection('NASA/GEOS-CF/v1/fcst/tavg1hr') NASA / GMAO 2022-10-01 2023-11-22 -180, -90, 180, 90 False composition, forecast, geos, gmao, nasa https://storage.googleapis.com/earthengine-stac/catalog/NASA/NASA_GEOS-CF_v1_fcst_tavg1hr.json https://developers.google.com/earth-engine/datasets/catalog/NASA_GEOS-CF_v1_fcst_tavg1hr proprietary +NASA/GEOS-CF/v1/fcst/tavg1hr GEOS-CF fcst tavg1hr v1: Goddard Earth Observing System Composition Forecast image_collection ee.ImageCollection('NASA/GEOS-CF/v1/fcst/tavg1hr') NASA / GMAO 2022-10-01 2023-11-23 -180, -90, 180, 90 False composition, forecast, geos, gmao, nasa https://storage.googleapis.com/earthengine-stac/catalog/NASA/NASA_GEOS-CF_v1_fcst_tavg1hr.json https://developers.google.com/earth-engine/datasets/catalog/NASA_GEOS-CF_v1_fcst_tavg1hr proprietary NASA/GEOS-CF/v1/rpl/htf GEOS-CF rpl htf v1: Goddard Earth Observing System Composition Forecast image_collection ee.ImageCollection('NASA/GEOS-CF/v1/rpl/htf') NASA / GMAO 2018-01-01 2023-11-23 -180, -90, 180, 90 False composition, forecast, geos, gmao, nasa https://storage.googleapis.com/earthengine-stac/catalog/NASA/NASA_GEOS-CF_v1_rpl_htf.json https://developers.google.com/earth-engine/datasets/catalog/NASA_GEOS-CF_v1_rpl_htf proprietary NASA/GEOS-CF/v1/rpl/tavg1hr GEOS-CF rpl tavg1hr v1: Goddard Earth Observing System Composition Forecast image_collection ee.ImageCollection('NASA/GEOS-CF/v1/rpl/tavg1hr') NASA / GMAO 2018-01-01 2023-11-23 -180, -90, 180, 90 False composition, forecast, geos, gmao, nasa https://storage.googleapis.com/earthengine-stac/catalog/NASA/NASA_GEOS-CF_v1_rpl_tavg1hr.json https://developers.google.com/earth-engine/datasets/catalog/NASA_GEOS-CF_v1_rpl_tavg1hr proprietary NASA/GIMMS/3GV0 GIMMS NDVI From AVHRR Sensors (3rd Generation) image_collection ee.ImageCollection('NASA/GIMMS/3GV0') NASA/NOAA 1981-07-01 2013-12-16 -180, -90, 180, 90 False avhrr, gimms, nasa, ndvi, noaa, vegetation https://storage.googleapis.com/earthengine-stac/catalog/NASA/NASA_GIMMS_3GV0.json https://developers.google.com/earth-engine/datasets/catalog/NASA_GIMMS_3GV0 proprietary @@ -762,7 +762,7 @@ NASA/GLDAS/V021/NOAH/G025/T3H GLDAS-2.1: Global Land Data Assimilation System im NASA/GLDAS/V022/CLSM/G025/DA1D GLDAS-2.2: Global Land Data Assimilation System image_collection ee.ImageCollection('NASA/GLDAS/V022/CLSM/G025/DA1D') NASA GES DISC at NASA Goddard Earth Sciences Data and Information Services Center 2003-01-01 2023-06-30 -180, -90, 180, 90 False 3_hourly, climate, evaporation, forcing, geophysical, gldas, humidity, ldas, nasa, precipitation, pressure, radiation, soil, soil_moisture, surface, temperature, wind https://storage.googleapis.com/earthengine-stac/catalog/NASA/NASA_GLDAS_V022_CLSM_G025_DA1D.json https://developers.google.com/earth-engine/datasets/catalog/NASA_GLDAS_V022_CLSM_G025_DA1D proprietary NASA/GLDAS/V20/NOAH/G025/T3H Reprocessed GLDAS-2.0: Global Land Data Assimilation System image_collection ee.ImageCollection('NASA/GLDAS/V20/NOAH/G025/T3H') NASA GES DISC at NASA Goddard Space Flight Center 1948-01-01 2014-12-31 -180, -90, 180, 90 False 3_hourly, climate, evaporation, forcing, geophysical, gldas, humidity, ldas, nasa, precipitation, pressure, radiation, soil, soil_moisture, surface, temperature, wind https://storage.googleapis.com/earthengine-stac/catalog/NASA/NASA_GLDAS_V20_NOAH_G025_T3H.json https://developers.google.com/earth-engine/datasets/catalog/NASA_GLDAS_V20_NOAH_G025_T3H proprietary NASA/GPM_L3/IMERG_MONTHLY_V06 GPM: Monthly Global Precipitation Measurement (GPM) v6 image_collection ee.ImageCollection('NASA/GPM_L3/IMERG_MONTHLY_V06') NASA GES DISC at NASA Goddard Space Flight Center 2000-06-01 2021-09-01 -180, -90, 180, 90 False climate, geophysical, gpm, imerg, jaxa, monthly, nasa, precipitation, weather https://storage.googleapis.com/earthengine-stac/catalog/NASA/NASA_GPM_L3_IMERG_MONTHLY_V06.json https://developers.google.com/earth-engine/datasets/catalog/NASA_GPM_L3_IMERG_MONTHLY_V06 proprietary -NASA/GPM_L3/IMERG_V06 GPM: Global Precipitation Measurement (GPM) v6 image_collection ee.ImageCollection('NASA/GPM_L3/IMERG_V06') NASA GES DISC at NASA Goddard Space Flight Center 2000-06-01 2023-11-23 -180, -90, 180, 90 False climate, geophysical, gpm, half_hourly, imerg, jaxa, nasa, precipitation, weather https://storage.googleapis.com/earthengine-stac/catalog/NASA/NASA_GPM_L3_IMERG_V06.json https://developers.google.com/earth-engine/datasets/catalog/NASA_GPM_L3_IMERG_V06 proprietary +NASA/GPM_L3/IMERG_V06 GPM: Global Precipitation Measurement (GPM) v6 image_collection ee.ImageCollection('NASA/GPM_L3/IMERG_V06') NASA GES DISC at NASA Goddard Space Flight Center 2000-06-01 2023-11-24 -180, -90, 180, 90 False climate, geophysical, gpm, half_hourly, imerg, jaxa, nasa, precipitation, weather https://storage.googleapis.com/earthengine-stac/catalog/NASA/NASA_GPM_L3_IMERG_V06.json https://developers.google.com/earth-engine/datasets/catalog/NASA_GPM_L3_IMERG_V06 proprietary NASA/GRACE/MASS_GRIDS/LAND GRACE Monthly Mass Grids - Land image_collection ee.ImageCollection('NASA/GRACE/MASS_GRIDS/LAND') NASA Jet Propulsion Laboratory 2002-04-01 2017-01-07 -180, -90, 180, 90 False crs, gfz, grace, gravity, jpl, land, mass, nasa, tellus, water https://storage.googleapis.com/earthengine-stac/catalog/NASA/NASA_GRACE_MASS_GRIDS_LAND.json https://developers.google.com/earth-engine/datasets/catalog/NASA_GRACE_MASS_GRIDS_LAND proprietary NASA/GRACE/MASS_GRIDS/MASCON GRACE Monthly Mass Grids - Global Mascons image_collection ee.ImageCollection('NASA/GRACE/MASS_GRIDS/MASCON') NASA Jet Propulsion Laboratory 2002-03-31 2017-05-22 -180, -90, 180, 90 False grace, gravity, jpl, mascon, mass, nasa, tellus, water https://storage.googleapis.com/earthengine-stac/catalog/NASA/NASA_GRACE_MASS_GRIDS_MASCON.json https://developers.google.com/earth-engine/datasets/catalog/NASA_GRACE_MASS_GRIDS_MASCON proprietary NASA/GRACE/MASS_GRIDS/MASCON_CRI GRACE Monthly Mass Grids - Global Mascon (CRI Filtered) image_collection ee.ImageCollection('NASA/GRACE/MASS_GRIDS/MASCON_CRI') NASA Jet Propulsion Laboratory 2002-03-31 2017-05-22 -180, -90, 180, 90 False grace, gravity, jpl, mascon, mass, nasa, tellus, water https://storage.googleapis.com/earthengine-stac/catalog/NASA/NASA_GRACE_MASS_GRIDS_MASCON_CRI.json https://developers.google.com/earth-engine/datasets/catalog/NASA_GRACE_MASS_GRIDS_MASCON_CRI proprietary @@ -773,22 +773,22 @@ NASA/GSFC/MERRA/flx/2 MERRA-2 M2T1NXFLX: Surface Flux Diagnostics V5.12.4 image_ NASA/GSFC/MERRA/lnd/2 MERRA-2 M2T1NXLND: Land Surface Diagnostics V5.12.4 image_collection ee.ImageCollection('NASA/GSFC/MERRA/lnd/2') NASA/MERRA 1980-01-01 2023-11-01 -180, -90, 180, 90 False evaporation, ice, merra, temperature https://storage.googleapis.com/earthengine-stac/catalog/NASA/NASA_GSFC_MERRA_lnd_2.json https://developers.google.com/earth-engine/datasets/catalog/NASA_GSFC_MERRA_lnd_2 proprietary NASA/GSFC/MERRA/rad/2 MERRA-2 M2T1NXRAD: Radiation Diagnostics V5.12.4 image_collection ee.ImageCollection('NASA/GSFC/MERRA/rad/2') NASA/MERRA 1980-01-01 2023-11-01 -180, -90, 180, 90 False albedo, emissivity, merra, shortwave, temperature https://storage.googleapis.com/earthengine-stac/catalog/NASA/NASA_GSFC_MERRA_rad_2.json https://developers.google.com/earth-engine/datasets/catalog/NASA_GSFC_MERRA_rad_2 proprietary NASA/GSFC/MERRA/slv/2 MERRA-2 M2T1NXSLV: Single-Level Diagnostics V5.12.4 image_collection ee.ImageCollection('NASA/GSFC/MERRA/slv/2') NASA/MERRA 1980-01-01 2023-11-01 -180, -90, 180, 90 False condensation, humidity, merra, nasa, omega, pressure, slv, temperature, vapor, water, wind https://storage.googleapis.com/earthengine-stac/catalog/NASA/NASA_GSFC_MERRA_slv_2.json https://developers.google.com/earth-engine/datasets/catalog/NASA_GSFC_MERRA_slv_2 proprietary -NASA/HLS/HLSL30/v002 HLSL30: HLS-2 Landsat Operational Land Imager Surface Reflectance and TOA Brightness Daily Global 30m image_collection ee.ImageCollection('NASA/HLS/HLSL30/v002') USGS 2013-04-11 2023-11-22 -180, -90, 180, 90 False landsat, nasa, sentinel, usgs https://storage.googleapis.com/earthengine-stac/catalog/NASA/NASA_HLS_HLSL30_v002.json https://developers.google.com/earth-engine/datasets/catalog/NASA_HLS_HLSL30_v002 proprietary +NASA/HLS/HLSL30/v002 HLSL30: HLS-2 Landsat Operational Land Imager Surface Reflectance and TOA Brightness Daily Global 30m image_collection ee.ImageCollection('NASA/HLS/HLSL30/v002') USGS 2013-04-11 2023-11-23 -180, -90, 180, 90 False landsat, nasa, sentinel, usgs https://storage.googleapis.com/earthengine-stac/catalog/NASA/NASA_HLS_HLSL30_v002.json https://developers.google.com/earth-engine/datasets/catalog/NASA_HLS_HLSL30_v002 proprietary NASA/JPL/global_forest_canopy_height_2005 Global Forest Canopy Height, 2005 image ee.Image('NASA/JPL/global_forest_canopy_height_2005') NASA/JPL 2005-05-20 2005-06-23 -180, -90, 180, 90 False canopy, forest, geophysical, glas, jpl, nasa https://storage.googleapis.com/earthengine-stac/catalog/NASA/NASA_JPL_global_forest_canopy_height_2005.json https://developers.google.com/earth-engine/datasets/catalog/NASA_JPL_global_forest_canopy_height_2005 proprietary NASA/MEASURES/GFCC/TC/v3 Global Forest Cover Change (GFCC) Tree Cover Multi-Year Global 30m image_collection ee.ImageCollection('NASA/MEASURES/GFCC/TC/v3') NASA LP DAAC at the USGS EROS Center 2000-01-01 2015-01-01 -180, -90, 180, 90 False forest, glcf, landsat_derived, nasa, umd https://storage.googleapis.com/earthengine-stac/catalog/NASA/NASA_MEASURES_GFCC_TC_v3.json https://developers.google.com/earth-engine/datasets/catalog/NASA_MEASURES_GFCC_TC_v3 proprietary NASA/NASADEM_HGT/001 NASADEM: NASA NASADEM Digital Elevation 30m image ee.Image('NASA/NASADEM_HGT/001') NASA / USGS / JPL-Caltech 2000-02-11 2000-02-22 -180, -56, 180, 60 False dem, elevation, geophysical, nasa, nasadem, srtm, topography, usgs https://storage.googleapis.com/earthengine-stac/catalog/NASA/NASA_NASADEM_HGT_001.json https://developers.google.com/earth-engine/datasets/catalog/NASA_NASADEM_HGT_001 proprietary NASA/NEX-DCP30 NEX-DCP30: NASA Earth Exchange Downscaled Climate Projections image_collection ee.ImageCollection('NASA/NEX-DCP30') NASA / Climate Analytics Group 1950-01-01 2099-12-01 -125.03, 24.07, -66.47, 53.74 False cag, climate, cmip5, geophysical, nasa, nex, precipitation, temperature https://storage.googleapis.com/earthengine-stac/catalog/NASA/NASA_NEX-DCP30.json https://developers.google.com/earth-engine/datasets/catalog/NASA_NEX-DCP30 proprietary NASA/NEX-DCP30_ENSEMBLE_STATS NEX-DCP30: Ensemble Stats for NASA Earth Exchange Downscaled Climate Projections image_collection ee.ImageCollection('NASA/NEX-DCP30_ENSEMBLE_STATS') NASA / Climate Analytics Group 1950-01-01 2099-12-01 -125.03, 24.07, -66.47, 49.93 False cag, climate, cmip5, geophysical, nasa, nex, precipitation, temperature https://storage.googleapis.com/earthengine-stac/catalog/NASA/NASA_NEX-DCP30_ENSEMBLE_STATS.json https://developers.google.com/earth-engine/datasets/catalog/NASA_NEX-DCP30_ENSEMBLE_STATS proprietary NASA/NEX-GDDP NEX-GDDP: NASA Earth Exchange Global Daily Downscaled Climate Projections image_collection ee.ImageCollection('NASA/NEX-GDDP') NASA / Climate Analytics Group 1950-01-01 2100-12-31 -180, -90, 180, 90 False cag, climate, cmip5, gddp, geophysical, nasa, nex, precipitation, temperature https://storage.googleapis.com/earthengine-stac/catalog/NASA/NASA_NEX-GDDP.json https://developers.google.com/earth-engine/datasets/catalog/NASA_NEX-GDDP proprietary -NASA/NLDAS/FORA0125_H002 NLDAS-2: North American Land Data Assimilation System Forcing Fields image_collection ee.ImageCollection('NASA/NLDAS/FORA0125_H002') NASA GES DISC at NASA Goddard Space Flight Center 1979-01-01 2023-11-20 -125.15, 24.85, -66.85, 53.28 False climate, evaporation, forcing, geophysical, hourly, humidity, ldas, nasa, nldas, precipitation, pressure, radiation, temperature, wind https://storage.googleapis.com/earthengine-stac/catalog/NASA/NASA_NLDAS_FORA0125_H002.json https://developers.google.com/earth-engine/datasets/catalog/NASA_NLDAS_FORA0125_H002 proprietary +NASA/NLDAS/FORA0125_H002 NLDAS-2: North American Land Data Assimilation System Forcing Fields image_collection ee.ImageCollection('NASA/NLDAS/FORA0125_H002') NASA GES DISC at NASA Goddard Space Flight Center 1979-01-01 2023-11-21 -125.15, 24.85, -66.85, 53.28 False climate, evaporation, forcing, geophysical, hourly, humidity, ldas, nasa, nldas, precipitation, pressure, radiation, temperature, wind https://storage.googleapis.com/earthengine-stac/catalog/NASA/NASA_NLDAS_FORA0125_H002.json https://developers.google.com/earth-engine/datasets/catalog/NASA_NLDAS_FORA0125_H002 proprietary NASA/OCEANDATA/MODIS-Aqua/L3SMI Ocean Color SMI: Standard Mapped Image MODIS Aqua Data image_collection ee.ImageCollection('NASA/OCEANDATA/MODIS-Aqua/L3SMI') NASA OB.DAAC at NASA Goddard Space Flight Center 2002-07-03 2022-02-28 -180, -90, 180, 90 False biology, chlorophyll, climate, modis, nasa, ocean, oceandata, reflectance, sst, temperature, weather https://storage.googleapis.com/earthengine-stac/catalog/NASA/NASA_OCEANDATA_MODIS-Aqua_L3SMI.json https://developers.google.com/earth-engine/datasets/catalog/NASA_OCEANDATA_MODIS-Aqua_L3SMI proprietary NASA/OCEANDATA/MODIS-Terra/L3SMI Ocean Color SMI: Standard Mapped Image MODIS Terra Data image_collection ee.ImageCollection('NASA/OCEANDATA/MODIS-Terra/L3SMI') NASA OB.DAAC at NASA Goddard Space Flight Center 2000-02-24 2022-02-28 -180, -90, 180, 90 False biology, chlorophyll, climate, modis, nasa, ocean, oceandata, reflectance, sst, temperature, weather https://storage.googleapis.com/earthengine-stac/catalog/NASA/NASA_OCEANDATA_MODIS-Terra_L3SMI.json https://developers.google.com/earth-engine/datasets/catalog/NASA_OCEANDATA_MODIS-Terra_L3SMI proprietary NASA/OCEANDATA/SeaWiFS/L3SMI Ocean Color SMI: Standard Mapped Image SeaWiFS Data image_collection ee.ImageCollection('NASA/OCEANDATA/SeaWiFS/L3SMI') NASA OB.DAAC at NASA Goddard Space Flight Center 1997-09-04 2010-12-10 -180, -90, 180, 90 False biology, chlorophyll, climate, nasa, ocean, oceandata, reflectance, seawifs, temperature, weather https://storage.googleapis.com/earthengine-stac/catalog/NASA/NASA_OCEANDATA_SeaWiFS_L3SMI.json https://developers.google.com/earth-engine/datasets/catalog/NASA_OCEANDATA_SeaWiFS_L3SMI proprietary NASA/ORNL/DAYMET_V3 Daymet V3: Daily Surface Weather and Climatological Summaries [deprecated] image_collection ee.ImageCollection('NASA/ORNL/DAYMET_V3') NASA ORNL DAAC at Oak Ridge National Laboratory 1980-01-01 2019-12-31 -150.8, 1.6, -1.1, 84 True climate, daily, daylight, daymet, flux, geophysical, nasa, ornl, precipitation, radiation, snow, temperature, vapor, water, weather https://storage.googleapis.com/earthengine-stac/catalog/NASA/NASA_ORNL_DAYMET_V3.json https://developers.google.com/earth-engine/datasets/catalog/NASA_ORNL_DAYMET_V3 proprietary NASA/ORNL/DAYMET_V4 Daymet V4: Daily Surface Weather and Climatological Summaries image_collection ee.ImageCollection('NASA/ORNL/DAYMET_V4') NASA ORNL DAAC at Oak Ridge National Laboratory 1980-01-01 2022-12-31 -150.8, 1.6, -1.1, 84 False climate, daily, daylight, daymet, flux, geophysical, nasa, ornl, precipitation, radiation, snow, temperature, vapor, water, weather https://storage.googleapis.com/earthengine-stac/catalog/NASA/NASA_ORNL_DAYMET_V4.json https://developers.google.com/earth-engine/datasets/catalog/NASA_ORNL_DAYMET_V4 proprietary NASA/ORNL/biomass_carbon_density/v1 Global Aboveground and Belowground Biomass Carbon Density Maps image_collection ee.ImageCollection('NASA/ORNL/biomass_carbon_density/v1') NASA ORNL DAAC at Oak Ridge National Laboratory 2010-01-01 2010-12-31 -180, -61.1, 180, 84 False aboveground, belowground, biomass, carbon, density, forest, nasa, ornl, vegetation https://storage.googleapis.com/earthengine-stac/catalog/NASA/NASA_ORNL_biomass_carbon_density_v1.json https://developers.google.com/earth-engine/datasets/catalog/NASA_ORNL_biomass_carbon_density_v1 proprietary -NASA/SMAP/SPL3SMP_E/005 SPL3SMP_E.005 SMAP L3 Radiometer Global Daily 9 km Soil Moisture image_collection ee.ImageCollection('NASA/SMAP/SPL3SMP_E/005') Google and NSIDC 2015-03-31 2023-11-22 -180, -84, 180, 84 False drought, nasa, smap, soil_moisture, surface, weather https://storage.googleapis.com/earthengine-stac/catalog/NASA/NASA_SMAP_SPL3SMP_E_005.json https://developers.google.com/earth-engine/datasets/catalog/NASA_SMAP_SPL3SMP_E_005 proprietary -NASA/SMAP/SPL4SMGP/007 SPL4SMGP.007 SMAP L4 Global 3-hourly 9-km Surface and Root Zone Soil Moisture image_collection ee.ImageCollection('NASA/SMAP/SPL4SMGP/007') Google and NSIDC 2015-03-31 2023-11-19 -180, -84, 180, 84 False drought, nasa, smap, soil_moisture, surface, weather https://storage.googleapis.com/earthengine-stac/catalog/NASA/NASA_SMAP_SPL4SMGP_007.json https://developers.google.com/earth-engine/datasets/catalog/NASA_SMAP_SPL4SMGP_007 proprietary +NASA/SMAP/SPL3SMP_E/005 SPL3SMP_E.005 SMAP L3 Radiometer Global Daily 9 km Soil Moisture image_collection ee.ImageCollection('NASA/SMAP/SPL3SMP_E/005') Google and NSIDC 2015-03-31 2023-11-23 -180, -84, 180, 84 False drought, nasa, smap, soil_moisture, surface, weather https://storage.googleapis.com/earthengine-stac/catalog/NASA/NASA_SMAP_SPL3SMP_E_005.json https://developers.google.com/earth-engine/datasets/catalog/NASA_SMAP_SPL3SMP_E_005 proprietary +NASA/SMAP/SPL4SMGP/007 SPL4SMGP.007 SMAP L4 Global 3-hourly 9-km Surface and Root Zone Soil Moisture image_collection ee.ImageCollection('NASA/SMAP/SPL4SMGP/007') Google and NSIDC 2015-03-31 2023-11-21 -180, -84, 180, 84 False drought, nasa, smap, soil_moisture, surface, weather https://storage.googleapis.com/earthengine-stac/catalog/NASA/NASA_SMAP_SPL4SMGP_007.json https://developers.google.com/earth-engine/datasets/catalog/NASA_SMAP_SPL4SMGP_007 proprietary NASA_USDA/HSL/SMAP10KM_soil_moisture NASA-USDA Enhanced SMAP Global Soil Moisture Data image_collection ee.ImageCollection('NASA_USDA/HSL/SMAP10KM_soil_moisture') NASA GSFC 2015-04-02 2022-08-02 -180, -60, 180, 90 False geophysical, hsl, nasa, smap, soil, soil_moisture, usda https://storage.googleapis.com/earthengine-stac/catalog/NASA_USDA/NASA_USDA_HSL_SMAP10KM_soil_moisture.json https://developers.google.com/earth-engine/datasets/catalog/NASA_USDA_HSL_SMAP10KM_soil_moisture proprietary NASA_USDA/HSL/SMAP_soil_moisture NASA-USDA SMAP Global Soil Moisture Data [deprecated] image_collection ee.ImageCollection('NASA_USDA/HSL/SMAP_soil_moisture') NASA GSFC 2015-04-02 2020-12-31 -180, -60, 180, 90 True geophysical, hsl, nasa, smap, soil, soil_moisture, usda https://storage.googleapis.com/earthengine-stac/catalog/NASA_USDA/NASA_USDA_HSL_SMAP_soil_moisture.json https://developers.google.com/earth-engine/datasets/catalog/NASA_USDA_HSL_SMAP_soil_moisture proprietary NASA_USDA/HSL/soil_moisture NASA-USDA Global Soil Moisture Data [deprecated] image_collection ee.ImageCollection('NASA_USDA/HSL/soil_moisture') NASA GSFC 2010-01-13 2020-12-31 -180, -60, 180, 90 True geophysical, hsl, nasa, smos, soil, soil_moisture, usda https://storage.googleapis.com/earthengine-stac/catalog/NASA_USDA/NASA_USDA_HSL_soil_moisture.json https://developers.google.com/earth-engine/datasets/catalog/NASA_USDA_HSL_soil_moisture proprietary @@ -814,22 +814,22 @@ NOAA/CFSR CFSR: Climate Forecast System Reanalysis image_collection ee.ImageColl NOAA/CFSV2/FOR6H CFSV2: NCEP Climate Forecast System Version 2, 6-Hourly Products image_collection ee.ImageCollection('NOAA/CFSV2/FOR6H') NOAA NWS National Centers for Environmental Prediction (NCEP) 1979-01-01 2023-11-24 -180, -90, 180, 90 False climate, daylight, flux, forecast, geophysical, ncep, noaa, nws, precipitation, radiation, snow, temperature, vapor, water, weather https://storage.googleapis.com/earthengine-stac/catalog/NOAA/NOAA_CFSV2_FOR6H.json https://developers.google.com/earth-engine/datasets/catalog/NOAA_CFSV2_FOR6H proprietary NOAA/DMSP-OLS/CALIBRATED_LIGHTS_V4 DMSP OLS: Global Radiance-Calibrated Nighttime Lights Version 4, Defense Meteorological Program Operational Linescan System image_collection ee.ImageCollection('NOAA/DMSP-OLS/CALIBRATED_LIGHTS_V4') Earth Observation Group, Payne Institute for Public Policy, Colorado School of Mines 1996-03-16 2011-07-31 -180, -65, 180, 75 False calibrated, dmsp, eog, imagery, lights, nighttime, ols, radiance, visible, yearly https://storage.googleapis.com/earthengine-stac/catalog/NOAA/NOAA_DMSP-OLS_CALIBRATED_LIGHTS_V4.json https://developers.google.com/earth-engine/datasets/catalog/NOAA_DMSP-OLS_CALIBRATED_LIGHTS_V4 proprietary NOAA/DMSP-OLS/NIGHTTIME_LIGHTS DMSP OLS: Nighttime Lights Time Series Version 4, Defense Meteorological Program Operational Linescan System image_collection ee.ImageCollection('NOAA/DMSP-OLS/NIGHTTIME_LIGHTS') Earth Observation Group, Payne Institute for Public Policy, Colorado School of Mines 1992-01-01 2014-01-01 -180, -65, 180, 75 False dmsp, eog, imagery, lights, nighttime, ols, visible, yearly https://storage.googleapis.com/earthengine-stac/catalog/NOAA/NOAA_DMSP-OLS_NIGHTTIME_LIGHTS.json https://developers.google.com/earth-engine/datasets/catalog/NOAA_DMSP-OLS_NIGHTTIME_LIGHTS proprietary -NOAA/GFS0P25 GFS: Global Forecast System 384-Hour Predicted Atmosphere Data image_collection ee.ImageCollection('NOAA/GFS0P25') NOAA/NCEP/EMC 2015-07-01 2023-11-24 -180, -90, 180, 90 False climate, cloud, emc, flux, forecast, geophysical, gfs, humidity, ncep, noaa, precipitation, radiation, temperature, vapor, weather, wind https://storage.googleapis.com/earthengine-stac/catalog/NOAA/NOAA_GFS0P25.json https://developers.google.com/earth-engine/datasets/catalog/NOAA_GFS0P25 proprietary -NOAA/GOES/16/FDCC GOES-16 FDCC Series ABI Level 2 Fire/Hot Spot Characterization CONUS image_collection ee.ImageCollection('NOAA/GOES/16/FDCC') NOAA 2017-05-24 2023-11-24 -152.11, 14, -49.18, 56.77 False abi, climate, fdc, fire, goes, goes_16, goes_east, goes_r, hotspot, nesdis, noaa, ospo, wildfire https://storage.googleapis.com/earthengine-stac/catalog/NOAA/NOAA_GOES_16_FDCC.json https://developers.google.com/earth-engine/datasets/catalog/NOAA_GOES_16_FDCC proprietary -NOAA/GOES/16/FDCF GOES-16 FDCF Series ABI Level 2 Fire/Hot Spot Characterization Full Disk image_collection ee.ImageCollection('NOAA/GOES/16/FDCF') NOAA 2017-05-24 2023-11-24 -180, -90, 180, 90 False abi, climate, fdc, fire, goes, goes_16, goes_east, goes_r, hotspot, nesdis, noaa, ospo, wildfire https://storage.googleapis.com/earthengine-stac/catalog/NOAA/NOAA_GOES_16_FDCF.json https://developers.google.com/earth-engine/datasets/catalog/NOAA_GOES_16_FDCF proprietary -NOAA/GOES/16/MCMIPC GOES-16 MCMIPC Series ABI Level 2 Cloud and Moisture Imagery CONUS image_collection ee.ImageCollection('NOAA/GOES/16/MCMIPC') NOAA 2017-07-10 2023-11-24 -152.11, 14, -49.18, 56.77 False abi, climate, goes, goes_16, goes_east, goes_r, mcmip, nesdis, noaa, ospo, weather https://storage.googleapis.com/earthengine-stac/catalog/NOAA/NOAA_GOES_16_MCMIPC.json https://developers.google.com/earth-engine/datasets/catalog/NOAA_GOES_16_MCMIPC proprietary -NOAA/GOES/16/MCMIPF GOES-16 MCMIPF Series ABI Level 2 Cloud and Moisture Imagery Full Disk image_collection ee.ImageCollection('NOAA/GOES/16/MCMIPF') NOAA 2017-07-10 2023-11-24 -180, -90, 180, 90 False abi, climate, goes, goes_16, goes_east, goes_r, mcmip, nesdis, noaa, ospo, weather https://storage.googleapis.com/earthengine-stac/catalog/NOAA/NOAA_GOES_16_MCMIPF.json https://developers.google.com/earth-engine/datasets/catalog/NOAA_GOES_16_MCMIPF proprietary -NOAA/GOES/16/MCMIPM GOES-16 MCMIPM Series ABI Level 2 Cloud and Moisture Imagery Mesoscale image_collection ee.ImageCollection('NOAA/GOES/16/MCMIPM') NOAA 2017-07-10 2023-11-24 -180, -90, 180, 90 False abi, climate, goes, goes_16, goes_east, goes_r, mcmip, nesdis, noaa, ospo, weather https://storage.googleapis.com/earthengine-stac/catalog/NOAA/NOAA_GOES_16_MCMIPM.json https://developers.google.com/earth-engine/datasets/catalog/NOAA_GOES_16_MCMIPM proprietary +NOAA/GFS0P25 GFS: Global Forecast System 384-Hour Predicted Atmosphere Data image_collection ee.ImageCollection('NOAA/GFS0P25') NOAA/NCEP/EMC 2015-07-01 2023-11-25 -180, -90, 180, 90 False climate, cloud, emc, flux, forecast, geophysical, gfs, humidity, ncep, noaa, precipitation, radiation, temperature, vapor, weather, wind https://storage.googleapis.com/earthengine-stac/catalog/NOAA/NOAA_GFS0P25.json https://developers.google.com/earth-engine/datasets/catalog/NOAA_GFS0P25 proprietary +NOAA/GOES/16/FDCC GOES-16 FDCC Series ABI Level 2 Fire/Hot Spot Characterization CONUS image_collection ee.ImageCollection('NOAA/GOES/16/FDCC') NOAA 2017-05-24 2023-11-25 -152.11, 14, -49.18, 56.77 False abi, climate, fdc, fire, goes, goes_16, goes_east, goes_r, hotspot, nesdis, noaa, ospo, wildfire https://storage.googleapis.com/earthengine-stac/catalog/NOAA/NOAA_GOES_16_FDCC.json https://developers.google.com/earth-engine/datasets/catalog/NOAA_GOES_16_FDCC proprietary +NOAA/GOES/16/FDCF GOES-16 FDCF Series ABI Level 2 Fire/Hot Spot Characterization Full Disk image_collection ee.ImageCollection('NOAA/GOES/16/FDCF') NOAA 2017-05-24 2023-11-25 -180, -90, 180, 90 False abi, climate, fdc, fire, goes, goes_16, goes_east, goes_r, hotspot, nesdis, noaa, ospo, wildfire https://storage.googleapis.com/earthengine-stac/catalog/NOAA/NOAA_GOES_16_FDCF.json https://developers.google.com/earth-engine/datasets/catalog/NOAA_GOES_16_FDCF proprietary +NOAA/GOES/16/MCMIPC GOES-16 MCMIPC Series ABI Level 2 Cloud and Moisture Imagery CONUS image_collection ee.ImageCollection('NOAA/GOES/16/MCMIPC') NOAA 2017-07-10 2023-11-25 -152.11, 14, -49.18, 56.77 False abi, climate, goes, goes_16, goes_east, goes_r, mcmip, nesdis, noaa, ospo, weather https://storage.googleapis.com/earthengine-stac/catalog/NOAA/NOAA_GOES_16_MCMIPC.json https://developers.google.com/earth-engine/datasets/catalog/NOAA_GOES_16_MCMIPC proprietary +NOAA/GOES/16/MCMIPF GOES-16 MCMIPF Series ABI Level 2 Cloud and Moisture Imagery Full Disk image_collection ee.ImageCollection('NOAA/GOES/16/MCMIPF') NOAA 2017-07-10 2023-11-25 -180, -90, 180, 90 False abi, climate, goes, goes_16, goes_east, goes_r, mcmip, nesdis, noaa, ospo, weather https://storage.googleapis.com/earthengine-stac/catalog/NOAA/NOAA_GOES_16_MCMIPF.json https://developers.google.com/earth-engine/datasets/catalog/NOAA_GOES_16_MCMIPF proprietary +NOAA/GOES/16/MCMIPM GOES-16 MCMIPM Series ABI Level 2 Cloud and Moisture Imagery Mesoscale image_collection ee.ImageCollection('NOAA/GOES/16/MCMIPM') NOAA 2017-07-10 2023-11-25 -180, -90, 180, 90 False abi, climate, goes, goes_16, goes_east, goes_r, mcmip, nesdis, noaa, ospo, weather https://storage.googleapis.com/earthengine-stac/catalog/NOAA/NOAA_GOES_16_MCMIPM.json https://developers.google.com/earth-engine/datasets/catalog/NOAA_GOES_16_MCMIPM proprietary NOAA/GOES/17/FDCC GOES-17 FDCC Series ABI Level 2 Fire/Hot Spot Characterization CONUS image_collection ee.ImageCollection('NOAA/GOES/17/FDCC') NOAA 2018-08-27 2023-01-10 -180, 14.57, 180, 53.51 False abi, climate, fdc, fire, goes, goes_17, goes_s, hotspot, nesdis, noaa, ospo, wildfire https://storage.googleapis.com/earthengine-stac/catalog/NOAA/NOAA_GOES_17_FDCC.json https://developers.google.com/earth-engine/datasets/catalog/NOAA_GOES_17_FDCC proprietary NOAA/GOES/17/FDCF GOES-17 FDCF Series ABI Level 2 Fire/Hot Spot Characterization Full Disk image_collection ee.ImageCollection('NOAA/GOES/17/FDCF') NOAA 2018-08-27 2023-01-10 -180, -90, 180, 90 False abi, climate, fdc, fire, goes, goes_17, goes_s, hotspot, nesdis, noaa, ospo, wildfire https://storage.googleapis.com/earthengine-stac/catalog/NOAA/NOAA_GOES_17_FDCF.json https://developers.google.com/earth-engine/datasets/catalog/NOAA_GOES_17_FDCF proprietary NOAA/GOES/17/MCMIPC GOES-17 MCMIPC Series ABI Level 2 Cloud and Moisture Imagery CONUS image_collection ee.ImageCollection('NOAA/GOES/17/MCMIPC') NOAA 2018-12-04 2023-01-10 -180, 14.57, 180, 53.51 False abi, climate, goes, goes_17, goes_s, mcmip, nesdis, noaa, ospo, weather https://storage.googleapis.com/earthengine-stac/catalog/NOAA/NOAA_GOES_17_MCMIPC.json https://developers.google.com/earth-engine/datasets/catalog/NOAA_GOES_17_MCMIPC proprietary NOAA/GOES/17/MCMIPF GOES-17 MCMIPF Series ABI Level 2 Cloud and Moisture Imagery Full Disk image_collection ee.ImageCollection('NOAA/GOES/17/MCMIPF') NOAA 2018-12-04 2023-01-10 -180, -90, 180, 90 False abi, climate, goes, goes_17, goes_s, mcmip, nesdis, noaa, ospo, weather https://storage.googleapis.com/earthengine-stac/catalog/NOAA/NOAA_GOES_17_MCMIPF.json https://developers.google.com/earth-engine/datasets/catalog/NOAA_GOES_17_MCMIPF proprietary NOAA/GOES/17/MCMIPM GOES-17 MCMIPM Series ABI Level 2 Cloud and Moisture Imagery Full Disk image_collection ee.ImageCollection('NOAA/GOES/17/MCMIPM') NOAA 2018-12-04 2023-01-10 -180, -90, 180, 90 False abi, climate, goes, goes_17, goes_s, mcmip, nesdis, noaa, ospo, weather https://storage.googleapis.com/earthengine-stac/catalog/NOAA/NOAA_GOES_17_MCMIPM.json https://developers.google.com/earth-engine/datasets/catalog/NOAA_GOES_17_MCMIPM proprietary -NOAA/GOES/18/FDCC GOES-18 FDCC Series ABI Level 2 Fire/Hot Spot Characterization CONUS image_collection ee.ImageCollection('NOAA/GOES/18/FDCC') NOAA 2022-10-13 2023-11-24 -180, 14.57, 180, 53.51 False abi, climate, fdc, fire, goes, goes_18, goes_t, goes_west, hotspot, nesdis, noaa, ospo, wildfire https://storage.googleapis.com/earthengine-stac/catalog/NOAA/NOAA_GOES_18_FDCC.json https://developers.google.com/earth-engine/datasets/catalog/NOAA_GOES_18_FDCC proprietary -NOAA/GOES/18/FDCF GOES-18 FDCF Series ABI Level 2 Fire/Hot Spot Characterization Full Disk image_collection ee.ImageCollection('NOAA/GOES/18/FDCF') NOAA 2022-10-13 2023-11-24 -180, -90, 180, 90 False abi, climate, fdc, fire, goes, goes_18, goes_t, goes_west, hotspot, nesdis, noaa, ospo, wildfire https://storage.googleapis.com/earthengine-stac/catalog/NOAA/NOAA_GOES_18_FDCF.json https://developers.google.com/earth-engine/datasets/catalog/NOAA_GOES_18_FDCF proprietary -NOAA/GOES/18/MCMIPC GOES-18 MCMIPC Series ABI Level 2 Cloud and Moisture Imagery CONUS image_collection ee.ImageCollection('NOAA/GOES/18/MCMIPC') NOAA 2018-12-04 2023-11-24 -180, 14.57, 180, 53.51 False abi, climate, goes, goes_18, goes_t, goes_west, mcmip, nesdis, noaa, ospo, weather https://storage.googleapis.com/earthengine-stac/catalog/NOAA/NOAA_GOES_18_MCMIPC.json https://developers.google.com/earth-engine/datasets/catalog/NOAA_GOES_18_MCMIPC proprietary -NOAA/GOES/18/MCMIPF GOES-18 MCMIPF Series ABI Level 2 Cloud and Moisture Imagery Full Disk image_collection ee.ImageCollection('NOAA/GOES/18/MCMIPF') NOAA 2018-12-04 2023-11-24 -180, -90, 180, 90 False abi, climate, goes, goes_18, goes_t, goes_west, mcmip, nesdis, noaa, ospo, weather https://storage.googleapis.com/earthengine-stac/catalog/NOAA/NOAA_GOES_18_MCMIPF.json https://developers.google.com/earth-engine/datasets/catalog/NOAA_GOES_18_MCMIPF proprietary -NOAA/GOES/18/MCMIPM GOES-18 MCMIPM Series ABI Level 2 Cloud and Moisture Imagery Full Disk image_collection ee.ImageCollection('NOAA/GOES/18/MCMIPM') NOAA 2018-12-04 2023-11-24 -180, -90, 180, 90 False abi, climate, goes, goes_18, goes_t, goes_west, mcmip, nesdis, noaa, ospo, weather https://storage.googleapis.com/earthengine-stac/catalog/NOAA/NOAA_GOES_18_MCMIPM.json https://developers.google.com/earth-engine/datasets/catalog/NOAA_GOES_18_MCMIPM proprietary +NOAA/GOES/18/FDCC GOES-18 FDCC Series ABI Level 2 Fire/Hot Spot Characterization CONUS image_collection ee.ImageCollection('NOAA/GOES/18/FDCC') NOAA 2022-10-13 2023-11-25 -180, 14.57, 180, 53.51 False abi, climate, fdc, fire, goes, goes_18, goes_t, goes_west, hotspot, nesdis, noaa, ospo, wildfire https://storage.googleapis.com/earthengine-stac/catalog/NOAA/NOAA_GOES_18_FDCC.json https://developers.google.com/earth-engine/datasets/catalog/NOAA_GOES_18_FDCC proprietary +NOAA/GOES/18/FDCF GOES-18 FDCF Series ABI Level 2 Fire/Hot Spot Characterization Full Disk image_collection ee.ImageCollection('NOAA/GOES/18/FDCF') NOAA 2022-10-13 2023-11-25 -180, -90, 180, 90 False abi, climate, fdc, fire, goes, goes_18, goes_t, goes_west, hotspot, nesdis, noaa, ospo, wildfire https://storage.googleapis.com/earthengine-stac/catalog/NOAA/NOAA_GOES_18_FDCF.json https://developers.google.com/earth-engine/datasets/catalog/NOAA_GOES_18_FDCF proprietary +NOAA/GOES/18/MCMIPC GOES-18 MCMIPC Series ABI Level 2 Cloud and Moisture Imagery CONUS image_collection ee.ImageCollection('NOAA/GOES/18/MCMIPC') NOAA 2018-12-04 2023-11-25 -180, 14.57, 180, 53.51 False abi, climate, goes, goes_18, goes_t, goes_west, mcmip, nesdis, noaa, ospo, weather https://storage.googleapis.com/earthengine-stac/catalog/NOAA/NOAA_GOES_18_MCMIPC.json https://developers.google.com/earth-engine/datasets/catalog/NOAA_GOES_18_MCMIPC proprietary +NOAA/GOES/18/MCMIPF GOES-18 MCMIPF Series ABI Level 2 Cloud and Moisture Imagery Full Disk image_collection ee.ImageCollection('NOAA/GOES/18/MCMIPF') NOAA 2018-12-04 2023-11-25 -180, -90, 180, 90 False abi, climate, goes, goes_18, goes_t, goes_west, mcmip, nesdis, noaa, ospo, weather https://storage.googleapis.com/earthengine-stac/catalog/NOAA/NOAA_GOES_18_MCMIPF.json https://developers.google.com/earth-engine/datasets/catalog/NOAA_GOES_18_MCMIPF proprietary +NOAA/GOES/18/MCMIPM GOES-18 MCMIPM Series ABI Level 2 Cloud and Moisture Imagery Full Disk image_collection ee.ImageCollection('NOAA/GOES/18/MCMIPM') NOAA 2018-12-04 2023-11-25 -180, -90, 180, 90 False abi, climate, goes, goes_18, goes_t, goes_west, mcmip, nesdis, noaa, ospo, weather https://storage.googleapis.com/earthengine-stac/catalog/NOAA/NOAA_GOES_18_MCMIPM.json https://developers.google.com/earth-engine/datasets/catalog/NOAA_GOES_18_MCMIPM proprietary NOAA/NCEP_DOE_RE2/total_cloud_coverage NCEP-DOE Reanalysis 2 (Gaussian Grid), Total Cloud Coverage image_collection ee.ImageCollection('NOAA/NCEP_DOE_RE2/total_cloud_coverage') NOAA 1979-01-01 2023-10-31 -180, -90, 180, 90 False atmosphere, climate, cloud, geophysical, ncep, noaa, reanalysis https://storage.googleapis.com/earthengine-stac/catalog/NOAA/NOAA_NCEP_DOE_RE2_total_cloud_coverage.json https://developers.google.com/earth-engine/datasets/catalog/NOAA_NCEP_DOE_RE2_total_cloud_coverage proprietary NOAA/NGDC/ETOPO1 ETOPO1: Global 1 Arc-Minute Elevation image ee.Image('NOAA/NGDC/ETOPO1') NOAA 2008-08-01 2008-08-01 -180, -90, 180, 90 False bedrock, dem, elevation, geophysical, ice, noaa, topography https://storage.googleapis.com/earthengine-stac/catalog/NOAA/NOAA_NGDC_ETOPO1.json https://developers.google.com/earth-engine/datasets/catalog/NOAA_NGDC_ETOPO1 proprietary NOAA/NHC/HURDAT2/atlantic NOAA NHC HURDAT2 Atlantic Hurricane Catalog table ee.FeatureCollection('NOAA/NHC/HURDAT2/atlantic') NOAA NHC 1851-06-25 2018-11-04 -109.5, 7.2, 63, 81 False hurricane, nhc, noaa, weather https://storage.googleapis.com/earthengine-stac/catalog/NOAA/NOAA_NHC_HURDAT2_atlantic.json https://developers.google.com/earth-engine/datasets/catalog/NOAA_NHC_HURDAT2_atlantic proprietary diff --git a/nasa_cmr_catalog.json b/nasa_cmr_catalog.json index 28ee0ba..9422f8f 100644 --- a/nasa_cmr_catalog.json +++ b/nasa_cmr_catalog.json @@ -623,6 +623,58 @@ "description": "The ACIDD (Across the Channel Investigating Diel Dynamics) project, in the Santa Barbara Channel, was initially designed to characterize daily variations in phytoplankton populations, but with the Thomas Fire in the Santa Barbara Hills December 2017, this project evolved into a study to characterize the effects of smoke and ash on the mixed layer in the Santa Barbara Channel.", "license": "not-provided" }, + { + "id": "ACOS_L2S.v7.3", + "title": "ACOS GOSAT/TANSO-FTS Level 2 Full Physics Standard Product V7.3 (ACOS_L2S) at GES DISC", + "catalog": "GES_DISC", + "state_date": "2009-04-20", + "end_date": "", + "bbox": "-180, -90, 180, 90", + "url": "https://cmr.earthdata.nasa.gov/search/concepts/C1339230297-GES_DISC.json", + "metadata": "https://cmr.earthdata.nasa.gov/search/concepts/C1339230297-GES_DISC.html", + "href": "https://cmr.earthdata.nasa.gov/stac/GES_DISC/collections/ACOS_L2S.v7.3", + "description": "Version 7.3 is the current version of the data set. Version 3.5 is no longer available and has been superseded by Version 7.3. This data set is currently provided by the OCO (Orbiting Carbon Observatory) Project. In expectation of the OCO-2 launch, the algorithm was developed by the Atmospheric CO2 Observations from Space (ACOS) Task as a preparatory project, using GOSAT TANSO-FTS spectra. After the OCO-2 launch, \"ACOS\" data are still produced and improved, using approaches applied to the OCO-2 spectra. The \"ACOS\" data set contains Carbon Dioxide (CO2) column averaged dry air mole fraction for all soundings for which retrieval was attempted. These are the highest-level products made available by the OCO Project, using TANSO-FTS spectral radiances, and algorithm build version 7.3. The GOSAT team at JAXA produces GOSAT TANSO-FTS Level 1B (L1B) data products for internal use and for distribution to collaborative partners, such as ESA and NASA. These calibrated products are augmented by the OCO Project with additional geolocation information and further corrections. Thus produced Level 1B products (with calibrated radiances and geolocation) are the input to the \"ACOS\" Level 2 production process. Even though the GES DISC is not publicly distributing Level 1B ACOS products, it should be known that changes in this version are affecting both Level 1B and Level 2 data. An important enhancement in Level1B will address the degradation in the number of quality-passed soundings. Elimination of many systematic biases, and better agreement with TCCON (Total Carbon Column Observing Network), is expected in Level 2 retrievals. The key changes to the L2 algorithm include scaling the O2-A band spectroscopy (reducing XCO2 bias by 4 or 5 ppm); using interpolation with the instrument lineshape [ ILS ] (reducing XCO2 bias by 1.5 ppm); and fitting a zero level offset to the A-band. Users have to also carefully familiarize themselves with the disclaimer in the new documentation. An important element to note are the updates on data screening. Although a Master Quality Flag is provided in the data product, further analysis of a larger set of data has allowed the science team to provide an updated set of screening criteria. These are listed in the data user's guide, and are recommended instead of the Master Quality Flag. Lastly, users should continue to carefully observe and weigh information from three important flags: \"warn_level\" - Provides a value that summarizes each sounding's acceptability to a larger set of quality filters. A high warn level predicts that the sounding would fail most data filters applied to it. A low warn level suggests that the sounding would pass most quality filters that might be applied. \"sounding_qual_flag\" - quality of input data provided to the retrieval processing \"outcome_flag\" - retrieval quality based upon certain internal thresholds (not thoroughly evaluated) \"master_quality_flag\" - four possible values: \"Good\", \"Caution\" and \"Bad\", and \"Failed\", as determined from other flags in the L2 productThe short name for this data type is ACOS_L2S.", + "license": "not-provided" + }, + { + "id": "ACOS_L2S.v9r", + "title": "ACOS GOSAT/TANSO-FTS Level 2 Full Physics Standard Product V9r (ACOS_L2S) at GES DISC", + "catalog": "GES_DISC", + "state_date": "2009-04-20", + "end_date": "", + "bbox": "-180, -90, 180, 90", + "url": "https://cmr.earthdata.nasa.gov/search/concepts/C1633158704-GES_DISC.json", + "metadata": "https://cmr.earthdata.nasa.gov/search/concepts/C1633158704-GES_DISC.html", + "href": "https://cmr.earthdata.nasa.gov/stac/GES_DISC/collections/ACOS_L2S.v9r", + "description": "Version 9r is the current version of the data set. Older versions will no longer be available and are superseded by Version 9r. This data set is currently provided by the OCO (Orbiting Carbon Observatory) Project. In expectation of the OCO-2 launch, the algorithm was developed by the Atmospheric CO2 Observations from Space (ACOS) Task as a preparatory project, using GOSAT TANSO-FTS spectra. After the OCO-2 launch, \"ACOS\" data are still produced and improved, using approaches applied to the OCO-2 spectra. The \"ACOS\" data set contains Carbon Dioxide (CO2) column averaged dry air mole fraction for all soundings for which retrieval was attempted. These are the highest-level products made available by the OCO Project, using TANSO-FTS spectral radiances, and algorithm build version 7.3. The GOSAT team at JAXA produces GOSAT TANSO-FTS Level 1B (L1B) data products for internal use and for distribution to collaborative partners, such as ESA and NASA. These calibrated products are augmented by the OCO Project with additional geolocation information and further corrections. Thus produced Level 1B products (with calibrated radiances and geolocation) are the input to the \"ACOS\" Level 2 production process. Even though the GES DISC is not publicly distributing Level 1B ACOS products, it should be known that changes in this version are affecting both Level 1B and Level 2 data. An important enhancement in Level1B will address the degradation in the number of quality-passed soundings. Elimination of many systematic biases, and better agreement with TCCON (Total Carbon Column Observing Network), is expected in Level 2 retrievals. The key changes to the L2 algorithm include scaling the O2-A band spectroscopy (reducing XCO2 bias by 4 or 5 ppm); using interpolation with the instrument lineshape [ ILS ] (reducing XCO2 bias by 1.5 ppm); and fitting a zero level offset to the A-band. Users have to also carefully familiarize themselves with the disclaimer in the new documentation. An important element to note are the updates on data screening. Although a Master Quality Flag is provided in the data product, further analysis of a larger set of data has allowed the science team to provide an updated set of screening criteria. These are listed in the data user's guide, and are recommended instead of the Master Quality Flag. Lastly, users should continue to carefully observe and weigh information from three important flags: \"sounding_qual_flag\" - quality of input data provided to the retrieval processing \"outcome_flag\" - retrieval quality based upon certain internal thresholds (not thoroughly evaluated) ", + "license": "not-provided" + }, + { + "id": "ACOS_L2_Lite_FP.v7.3", + "title": "ACOS GOSAT/TANSO-FTS Level 2 bias-corrected XCO2 and other select fields from the full-physics retrieval aggregated as daily files V7.3 (ACOS_L2_Lite_FP) at GES DISC", + "catalog": "GES_DISC", + "state_date": "2009-04-21", + "end_date": "", + "bbox": "-180, -90, 180, 90", + "url": "https://cmr.earthdata.nasa.gov/search/concepts/C1339230298-GES_DISC.json", + "metadata": "https://cmr.earthdata.nasa.gov/search/concepts/C1339230298-GES_DISC.html", + "href": "https://cmr.earthdata.nasa.gov/stac/GES_DISC/collections/ACOS_L2_Lite_FP.v7.3", + "description": "The ACOS Lite files contain bias-corrected XCO2 along with other select fields aggregated as daily files. Orbital granules of the ACOS Level 2 standard product (ACOS_L2S) are used as input. The \"ACOS\" data set contains Carbon Dioxide (CO2) column averaged dry air mole fraction for all soundings for which retrieval was attempted. These are the highest-level products made available by the OCO Project, using TANSO-FTS spectral radiances. The GOSAT team at JAXA produces GOSAT TANSO-FTS Level 1B (L1B) data products for internal use and for distribution to collaborative partners, such as ESA and NASA. These calibrated products are augmented by the OCO Project with additional geolocation information and further corrections. Thus produced Level 1B products (with calibrated radiances and geolocation) are the input to the \"ACOS\" Level 2 production process.", + "license": "not-provided" + }, + { + "id": "ACOS_L2_Lite_FP.v9r", + "title": "ACOS GOSAT/TANSO-FTS Level 2 bias-corrected XCO2 and other select fields from the full-physics retrieval aggregated as daily files V9r (ACOS_L2_Lite_FP) at GES DISC", + "catalog": "GES_DISC", + "state_date": "2009-04-20", + "end_date": "", + "bbox": "-180, -90, 180, 90", + "url": "https://cmr.earthdata.nasa.gov/search/concepts/C1720416694-GES_DISC.json", + "metadata": "https://cmr.earthdata.nasa.gov/search/concepts/C1720416694-GES_DISC.html", + "href": "https://cmr.earthdata.nasa.gov/stac/GES_DISC/collections/ACOS_L2_Lite_FP.v9r", + "description": "Version 9r is the current version of the data set. Older versions will no longer be available and are superseded by Version 9r. The ACOS Lite files contain bias-corrected XCO2 along with other select fields aggregated as daily files. Orbital granules of the ACOS Level 2 standard product (ACOS_L2S) are used as input. The \"ACOS\" data set contains Carbon Dioxide (CO2) column averaged dry air mole fraction for all soundings for which retrieval was attempted. These are the highest-level products made available by the OCO Project, using TANSO-FTS spectral radiances. The GOSAT team at JAXA produces GOSAT TANSO-FTS Level 1B (L1B) data products for internal use and for distribution to collaborative partners, such as ESA and NASA. These calibrated products are augmented by the OCO Project with additional geolocation information and further corrections. Thus produced Level 1B products (with calibrated radiances and geolocation) are the input to the \"ACOS\" Level 2 production process.", + "license": "not-provided" + }, { "id": "ACR3L2DM.v1", "title": "ACRIM III Level 2 Daily Mean Data V001", @@ -935,6 +987,19 @@ "description": "Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) Global Emissivity Dataset (GED) is a collection of monthly files (see known issues for gaps) for each year of global emissivity. The ASTER GED data products are generated for 2000 through 2015 using the ASTER Temperature Emissivity Separation (TES) algorithm atmospheric correction method. This algorithm method uses Moderate Resolution Imaging Spectroradiometer (MODIS) Atmospheric Profiles product (MOD07) (https://modis-atmos.gsfc.nasa.gov/MOD07_L2/index.html) and the MODerate spectral resolution TRANsmittance (MODTRAN) 5.2 radiative transfer model along with the snow cover data from the standard monthly MODIS/Terra snow cover monthly global 0.05 degree product (MOD10CM) (https://doi.org/10.5067/MODIS/MOD10CM.006), and vegetation information from the MODIS monthly gridded NDVI product (MOD13C2) (https://doi.org/10.5067/MODIS/MOD13C2.006). ASTER GED Monthly V041 data products are offered in Hierarchical Data Format 5 (HDF5). The National Aeronautics and Space Administration\u2019s (NASA) Jet Propulsion Laboratory (JPL), California Institute of Technology, developed the ASTER GED product.", "license": "not-provided" }, + { + "id": "AIRABRAD.v005", + "title": "AIRS/Aqua L1B AMSU (A1/A2) geolocated and calibrated brightness temperatures V005 (AIRABRAD) at GES DISC", + "catalog": "GES_DISC", + "state_date": "2002-05-21", + "end_date": "", + "bbox": "-180, -90, 180, 90", + "url": "https://cmr.earthdata.nasa.gov/search/concepts/C1243477366-GES_DISC.json", + "metadata": "https://cmr.earthdata.nasa.gov/search/concepts/C1243477366-GES_DISC.html", + "href": "https://cmr.earthdata.nasa.gov/stac/GES_DISC/collections/AIRABRAD.v005", + "description": "The Atmospheric Infrared Sounder (AIRS) is a grating spectrometer (R = 1200) aboard the second Earth Observing System (EOS) polar-orbiting platform, EOS Aqua. In combination with the Advanced Microwave Sounding Unit (AMSU) and the Humidity Sounder for Brazil (HSB), AIRS constitutes an innovative atmospheric sounding group of visible, infrared, and microwave sensors. The AMSU-A instrument is co-aligned with AIRS so that successive blocks of 3 x 3 AIRS footprints are contained within one AMSU-A footprint. AMSU-A is primarily a temperature sounder that provides atmospheric information in the presence of clouds, which can be used to correct the AIRS infrared measurements for the effects of clouds. This is possible because non-precipitating clouds are for the most part transparent to microwave radiation, in contrast to visible and infrared radiation which are strongly scattered and absorbed by clouds. AMSU-A1 has 13 channels from 50 - 90 GHz and AMSU-A2 has 2 channels from 23 - 32 GHz. The AIRABRAD_005 products are stored in files (often referred to as \"granules\") that contain 6 minutes of data, 30 footprints across track by 45 lines along track.", + "license": "not-provided" + }, { "id": "AIRSAR_INT_JPG.v1", "title": "AIRSAR_ALONGTRACK_INTERFEROMETRY_JPG", @@ -1065,6 +1130,71 @@ "description": "AIRSAR topographic SAR digital elevation model P_Stokes product", "license": "not-provided" }, + { + "id": "AIRSM_CPR_MAT.v3.2", + "title": "AIRS-AMSU variables-CloudSat cloud mask, radar reflectivities, and cloud classification matchups V3.2 (AIRSM_CPR_MAT) at GES DISC", + "catalog": "GES_DISC", + "state_date": "2006-06-15", + "end_date": "2012-12-14", + "bbox": "-180, -90, 180, 90", + "url": "https://cmr.earthdata.nasa.gov/search/concepts/C1236224182-GES_DISC.json", + "metadata": "https://cmr.earthdata.nasa.gov/search/concepts/C1236224182-GES_DISC.html", + "href": "https://cmr.earthdata.nasa.gov/stac/GES_DISC/collections/AIRSM_CPR_MAT.v3.2", + "description": "This is AIRS-CloudSat collocated subset, in NetCDF 4 format. These data contain collocated: AIRS/AMSU retrievals at AMSU footprints, CloudSat radar reflectivities, and MODIS cloud mask. These data are created within the frames of the MEaSUREs project. The basic task is to bring together retrievals of water vapor and cloud properties from multiple \"A-train\" instruments (AIRS, AMSR-E, MODIS, AMSU, MLS, CloudSat), classify each \"scene\" (instrument look) using the cloud information, and develop a merged, multi-sensor climatology of atmospheric water vapor as a function of altitude, stratified by the cloud classes. This is a large science analysis project that will require the use of SciFlo technologies to discover and organize all of the datasets, move and cache datasets as required, find space/time \"matchups\" between pairs of instruments, and process years of satellite data to produce the climate data records. The short name for this collection is AIRSM_CPR_MAT Parameters contained in the data files include the following: Variable Name|Description|Units CH4_total_column|Retrieved total column CH4| (molecules/cm2) CloudFraction|CloudSat/CALIPSO Cloud Fraction| (None) CloudLayers| Number of hydrometeor layers| (count) clrolr|Clear-sky Outgoing Longwave Radiation|(Watts/m**2) CO_total_column|Retrieved total column CO| (molecules/cm2) CPR_Cloud_mask| CPR Cloud Mask |(None) Data_quality| Data Quality |(None) H2OMMRSat|Water vapor saturation mass mixing ratio|(gm/kg) H2OMMRStd|Water Vapor Mass Mixing Ratio |(gm/kg dry air) MODIS_Cloud_Fraction| MODIS 250m Cloud Fraction| (None) MODIS_scene_var |MODIS scene variability| (None) nSurfStd|1-based index of the first valid level|(None) O3VMRStd|Ozone Volume Mixing Ratio|(vmr) olr|All-sky Outgoing Longwave Radiation|(Watts/m**2) Radar_Reflectivity| Radar Reflectivity Factor| (dBZe) Sigma-Zero| Sigma-Zero| (dB*100) TAirMWOnlyStd|Atmospheric Temperature retrieved using only MW|(K) TCldTopStd|Cloud top temperature|(K) totH2OStd|Total precipitable water vapor| (kg/m**2) totO3Std|Total ozone burden| (Dobson) TSurfAir|Atmospheric Temperature at Surface|(K) TSurfStd|Surface skin temperature|(K) End of parameter information", + "license": "not-provided" + }, + { + "id": "AIRS_CPR_IND.v4.0", + "title": "AIRS-CloudSat cloud mask and radar reflectivities collocation indexes V4.0 (AIRS_CPR_IND) at GES_DISC", + "catalog": "GES_DISC", + "state_date": "2006-06-15", + "end_date": "", + "bbox": "-180, -90, 180, 90", + "url": "https://cmr.earthdata.nasa.gov/search/concepts/C1236224151-GES_DISC.json", + "metadata": "https://cmr.earthdata.nasa.gov/search/concepts/C1236224151-GES_DISC.html", + "href": "https://cmr.earthdata.nasa.gov/stac/GES_DISC/collections/AIRS_CPR_IND.v4.0", + "description": "Version 4.1 is the current version of the data set. Previous versions are no longer available and have been superseded by Version 4.1. This is AIRS-AMSU-CloudSat collocation indexes, in netCDF-4 format. These data map CloudSat profile indexes to the collocated AMSU field of views, and AIRS IR footprints, per AIRS 6-min granule time. Hence it can be considered as Level 1. These data are created within the frames of the MEaSUREs project. The basic task is to bring together retrievals of water vapor and cloud properties from multiple \"A-train\" instruments (AIRS, AMSR-E, MODIS, AMSU, MLS, & CloudSat), classify each \"scene\" (instrument look) using the cloud information, and develop a merged, multi-sensor climatology of atmospheric water vapor as a function of altitude, stratified by the cloud classes. This is a large science analysis project that will require the use of SciFlo technologies to discover and organize all of the datasets, move and cache datasets as required, find space/time \"matchups\" between pairs of instruments, and process years of satellite data to produce the climate data records. The short name for this collection is AIRS_CPR_IND", + "license": "not-provided" + }, + { + "id": "AIRS_CPR_MAT.v3.2", + "title": "AIRS-CloudSat cloud mask, radar reflectivities, and cloud classification matchups V3.2 (AIRS_CPR_MAT) at GES DISC", + "catalog": "GES_DISC", + "state_date": "2006-06-15", + "end_date": "2012-12-14", + "bbox": "-180, -90, 180, 90", + "url": "https://cmr.earthdata.nasa.gov/search/concepts/C1236224153-GES_DISC.json", + "metadata": "https://cmr.earthdata.nasa.gov/search/concepts/C1236224153-GES_DISC.html", + "href": "https://cmr.earthdata.nasa.gov/stac/GES_DISC/collections/AIRS_CPR_MAT.v3.2", + "description": "This is AIRS-CloudSat collocated subset, in NetCDF-4 format. These data contain collocated: AIRS Level 1b radiances spectra, CloudSat radar reflectivities, and MODIS cloud mask. These data are created within the frames of the MEaSUREs project. The basic task is to bring together retrievals of water vapor and cloud properties from multiple \"A-train\" instruments (AIRS, AMSR-E, MODIS, AMSU, MLS, CloudSat), classify each \"scene\" (instrument look) using the cloud information, and develop a merged, multi-sensor climatology of atmospheric water vapor as a function of altitude, stratified by the cloud classes. This is a large science analysis project that will require the use of SciFlo technologies to discover and organize all of the datasets, move and cache datasets as required, find space/time \"matchups\" between pairs of instruments, and process years of satellite data to produce the climate data records. The short name for this collection is AIRS_CPR_MAT Parameters contained in the data files include the following: Variable Name|Description|Units CldFrcStdErr|Cloud Fraction|(None) CloudLayers| Number of hydrometeor layers| (count) CPR_Cloud_mask| CPR Cloud Mask| (None) DEM_elevation| Digital Elevation Map| (m) dust_flag|Dust Flag|(None) latAIRS|AIRS IR latitude|(deg) Latitude|CloudSat Latitude |(degrees) LayerBase| Height of Layer Base| (m) LayerTop| Height of layer top| (m) lonAIRS|AIRS IR longitude|(deg) Longitude|CloudSat Longitude| (degrees) MODIS_cloud_flag| MOD35_bit_2and3_cloud_flag| (None) Radar_Reflectivity| Radar Reflectivity Factor| (dBZe) radiances|Radiances|(milliWatts/m**2/cm**-1/steradian) Sigma-Zero| Sigma-Zero| (dB*100) spectral_clear_indicator|Spectral Clear Indicator|(None) Vertical_binsize|CloudSat vertical binsize| (m) End of parameter information", + "license": "not-provided" + }, + { + "id": "AIRXAMAP.v005", + "title": "AIRS/Aqua Granule map product V005 (AIRXAMAP) at GES DISC", + "catalog": "GES_DISC", + "state_date": "2002-05-21", + "end_date": "", + "bbox": "-180, -90, 180, 90", + "url": "https://cmr.earthdata.nasa.gov/search/concepts/C1233769004-GES_DISC.json", + "metadata": "https://cmr.earthdata.nasa.gov/search/concepts/C1233769004-GES_DISC.html", + "href": "https://cmr.earthdata.nasa.gov/stac/GES_DISC/collections/AIRXAMAP.v005", + "description": "The Atmospheric Infrared Sounder (AIRS) is a grating spectrometer (R = 1200) aboard the second Earth Observing System (EOS) polar-orbiting platform, EOS Aqua. In combination with the Advanced Microwave Sounding Unit (AMSU) and the Humidity Sounder for Brazil (HSB), AIRS constitutes an innovative atmospheric sounding group of visible, infrared, and microwave sensors. An AIRS granule has been set as 6 minutes of data, 30 footprints cross track by 45 lines along track. The AIRS Granule Map Product consists of images of granule coverage in PDF and JPG format. The images are daily ones but updated every 6 minutes to capture any new available granule. Granules are assembled by ascending, descending, in north and south hemisphere, and the maps are in global cylindrical projection and satellite projection for better view.", + "license": "not-provided" + }, + { + "id": "AIRXBCAL.v005", + "title": "AIRS/Aqua L1B Calibration subset V005 (AIRXBCAL) at GES DISC", + "catalog": "GES_DISC", + "state_date": "2002-08-31", + "end_date": "", + "bbox": "-180, -90, 180, 90", + "url": "https://cmr.earthdata.nasa.gov/search/concepts/C1243477315-GES_DISC.json", + "metadata": "https://cmr.earthdata.nasa.gov/search/concepts/C1243477315-GES_DISC.html", + "href": "https://cmr.earthdata.nasa.gov/stac/GES_DISC/collections/AIRXBCAL.v005", + "description": "The Atmospheric Infrared Sounder (AIRS) is a grating spectrometer (R = 1200) aboard the second Earth Observing System (EOS) polar-orbiting platform, EOS Aqua. In combination with the Advanced Microwave Sounding Unit (AMSU) and the Humidity Sounder for Brazil (HSB), AIRS constitutes an innovative atmospheric sounding group of visible, infrared, and microwave sensors. AIRS/Aqua Level-1B calibration subset including clear cases, special calibration sites, random nadir spots, and high clouds. The AIRS Visible/Near Infrared (VIS/NIR) level 1B data set contains AIRS visible and near-infrared calibrated and geolocated radiances in W/m^2/micron/steradian. This data set is generated from AIRS level 1A digital numbers (DN), including 4 channels in the 0.4 to 1.0 um region of the spectrum.", + "license": "not-provided" + }, { "id": "AK_AVHRR", "title": "Alaska AVHRR Twice-Monthly Composites", @@ -1962,6 +2092,136 @@ "description": "This data set comprises GPS ground data of a sample rate of 10 sec, generated by decoding and sampling GPS high rate ground data. This raw data passed no quality control. The data are given in the Rinex 2.1 format.", "license": "not-provided" }, + { + "id": "CIESIN_SEDAC_EPI_2008.v2008.00", + "title": "2008 Environmental Performance Index (EPI)", + "catalog": "SEDAC", + "state_date": "1994-01-01", + "end_date": "2007-12-31", + "bbox": "-180, -55, 180, 90", + "url": "https://cmr.earthdata.nasa.gov/search/concepts/C179001707-SEDAC.json", + "metadata": "https://cmr.earthdata.nasa.gov/search/concepts/C179001707-SEDAC.html", + "href": "https://cmr.earthdata.nasa.gov/stac/SEDAC/collections/CIESIN_SEDAC_EPI_2008.v2008.00", + "description": "The 2008 Environmental Performance Index (EPI) centers on two broad environmental protection objectives: (1) reducing environmental stresses on human health, and (2) promoting ecosystem vitality and sound natural resource management. Derived from a careful review of the environmental literature, these twin goals mirror the priorities expressed by policymakers. Environmental health and ecosystem vitality are gauged using 25 indicators tracked in six well-established policy categories: Environmental Health (Environmental Burden of Disease, Water, and Air Pollution), Air Pollution (effects on ecosystems), Water (effects on ecosystems), Biodiversity and Habitat, Productive Natural Resources (Forestry, Fisheries, and Agriculture), and Climate Change. The 2008 EPI utilizes a proximity-to-target methodology in which performance on each indicator is rated on a 0 to 100 scale (100 represents \u00ef\u00bf\u00bdat target\u00ef\u00bf\u00bd). By identifying specific targets and measuring how close each country comes to them, the EPI provides a foundation for policy analysis and a context for evaluating performance. Issue-by-issue and aggregate rankings facilitate cross-country comparisons both globally and within relevant peer groups. The 2008 EPI is the result of collaboration among the Yale Center for Environmental Law and Policy (YCELP), Columbia University Center for International Earth Science Information Network (CIESIN), World Economic Forum (WEF), and the Joint Research Centre (JRC), European Commission.", + "license": "not-provided" + }, + { + "id": "CIESIN_SEDAC_EPI_2010.v2010.00", + "title": "2010 Environmental Performance Index (EPI)", + "catalog": "SEDAC", + "state_date": "1994-01-01", + "end_date": "2009-12-31", + "bbox": "-180, -55, 180, 90", + "url": "https://cmr.earthdata.nasa.gov/search/concepts/C179002147-SEDAC.json", + "metadata": "https://cmr.earthdata.nasa.gov/search/concepts/C179002147-SEDAC.html", + "href": "https://cmr.earthdata.nasa.gov/stac/SEDAC/collections/CIESIN_SEDAC_EPI_2010.v2010.00", + "description": "The 2010 Environmental Performance Index (EPI) ranks 163 countries on environmental performance based on twenty-five indicators grouped within ten core policy categories addressing environmental health, air quality, water resource management, biodiversity and habitat, forestry, fisheries, agriculture, and climate change in the context of two broad objectives: environmental health and ecosystem vitality. The EPI\u00ef\u00bf\u00bds proximity-to-target methodology facilitates cross-country comparisons among economic and regional peer groups. It was formally released in Davos, Switzerland, at the annual meeting of the World Economic Forum on January 28, 2010. The 2010 EPI is the result of collaboration between the Yale Center for Environmental Law and Policy (YCELP) and the Columbia University Center for International Earth Science Information Network (CIESIN).", + "license": "not-provided" + }, + { + "id": "CIESIN_SEDAC_EPI_2012.v2012.00", + "title": "2012 Environmental Performance Index and Pilot Trend Environmental Performance Index", + "catalog": "SEDAC", + "state_date": "2000-01-01", + "end_date": "2010-12-31", + "bbox": "-180, -55, 180, 90", + "url": "https://cmr.earthdata.nasa.gov/search/concepts/C1000000000-SEDAC.json", + "metadata": "https://cmr.earthdata.nasa.gov/search/concepts/C1000000000-SEDAC.html", + "href": "https://cmr.earthdata.nasa.gov/stac/SEDAC/collections/CIESIN_SEDAC_EPI_2012.v2012.00", + "description": "The 2012 Environmental Performance Index (EPI) ranks 132 countries on 22 performance indicators in the following 10 policy categories: environmental burden of disease, water (effects on human health), air pollution (effects on human health), air pollution (ecosystem effects), water resources (ecosystem effects), biodiversity and habitat, forestry, fisheries, agriculture and climate change. These categories track performance and progress on two broad policy objectives, environmental health and ecosystem vitality. Each indicator has an associated environmental public health or ecosystem sustainability target. The EPI's proximity-to-target methodology facilitates cross-country comparisons among economic and regional peer groups. The Pilot Trend Environmental Performance Index (Trend EPI) ranks countries on the change in their environmental performance over the last decade. As a complement to the EPI, the Trend EPI shows who is improving and who is declining over time. The 2012 EPI and Pilot Trend EPI were formally released in Davos, Switzerland, at the annual meeting of the World Economic Forum on January 27, 2012. These are the result of collaboration between the Yale Center for Environmental Law and Policy (YCELP) and the Columbia University Center for International Earth Science Information Network (CIESIN). The Interactive Website for the 2012 EPI is at http://epi.yale.edu/.", + "license": "not-provided" + }, + { + "id": "CIESIN_SEDAC_EPI_2014.v2014.00", + "title": "2014 Environmental Performance Index (EPI)", + "catalog": "SEDAC", + "state_date": "2002-01-01", + "end_date": "2014-12-31", + "bbox": "-180, -55, 180, 90", + "url": "https://cmr.earthdata.nasa.gov/search/concepts/C1000000541-SEDAC.json", + "metadata": "https://cmr.earthdata.nasa.gov/search/concepts/C1000000541-SEDAC.html", + "href": "https://cmr.earthdata.nasa.gov/stac/SEDAC/collections/CIESIN_SEDAC_EPI_2014.v2014.00", + "description": "The 2014 Environmental Performance Index (EPI) ranks 178 countries on 20 performance indicators in the following 9 policy categories: health impacts, air quality, water and sanitation, water resources, agriculture, forests, fisheries, biodiversity and habitat, and climate and energy. These categories track performance and progress on two broad policy objectives, environmental health and ecosystem vitality. The EPI's proximity-to-target methodology facilitates cross-country comparisons among economic and regional peer groups. The data set includes the 2014 EPI and component scores, backcast EPI scores for 2002-2012, and time-series source data. The 2014 EPI was formally released in Davos, Switzerland, at the annual meeting of the World Economic Forum on January 25, 2014. These are the result of collaboration between the Yale Center for Environmental Law and Policy (YCELP) and the Columbia University Center for International Earth Science Information Network (CIESIN). The Interactive Website for the 2014 EPI is at http://epi.yale.edu/.", + "license": "not-provided" + }, + { + "id": "CIESIN_SEDAC_EPI_2016.v2016.00", + "title": "2016 Environmental Performance Index (EPI)", + "catalog": "SEDAC", + "state_date": "1950-01-01", + "end_date": "2016-12-31", + "bbox": "-180, -55, 180, 90", + "url": "https://cmr.earthdata.nasa.gov/search/concepts/C1419908204-SEDAC.json", + "metadata": "https://cmr.earthdata.nasa.gov/search/concepts/C1419908204-SEDAC.html", + "href": "https://cmr.earthdata.nasa.gov/stac/SEDAC/collections/CIESIN_SEDAC_EPI_2016.v2016.00", + "description": "The 2016 Environmental Performance Index (EPI) ranks 180 countries on 20 performance indicators in the following 9 policy categories: health impacts, air quality, water and sanitation, water resources, agriculture, forests, fisheries, biodiversity and habitat, and climate and energy. These categories track performance and progress on two broad policy objectives, environmental health and ecosystem vitality. The EPI's proximity-to-target methodology facilitates cross-country comparisons among economic and regional peer groups. The data set includes the 2016 EPI and component scores, backcast EPI scores for 1950-2016, and time-series source data. The 2016 EPI was formally released in Davos, Switzerland, at the annual meeting of the World Economic Forum on January 23, 2016. These are the result of collaboration between the Yale Center for Environmental Law and Policy (YCELP) and Yale Data-Driven Environmental Solutions Group, Yale University, Columbia University Center for International Earth Science Information Network (CIESIN), and the World Economic Forum (WEF). The Interactive Website for the 2016 EPI is at https://epi.yale.edu.", + "license": "not-provided" + }, + { + "id": "CIESIN_SEDAC_ESI_2000.v2000.00", + "title": "2000 Pilot Environmental Sustainability Index (ESI)", + "catalog": "SEDAC", + "state_date": "1978-01-01", + "end_date": "1999-12-31", + "bbox": "-180, -55, 180, 90", + "url": "https://cmr.earthdata.nasa.gov/search/concepts/C179001887-SEDAC.json", + "metadata": "https://cmr.earthdata.nasa.gov/search/concepts/C179001887-SEDAC.html", + "href": "https://cmr.earthdata.nasa.gov/stac/SEDAC/collections/CIESIN_SEDAC_ESI_2000.v2000.00", + "description": "The 2000 Pilot Environmental Sustainability Index (ESI) is an exploratory effort to construct an index that measures the ability of a nation's economy to achieve sustainable development, with the long term goal of finding a single indicator for environmental sustainability analagous to that of the Gross Domestic Product (GDP). The index covering 56 countries is a composite measure of the current status of a nation's environmental systems, pressures on those systems, human vulnerability to environmental change, national capacity to respond, and contributions to global environmental stewardship. The index was unveiled at the World Economic Forum's annual meeting, January 2000, Davos, Switzerland. The 2000 Pilot ESI is the result of collaboration among the World Economic Forum (WEF), Yale Center for Environmental Law and Policy (YCELP), and the Columbia University Center for International Earth Science Information Network (CIESIN).", + "license": "not-provided" + }, + { + "id": "CIESIN_SEDAC_ESI_2001.v2001.00", + "title": "2001 Environmental Sustainability Index (ESI)", + "catalog": "SEDAC", + "state_date": "1980-01-01", + "end_date": "2000-12-31", + "bbox": "-180, -55, 180, 90", + "url": "https://cmr.earthdata.nasa.gov/search/concepts/C1000000220-SEDAC.json", + "metadata": "https://cmr.earthdata.nasa.gov/search/concepts/C1000000220-SEDAC.html", + "href": "https://cmr.earthdata.nasa.gov/stac/SEDAC/collections/CIESIN_SEDAC_ESI_2001.v2001.00", + "description": "The 2001 Environmental Sustainability Index (ESI) utilizes a refined methodology based on the 2000 Pilot ESI effort, to construct an index covering 122 countries that measures the overall progress towards environmental sustainability. The index is a composite measure of the current status of a nation's environmental systems, pressures on those systems, human vulnerability to environmental change, national capacity to respond, and contributions to global environmental stewardship. The refinements included the addition and deletion of indicators, filling gaps in data coverage, new data sets, and the modification of the aggregation scheme. The index was unveiled at the World Economic Forum's annual meeting, January 2001, Davos, Switzerland. The 2001 ESI is the result of collaboration among the World Economic Forum (WEF), Yale Center for Environmental Law and Policy (YCELP), and the Columbia University Center for International Earth Science Information Network (CIESIN).", + "license": "not-provided" + }, + { + "id": "CIESIN_SEDAC_ESI_2002.v2002.00", + "title": "2002 Environmental Sustainability Index (ESI)", + "catalog": "SEDAC", + "state_date": "1980-01-01", + "end_date": "2000-12-31", + "bbox": "-180, -55, 180, 90", + "url": "https://cmr.earthdata.nasa.gov/search/concepts/C179001967-SEDAC.json", + "metadata": "https://cmr.earthdata.nasa.gov/search/concepts/C179001967-SEDAC.html", + "href": "https://cmr.earthdata.nasa.gov/stac/SEDAC/collections/CIESIN_SEDAC_ESI_2002.v2002.00", + "description": "The 2002 Environmental Sustainability Index (ESI) measures overall progress toward environmental sustainability for 142 countries based on environmental systems, stresses, human vulnerability, social and institutional capacity and global stewardship. The addition of a climate change indicator, reduction in number of capacity indicators, and an improved imputation methodology contributed to an improvement from the 2001 ESI. The index was unveiled at the World Economic Forum's annual meeting, January 2002, New York. The 2002 ESI is the result of collaboration among the World Economic Forum (WEF), Yale Center for Environmental Law and Policy (YCELP), and the Columbia University Center for International Earth Science Information Network (CIESIN).", + "license": "not-provided" + }, + { + "id": "CIESIN_SEDAC_ESI_2005.v2005.00", + "title": "2005 Environmental Sustainability Index (ESI)", + "catalog": "SEDAC", + "state_date": "1980-01-01", + "end_date": "2000-12-31", + "bbox": "-180, -55, 180, 90", + "url": "https://cmr.earthdata.nasa.gov/search/concepts/C179001889-SEDAC.json", + "metadata": "https://cmr.earthdata.nasa.gov/search/concepts/C179001889-SEDAC.html", + "href": "https://cmr.earthdata.nasa.gov/stac/SEDAC/collections/CIESIN_SEDAC_ESI_2005.v2005.00", + "description": "The 2005 Environmental Sustainability Index (ESI) is a measure of overall progress towards environmental sustainability, developed for 146 countries. The index provides a composite profile of national environmental stewardship based on a compilation of 21 indicators derived from 76 underlying data sets. The 2005 version of the ESI represents a significant update and improvement on earlier versions; the country ESI scores or rankings should not be compared to earlier versions because of changes to the methodology and underlying data. The index was unveiled at the World Economic Forum's annual meeting, January 2005, Davos, Switzerland. The 2005 ESI is a joint product of the Yale Center for Environmental Law and Policy (YCELP) and the Columbia University Center for International Earth Science Information Network (CIESIN), in collaboration with the World Economic Forum (WEF) and the Joint Research Centre (JRC), European Commission.", + "license": "not-provided" + }, + { + "id": "CIESIN_SEDAC_USPAT_USUEXT2015.v1.00", + "title": "2015 Urban Extents from VIIRS and MODIS for the Continental U.S. Using Machine Learning Methods", + "catalog": "SEDAC", + "state_date": "2015-01-01", + "end_date": "2015-12-31", + "bbox": "-180, -56, 180, 84", + "url": "https://cmr.earthdata.nasa.gov/search/concepts/C1648035940-SEDAC.json", + "metadata": "https://cmr.earthdata.nasa.gov/search/concepts/C1648035940-SEDAC.html", + "href": "https://cmr.earthdata.nasa.gov/stac/SEDAC/collections/CIESIN_SEDAC_USPAT_USUEXT2015.v1.00", + "description": "The 2015 Urban Extents from VIIRS and MODIS for the Continental U.S. Using Machine Learning Methods data set models urban settlements in the Continental United States (CONUS) as of 2015. When applied to the combination of daytime spectral and nighttime lights satellite data, the machine learning methods achieved high accuracy at an intermediate-resolution of 500 meters at large spatial scales. The input data for these models were two types of satellite imagery: Visible Infrared Imaging Radiometer Suite (VIIRS) Nighttime Light (NTL) data from the Day/Night Band (DNB), and Moderate Resolution Imaging Spectroradiometer (MODIS) corrected daytime Normalized Difference Vegetation Index (NDVI). Although several machine learning methods were evaluated, including Random Forest (RF), Gradient Boosting Machine (GBM), Neural Network (NN), and the Ensemble of RF, GBM, and NN (ESB), the highest accuracy results were achieved with NN, and those results were used to delineate the urban extents in this data set.", + "license": "not-provided" + }, { "id": "CLDMSK_L2_VIIRS_NOAA20_NRT.v1", "title": "VIIRS/NOAA-20 Cloud Mask L2 6-Min Swath 750m (NRT)", @@ -2794,19 +3054,6 @@ "description": "The data received from IMS1, HySI which operates in 64 spectral bands in VNIR bands(400-900nm) with 500 meter spatial resolution and swath of 128 kms.", "license": "not-provided" }, - { - "id": "ISERV.v1", - "title": "International Space Station SERVIR Environmental Research and Visualization System V1", - "catalog": "USGS_EROS", - "state_date": "2013-03-27", - "end_date": "", - "bbox": "-180, -90, 180, 90", - "url": "https://cmr.earthdata.nasa.gov/search/concepts/C1379906336-USGS_EROS.json", - "metadata": "https://cmr.earthdata.nasa.gov/search/concepts/C1379906336-USGS_EROS.html", - "href": "https://cmr.earthdata.nasa.gov/stac/USGS_EROS/collections/ISERV.v1", - "description": "Abstract: The ISS SERVIR Environmental Research and Visualization System (ISERV) acquired images of the Earth's surface from the International Space Station (ISS). The goal was to improve automatic image capturing and data transfer. ISERV's main component was the optical assembly which consisted of a 9.25 inch Schmidt-Cassegrain telescope, a focal reducer (field of view enlarger), a digital single lens reflex camera, and a high precision focusing mechanism. A motorized 2-axis pointing mount allowed pointing at targets approximately 23 degrees from nadir in both along- and across-track directions.", - "license": "not-provided" - }, { "id": "KOPRI-KPDC-00000008.v1", "title": "1998 Seismic Data, Antarctica", diff --git a/nasa_cmr_catalog.tsv b/nasa_cmr_catalog.tsv index 278db7a..b4ddfad 100644 --- a/nasa_cmr_catalog.tsv +++ b/nasa_cmr_catalog.tsv @@ -47,6 +47,10 @@ ACEPOL_AircraftRemoteSensing_AirHARP_Data.v1 ACEPOL Airborne Hyper Angular Rainb ACEPOL_AircraftRemoteSensing_AirSPEX_Data.v1 ACEPOL Airborne Spectrometer for Planetary Exploration (AirSPEX) Remotely Sensed Data Version 1 LARC_ASDC 2017-10-19 2017-11-09 -130, 25, -100, 45 https://cmr.earthdata.nasa.gov/search/concepts/C1758588281-LARC_ASDC.json ACEPOL_AircraftRemoteSensing_AirSPEX_Data are remotely sensed measurements collected by the Airborne Spectrometer for Planetary Exploration (SPEX Airborne) onboard the ER-2 during ACEPOL. In order to improve our understanding of the effect of aerosols on climate and air quality, measurements of aerosol chemical composition, size distribution, height profile, and optical properties are of crucial importance. In terms of remotely sensed instrumentation, the most extensive set of aerosol properties can be obtained by combining passive multi-angle, multi-spectral measurements of intensity and polarization with active measurements performed by a High Spectral Resolution Lidar. During Fall 2017, the Aerosol Characterization from Polarimeter and Lidar (ACEPOL) campaign, jointly sponsored by NASA and the Netherlands Institute for Space Research (SRON), performed aerosol and cloud measurements over the United States from the NASA high altitude ER-2 aircraft. Six instruments were deployed on the aircraft. Four of these instruments were multi-angle polarimeters: the Airborne Hyper Angular Rainbow Polarimeter (AirHARP), the Airborne Multiangle SpectroPolarimetric Imager (AirMSPI), the Airborne Spectrometer for Planetary Exploration (SPEX Airborne) and the Research Scanning Polarimeter (RSP). The other two instruments were lidars: the High Spectral Resolution Lidar 2 (HSRL-2) and the Cloud Physics Lidar (CPL). The ACEPOL operation was based at NASA’s Armstrong Flight Research Center in Palmdale California, which enabled observations of a wide variety of scene types, including urban, desert, forest, coastal ocean and agricultural areas, with clear, cloudy, polluted and pristine atmospheric conditions. The primary goal of ACEPOL was to assess the capabilities of the different polarimeters for retrieval of aerosol and cloud microphysical and optical parameters, as well as their capabilities to derive aerosol layer height (near-UV polarimetry, O2 A-band). ACEPOL also focused on the development and evaluation of aerosol retrieval algorithms that combine data from both active (lidar) and passive (polarimeter) instruments. ACEPOL data are appropriate for algorithm development and testing, instrument intercomparison, and investigations of active and passive instrument data fusion, which make them valuable resources for remote sensing communities as they prepare for the next generation of spaceborne MAP and lidar missions. not-provided ACEPOL_AircraftRemoteSensing_CPL_Data.v1 ACEPOL Cloud Physics Lidar (CPL) Remotely Sensed Data Version 1 LARC_ASDC 2017-10-19 2017-11-09 -130, 25, -100, 45 https://cmr.earthdata.nasa.gov/search/concepts/C1758588308-LARC_ASDC.json ACEPOL Cloud Physics Lidar (CPL) Remotely Sensed Data (ACEPOL_AircraftRemoteSensing_CPL_Data) are remotely sensed measurements collected by the Cloud Physics Lidar (CPL) onboard the ER-2 during ACEPOL. In order to improve our understanding of the effect of aerosols on climate and air quality, measurements of aerosol chemical composition, size distribution, height profile, and optical properties are of crucial importance. In terms of remotely sensed instrumentation, the most extensive set of aerosol properties can be obtained by combining passive multi-angle, multi-spectral measurements of intensity and polarization with active measurements performed by a High Spectral Resolution Lidar. During Fall 2017, the Aerosol Characterization from Polarimeter and Lidar (ACEPOL) campaign, jointly sponsored by NASA and the Netherlands Institute for Space Research (SRON), performed aerosol and cloud measurements over the United States from the NASA high altitude ER-2 aircraft. Six instruments were deployed on the aircraft. Four of these instruments were multi-angle polarimeters: the Airborne Hyper Angular Rainbow Polarimeter (AirHARP), the Airborne Multiangle SpectroPolarimetric Imager (AirMSPI), the Airborne Spectrometer for Planetary Exploration (SPEX Airborne) and the Research Scanning Polarimeter (RSP). The other two instruments were lidars: the High Spectral Resolution Lidar 2 (HSRL-2) and the Cloud Physics Lidar (CPL). The ACEPOL operation was based at NASA’s Armstrong Flight Research Center in Palmdale California, which enabled observations of a wide variety of scene types, including urban, desert, forest, coastal ocean and agricultural areas, with clear, cloudy, polluted and pristine atmospheric conditions. The primary goal of ACEPOL was to assess the capabilities of the different polarimeters for retrieval of aerosol and cloud microphysical and optical parameters, as well as their capabilities to derive aerosol layer height (near-UV polarimetry, O2 A-band). ACEPOL also focused on the development and evaluation of aerosol retrieval algorithms that combine data from both active (lidar) and passive (polarimeter) instruments. ACEPOL data are appropriate for algorithm development and testing, instrument intercomparison, and investigations of active and passive instrument data fusion, which make them valuable resources for remote sensing communities as they prepare for the next generation of spaceborne MAP and lidar missions. not-provided ACIDD.v0 Across the Channel Investigating Diel Dynamics project OB_DAAC 2017-12-16 -180, -90, 180, 90 https://cmr.earthdata.nasa.gov/search/concepts/C1633360091-OB_DAAC.json The ACIDD (Across the Channel Investigating Diel Dynamics) project, in the Santa Barbara Channel, was initially designed to characterize daily variations in phytoplankton populations, but with the Thomas Fire in the Santa Barbara Hills December 2017, this project evolved into a study to characterize the effects of smoke and ash on the mixed layer in the Santa Barbara Channel. not-provided +ACOS_L2S.v7.3 ACOS GOSAT/TANSO-FTS Level 2 Full Physics Standard Product V7.3 (ACOS_L2S) at GES DISC GES_DISC 2009-04-20 -180, -90, 180, 90 https://cmr.earthdata.nasa.gov/search/concepts/C1339230297-GES_DISC.json "Version 7.3 is the current version of the data set. Version 3.5 is no longer available and has been superseded by Version 7.3. This data set is currently provided by the OCO (Orbiting Carbon Observatory) Project. In expectation of the OCO-2 launch, the algorithm was developed by the Atmospheric CO2 Observations from Space (ACOS) Task as a preparatory project, using GOSAT TANSO-FTS spectra. After the OCO-2 launch, ""ACOS"" data are still produced and improved, using approaches applied to the OCO-2 spectra. The ""ACOS"" data set contains Carbon Dioxide (CO2) column averaged dry air mole fraction for all soundings for which retrieval was attempted. These are the highest-level products made available by the OCO Project, using TANSO-FTS spectral radiances, and algorithm build version 7.3. The GOSAT team at JAXA produces GOSAT TANSO-FTS Level 1B (L1B) data products for internal use and for distribution to collaborative partners, such as ESA and NASA. These calibrated products are augmented by the OCO Project with additional geolocation information and further corrections. Thus produced Level 1B products (with calibrated radiances and geolocation) are the input to the ""ACOS"" Level 2 production process. Even though the GES DISC is not publicly distributing Level 1B ACOS products, it should be known that changes in this version are affecting both Level 1B and Level 2 data. An important enhancement in Level1B will address the degradation in the number of quality-passed soundings. Elimination of many systematic biases, and better agreement with TCCON (Total Carbon Column Observing Network), is expected in Level 2 retrievals. The key changes to the L2 algorithm include scaling the O2-A band spectroscopy (reducing XCO2 bias by 4 or 5 ppm); using interpolation with the instrument lineshape [ ILS ] (reducing XCO2 bias by 1.5 ppm); and fitting a zero level offset to the A-band. Users have to also carefully familiarize themselves with the disclaimer in the new documentation. An important element to note are the updates on data screening. Although a Master Quality Flag is provided in the data product, further analysis of a larger set of data has allowed the science team to provide an updated set of screening criteria. These are listed in the data user's guide, and are recommended instead of the Master Quality Flag. Lastly, users should continue to carefully observe and weigh information from three important flags: ""warn_level"" - Provides a value that summarizes each sounding's acceptability to a larger set of quality filters. A high warn level predicts that the sounding would fail most data filters applied to it. A low warn level suggests that the sounding would pass most quality filters that might be applied. ""sounding_qual_flag"" - quality of input data provided to the retrieval processing ""outcome_flag"" - retrieval quality based upon certain internal thresholds (not thoroughly evaluated) ""master_quality_flag"" - four possible values: ""Good"", ""Caution"" and ""Bad"", and ""Failed"", as determined from other flags in the L2 productThe short name for this data type is ACOS_L2S." not-provided +ACOS_L2S.v9r ACOS GOSAT/TANSO-FTS Level 2 Full Physics Standard Product V9r (ACOS_L2S) at GES DISC GES_DISC 2009-04-20 -180, -90, 180, 90 https://cmr.earthdata.nasa.gov/search/concepts/C1633158704-GES_DISC.json "Version 9r is the current version of the data set. Older versions will no longer be available and are superseded by Version 9r. This data set is currently provided by the OCO (Orbiting Carbon Observatory) Project. In expectation of the OCO-2 launch, the algorithm was developed by the Atmospheric CO2 Observations from Space (ACOS) Task as a preparatory project, using GOSAT TANSO-FTS spectra. After the OCO-2 launch, ""ACOS"" data are still produced and improved, using approaches applied to the OCO-2 spectra. The ""ACOS"" data set contains Carbon Dioxide (CO2) column averaged dry air mole fraction for all soundings for which retrieval was attempted. These are the highest-level products made available by the OCO Project, using TANSO-FTS spectral radiances, and algorithm build version 7.3. The GOSAT team at JAXA produces GOSAT TANSO-FTS Level 1B (L1B) data products for internal use and for distribution to collaborative partners, such as ESA and NASA. These calibrated products are augmented by the OCO Project with additional geolocation information and further corrections. Thus produced Level 1B products (with calibrated radiances and geolocation) are the input to the ""ACOS"" Level 2 production process. Even though the GES DISC is not publicly distributing Level 1B ACOS products, it should be known that changes in this version are affecting both Level 1B and Level 2 data. An important enhancement in Level1B will address the degradation in the number of quality-passed soundings. Elimination of many systematic biases, and better agreement with TCCON (Total Carbon Column Observing Network), is expected in Level 2 retrievals. The key changes to the L2 algorithm include scaling the O2-A band spectroscopy (reducing XCO2 bias by 4 or 5 ppm); using interpolation with the instrument lineshape [ ILS ] (reducing XCO2 bias by 1.5 ppm); and fitting a zero level offset to the A-band. Users have to also carefully familiarize themselves with the disclaimer in the new documentation. An important element to note are the updates on data screening. Although a Master Quality Flag is provided in the data product, further analysis of a larger set of data has allowed the science team to provide an updated set of screening criteria. These are listed in the data user's guide, and are recommended instead of the Master Quality Flag. Lastly, users should continue to carefully observe and weigh information from three important flags: ""sounding_qual_flag"" - quality of input data provided to the retrieval processing ""outcome_flag"" - retrieval quality based upon certain internal thresholds (not thoroughly evaluated) " not-provided +ACOS_L2_Lite_FP.v7.3 ACOS GOSAT/TANSO-FTS Level 2 bias-corrected XCO2 and other select fields from the full-physics retrieval aggregated as daily files V7.3 (ACOS_L2_Lite_FP) at GES DISC GES_DISC 2009-04-21 -180, -90, 180, 90 https://cmr.earthdata.nasa.gov/search/concepts/C1339230298-GES_DISC.json "The ACOS Lite files contain bias-corrected XCO2 along with other select fields aggregated as daily files. Orbital granules of the ACOS Level 2 standard product (ACOS_L2S) are used as input. The ""ACOS"" data set contains Carbon Dioxide (CO2) column averaged dry air mole fraction for all soundings for which retrieval was attempted. These are the highest-level products made available by the OCO Project, using TANSO-FTS spectral radiances. The GOSAT team at JAXA produces GOSAT TANSO-FTS Level 1B (L1B) data products for internal use and for distribution to collaborative partners, such as ESA and NASA. These calibrated products are augmented by the OCO Project with additional geolocation information and further corrections. Thus produced Level 1B products (with calibrated radiances and geolocation) are the input to the ""ACOS"" Level 2 production process." not-provided +ACOS_L2_Lite_FP.v9r ACOS GOSAT/TANSO-FTS Level 2 bias-corrected XCO2 and other select fields from the full-physics retrieval aggregated as daily files V9r (ACOS_L2_Lite_FP) at GES DISC GES_DISC 2009-04-20 -180, -90, 180, 90 https://cmr.earthdata.nasa.gov/search/concepts/C1720416694-GES_DISC.json "Version 9r is the current version of the data set. Older versions will no longer be available and are superseded by Version 9r. The ACOS Lite files contain bias-corrected XCO2 along with other select fields aggregated as daily files. Orbital granules of the ACOS Level 2 standard product (ACOS_L2S) are used as input. The ""ACOS"" data set contains Carbon Dioxide (CO2) column averaged dry air mole fraction for all soundings for which retrieval was attempted. These are the highest-level products made available by the OCO Project, using TANSO-FTS spectral radiances. The GOSAT team at JAXA produces GOSAT TANSO-FTS Level 1B (L1B) data products for internal use and for distribution to collaborative partners, such as ESA and NASA. These calibrated products are augmented by the OCO Project with additional geolocation information and further corrections. Thus produced Level 1B products (with calibrated radiances and geolocation) are the input to the ""ACOS"" Level 2 production process." not-provided ACR3L2DM.v1 ACRIM III Level 2 Daily Mean Data V001 LARC 2000-04-05 2013-11-09 -180, -90, 180, 90 https://cmr.earthdata.nasa.gov/search/concepts/C179031504-LARC.json ACR3L2DM_1 is the Active Cavity Radiometer Irradiance Monitor (ACRIM) III Level 2 Daily Mean Data version 1 product consists of Level 2 total solar irradiance in the form of daily means gathered by the ACRIM III instrument on the ACRIMSAT satellite. The daily means are constructed from the shutter cycle results for each day. not-provided ACR3L2SC.v1 ACRIM III Level 2 Shutter Cycle Data V001 LARC 2000-04-05 2013-11-09 -180, -90, 180, 90 https://cmr.earthdata.nasa.gov/search/concepts/C61787524-LARC.json ACR3L2SC_1 is the Active Cavity Radiometer Irradiance Monitor (ACRIM) III Level 2 Shutter Cycle Data version 1 product contains Level 2 total solar irradiance in the form of shutter cycles gathered by the ACRIM instrument on the ACRIMSAT satellite. not-provided ADAM.Surface.Reflectance.Database ADAM Surface Reflectance Database v4.0 ESA 2005-01-01 2005-12-31 -180, -90, 180, 90 https://cmr.earthdata.nasa.gov/search/concepts/C1965336812-ESA.json ADAM enables generating typical monthly variations of the global Earth surface reflectance at 0.1° spatial resolution (Plate Carree projection) and over the spectral range 240-4000nm. The ADAM product is made of gridded monthly mean climatologies over land and ocean surfaces, and of a companion API toolkit that enables the calculation of hyperspectral (at 1 nm resolution over the whole 240-4000 nm spectral range) and multidirectional reflectances (i.e. in any illumination/viewing geometry) depending on user choices. The ADAM climatologies that feed the ADAM calculation tools are: For ocean: monthly chlorophyll concentration derived from SeaWiFS-OrbView-2 (1999-2009); it is used to compute the water column reflectance (which shows large spectral variations in the visible, but is insignificant in the near and mid infrared). monthly wind speed derived from SeaWinds-QuikSCAT-(1999-2009); it is used to calculate the ocean glint reflectance. For land: monthly normalized surface reflectances in the 7 MODIS narrow spectral bands derived from FondsdeSol processing chain of MOD09A1 products (derived from Aqua and Terra observations), on which relies the modelling of the hyperspectral/multidirectional surface (soil/vegetation/snow) reflectance. uncertainty variance-covariance matrix for the 7 spectral bands associated to the normalized surface reflectance. For sea-ice: Sea ice pixels (masked in the original MOD09A1 products) have been accounted for by a gap-filling approach relying on the spatial-temporal distribution of sea ice coverage provided by the CryoClim climatology for year 2005. not-provided @@ -71,6 +75,7 @@ AFOLVIS1A.v1 AfriSAR LVIS L1A Geotagged Images V001 NSIDC_ECS 2016-02-20 2016-03 AG100.v003 ASTER Global Emissivity Dataset, 100 meter, HDF5 V003 LPDAAC_ECS 2000-01-01 2008-12-31 -180, -90, 180, 90 https://cmr.earthdata.nasa.gov/search/concepts/C1000000362-LPDAAC_ECS.json Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) Global Emissivity Dataset (GED) land surface temperature and emissivity (LST&E) data products are generated using the ASTER Temperature Emissivity Separation (TES) algorithm with a Water Vapor Scaling (WVS) atmospheric correction method using Moderate Resolution Imaging Spectroradiometer (MODIS) (MOD07) (https://modis-atmos.gsfc.nasa.gov/MOD07_L2/index.html) atmospheric profiles and the MODerate spectral resolution TRANsmittance (MODTRAN 5.2 radiative transfer model). This dataset is computed from all clear-sky pixels of ASTER scenes acquired from 2000 through 2008. AG100 data are available globally at spatial resolution of 100 meters. The National Aeronautics and Space Administration’s (NASA) Jet Propulsion Laboratory (JPL), California Institute of Technology, developed the ASTER GED product. not-provided AG1km.v003 ASTER Global Emissivity Dataset, 1 kilometer, HDF5 V003 LPDAAC_ECS 2000-01-01 2008-12-31 -180, -90, 180, 90 https://cmr.earthdata.nasa.gov/search/concepts/C1000000380-LPDAAC_ECS.json Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) Global Emissivity Dataset (GED) land surface temperature and emissivity (LST&E) data products are generated using the ASTER Temperature Emissivity Separation (TES) algorithm with a Water Vapor Scaling (WVS) atmospheric correction method using Moderate Resolution Imaging Spectroradiometer (MODIS) (MOD07) (https://modis-atmos.gsfc.nasa.gov/MOD07_L2/index.html) atmospheric profiles and the MODerate Spectral resolution TRANsmittance (MODTRAN) 5.2 radiative transfer model. This dataset is computed from all clear-sky pixels of ASTER scenes acquired from 2000 through 2008. AG1KM data are available globally at spatial resolution of 1 kilometer. The National Aeronautics and Space Administration’s (NASA) Jet Propulsion Laboratory (JPL), California Institute of Technology, developed the ASTER GED product. not-provided AG5KMMOH.v041 ASTER Global Emissivity Dataset, Monthly, 0.05 deg, HDF5 V041 LPDAAC_ECS 2000-03-01 2015-12-31 -180, -90, 180, 90 https://cmr.earthdata.nasa.gov/search/concepts/C1344831606-LPDAAC_ECS.json Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) Global Emissivity Dataset (GED) is a collection of monthly files (see known issues for gaps) for each year of global emissivity. The ASTER GED data products are generated for 2000 through 2015 using the ASTER Temperature Emissivity Separation (TES) algorithm atmospheric correction method. This algorithm method uses Moderate Resolution Imaging Spectroradiometer (MODIS) Atmospheric Profiles product (MOD07) (https://modis-atmos.gsfc.nasa.gov/MOD07_L2/index.html) and the MODerate spectral resolution TRANsmittance (MODTRAN) 5.2 radiative transfer model along with the snow cover data from the standard monthly MODIS/Terra snow cover monthly global 0.05 degree product (MOD10CM) (https://doi.org/10.5067/MODIS/MOD10CM.006), and vegetation information from the MODIS monthly gridded NDVI product (MOD13C2) (https://doi.org/10.5067/MODIS/MOD13C2.006). ASTER GED Monthly V041 data products are offered in Hierarchical Data Format 5 (HDF5). The National Aeronautics and Space Administration’s (NASA) Jet Propulsion Laboratory (JPL), California Institute of Technology, developed the ASTER GED product. not-provided +AIRABRAD.v005 AIRS/Aqua L1B AMSU (A1/A2) geolocated and calibrated brightness temperatures V005 (AIRABRAD) at GES DISC GES_DISC 2002-05-21 -180, -90, 180, 90 https://cmr.earthdata.nasa.gov/search/concepts/C1243477366-GES_DISC.json "The Atmospheric Infrared Sounder (AIRS) is a grating spectrometer (R = 1200) aboard the second Earth Observing System (EOS) polar-orbiting platform, EOS Aqua. In combination with the Advanced Microwave Sounding Unit (AMSU) and the Humidity Sounder for Brazil (HSB), AIRS constitutes an innovative atmospheric sounding group of visible, infrared, and microwave sensors. The AMSU-A instrument is co-aligned with AIRS so that successive blocks of 3 x 3 AIRS footprints are contained within one AMSU-A footprint. AMSU-A is primarily a temperature sounder that provides atmospheric information in the presence of clouds, which can be used to correct the AIRS infrared measurements for the effects of clouds. This is possible because non-precipitating clouds are for the most part transparent to microwave radiation, in contrast to visible and infrared radiation which are strongly scattered and absorbed by clouds. AMSU-A1 has 13 channels from 50 - 90 GHz and AMSU-A2 has 2 channels from 23 - 32 GHz. The AIRABRAD_005 products are stored in files (often referred to as ""granules"") that contain 6 minutes of data, 30 footprints across track by 45 lines along track." not-provided AIRSAR_INT_JPG.v1 AIRSAR_ALONGTRACK_INTERFEROMETRY_JPG ASF 1998-10-25 2004-03-05 -172.880269, -27.388834, -49.704356, 69.25925 https://cmr.earthdata.nasa.gov/search/concepts/C1213921626-ASF.json AIRSAR along-track interferometric browse product JPG not-provided AIRSAR_POL_3FP.v1 AIRSAR_POLSAR_3_FREQ_POLARIMETRY ASF 1990-03-02 2004-03-21 -172.880269, -27.388834, -49.704356, 69.25925 https://cmr.earthdata.nasa.gov/search/concepts/C1213921661-ASF.json AIRSAR three-frequency polarimetric frame product not-provided AIRSAR_POL_SYN_3FP.v1 AIRSAR_POLSAR_SYNOPTIC_3_FREQ_POLARIMETRY ASF 1990-03-29 1991-07-16 -172.880269, -27.388834, -49.704356, 69.25925 https://cmr.earthdata.nasa.gov/search/concepts/C1213928843-ASF.json AIRSAR three-frequency polarimetric synoptic product not-provided @@ -81,6 +86,11 @@ AIRSAR_TOP_DEM_L.v1 AIRSAR_TOPSAR_DEM_L ASF 1993-06-08 2004-12-04 -172.880269, - AIRSAR_TOP_DEM_P.v1 AIRSAR_TOPSAR_DEM_P ASF 1993-06-08 2004-12-04 -172.880269, -27.388834, -49.704356, 69.25925 https://cmr.earthdata.nasa.gov/search/concepts/C1213926777-ASF.json AIRSAR topographic SAR digital elevation model PTIF product not-provided AIRSAR_TOP_L-STOKES.v1 AIRSAR_TOPSAR_L-BAND_STOKES ASF 1993-06-08 2004-12-04 -172.880269, -27.388834, -49.704356, 69.25925 https://cmr.earthdata.nasa.gov/search/concepts/C1213927939-ASF.json AIRSAR topographic SAR digital elevation model L_Stokes product not-provided AIRSAR_TOP_P-STOKES.v1 AIRSAR_TOPSAR_P-BAND_STOKES ASF 1993-06-08 2004-12-04 -172.880269, -27.388834, -49.704356, 69.25925 https://cmr.earthdata.nasa.gov/search/concepts/C1213928209-ASF.json AIRSAR topographic SAR digital elevation model P_Stokes product not-provided +AIRSM_CPR_MAT.v3.2 AIRS-AMSU variables-CloudSat cloud mask, radar reflectivities, and cloud classification matchups V3.2 (AIRSM_CPR_MAT) at GES DISC GES_DISC 2006-06-15 2012-12-14 -180, -90, 180, 90 https://cmr.earthdata.nasa.gov/search/concepts/C1236224182-GES_DISC.json "This is AIRS-CloudSat collocated subset, in NetCDF 4 format. These data contain collocated: AIRS/AMSU retrievals at AMSU footprints, CloudSat radar reflectivities, and MODIS cloud mask. These data are created within the frames of the MEaSUREs project. The basic task is to bring together retrievals of water vapor and cloud properties from multiple ""A-train"" instruments (AIRS, AMSR-E, MODIS, AMSU, MLS, CloudSat), classify each ""scene"" (instrument look) using the cloud information, and develop a merged, multi-sensor climatology of atmospheric water vapor as a function of altitude, stratified by the cloud classes. This is a large science analysis project that will require the use of SciFlo technologies to discover and organize all of the datasets, move and cache datasets as required, find space/time ""matchups"" between pairs of instruments, and process years of satellite data to produce the climate data records. The short name for this collection is AIRSM_CPR_MAT Parameters contained in the data files include the following: Variable Name|Description|Units CH4_total_column|Retrieved total column CH4| (molecules/cm2) CloudFraction|CloudSat/CALIPSO Cloud Fraction| (None) CloudLayers| Number of hydrometeor layers| (count) clrolr|Clear-sky Outgoing Longwave Radiation|(Watts/m**2) CO_total_column|Retrieved total column CO| (molecules/cm2) CPR_Cloud_mask| CPR Cloud Mask |(None) Data_quality| Data Quality |(None) H2OMMRSat|Water vapor saturation mass mixing ratio|(gm/kg) H2OMMRStd|Water Vapor Mass Mixing Ratio |(gm/kg dry air) MODIS_Cloud_Fraction| MODIS 250m Cloud Fraction| (None) MODIS_scene_var |MODIS scene variability| (None) nSurfStd|1-based index of the first valid level|(None) O3VMRStd|Ozone Volume Mixing Ratio|(vmr) olr|All-sky Outgoing Longwave Radiation|(Watts/m**2) Radar_Reflectivity| Radar Reflectivity Factor| (dBZe) Sigma-Zero| Sigma-Zero| (dB*100) TAirMWOnlyStd|Atmospheric Temperature retrieved using only MW|(K) TCldTopStd|Cloud top temperature|(K) totH2OStd|Total precipitable water vapor| (kg/m**2) totO3Std|Total ozone burden| (Dobson) TSurfAir|Atmospheric Temperature at Surface|(K) TSurfStd|Surface skin temperature|(K) End of parameter information" not-provided +AIRS_CPR_IND.v4.0 AIRS-CloudSat cloud mask and radar reflectivities collocation indexes V4.0 (AIRS_CPR_IND) at GES_DISC GES_DISC 2006-06-15 -180, -90, 180, 90 https://cmr.earthdata.nasa.gov/search/concepts/C1236224151-GES_DISC.json "Version 4.1 is the current version of the data set. Previous versions are no longer available and have been superseded by Version 4.1. This is AIRS-AMSU-CloudSat collocation indexes, in netCDF-4 format. These data map CloudSat profile indexes to the collocated AMSU field of views, and AIRS IR footprints, per AIRS 6-min granule time. Hence it can be considered as Level 1. These data are created within the frames of the MEaSUREs project. The basic task is to bring together retrievals of water vapor and cloud properties from multiple ""A-train"" instruments (AIRS, AMSR-E, MODIS, AMSU, MLS, & CloudSat), classify each ""scene"" (instrument look) using the cloud information, and develop a merged, multi-sensor climatology of atmospheric water vapor as a function of altitude, stratified by the cloud classes. This is a large science analysis project that will require the use of SciFlo technologies to discover and organize all of the datasets, move and cache datasets as required, find space/time ""matchups"" between pairs of instruments, and process years of satellite data to produce the climate data records. The short name for this collection is AIRS_CPR_IND" not-provided +AIRS_CPR_MAT.v3.2 AIRS-CloudSat cloud mask, radar reflectivities, and cloud classification matchups V3.2 (AIRS_CPR_MAT) at GES DISC GES_DISC 2006-06-15 2012-12-14 -180, -90, 180, 90 https://cmr.earthdata.nasa.gov/search/concepts/C1236224153-GES_DISC.json "This is AIRS-CloudSat collocated subset, in NetCDF-4 format. These data contain collocated: AIRS Level 1b radiances spectra, CloudSat radar reflectivities, and MODIS cloud mask. These data are created within the frames of the MEaSUREs project. The basic task is to bring together retrievals of water vapor and cloud properties from multiple ""A-train"" instruments (AIRS, AMSR-E, MODIS, AMSU, MLS, CloudSat), classify each ""scene"" (instrument look) using the cloud information, and develop a merged, multi-sensor climatology of atmospheric water vapor as a function of altitude, stratified by the cloud classes. This is a large science analysis project that will require the use of SciFlo technologies to discover and organize all of the datasets, move and cache datasets as required, find space/time ""matchups"" between pairs of instruments, and process years of satellite data to produce the climate data records. The short name for this collection is AIRS_CPR_MAT Parameters contained in the data files include the following: Variable Name|Description|Units CldFrcStdErr|Cloud Fraction|(None) CloudLayers| Number of hydrometeor layers| (count) CPR_Cloud_mask| CPR Cloud Mask| (None) DEM_elevation| Digital Elevation Map| (m) dust_flag|Dust Flag|(None) latAIRS|AIRS IR latitude|(deg) Latitude|CloudSat Latitude |(degrees) LayerBase| Height of Layer Base| (m) LayerTop| Height of layer top| (m) lonAIRS|AIRS IR longitude|(deg) Longitude|CloudSat Longitude| (degrees) MODIS_cloud_flag| MOD35_bit_2and3_cloud_flag| (None) Radar_Reflectivity| Radar Reflectivity Factor| (dBZe) radiances|Radiances|(milliWatts/m**2/cm**-1/steradian) Sigma-Zero| Sigma-Zero| (dB*100) spectral_clear_indicator|Spectral Clear Indicator|(None) Vertical_binsize|CloudSat vertical binsize| (m) End of parameter information" not-provided +AIRXAMAP.v005 AIRS/Aqua Granule map product V005 (AIRXAMAP) at GES DISC GES_DISC 2002-05-21 -180, -90, 180, 90 https://cmr.earthdata.nasa.gov/search/concepts/C1233769004-GES_DISC.json The Atmospheric Infrared Sounder (AIRS) is a grating spectrometer (R = 1200) aboard the second Earth Observing System (EOS) polar-orbiting platform, EOS Aqua. In combination with the Advanced Microwave Sounding Unit (AMSU) and the Humidity Sounder for Brazil (HSB), AIRS constitutes an innovative atmospheric sounding group of visible, infrared, and microwave sensors. An AIRS granule has been set as 6 minutes of data, 30 footprints cross track by 45 lines along track. The AIRS Granule Map Product consists of images of granule coverage in PDF and JPG format. The images are daily ones but updated every 6 minutes to capture any new available granule. Granules are assembled by ascending, descending, in north and south hemisphere, and the maps are in global cylindrical projection and satellite projection for better view. not-provided +AIRXBCAL.v005 AIRS/Aqua L1B Calibration subset V005 (AIRXBCAL) at GES DISC GES_DISC 2002-08-31 -180, -90, 180, 90 https://cmr.earthdata.nasa.gov/search/concepts/C1243477315-GES_DISC.json The Atmospheric Infrared Sounder (AIRS) is a grating spectrometer (R = 1200) aboard the second Earth Observing System (EOS) polar-orbiting platform, EOS Aqua. In combination with the Advanced Microwave Sounding Unit (AMSU) and the Humidity Sounder for Brazil (HSB), AIRS constitutes an innovative atmospheric sounding group of visible, infrared, and microwave sensors. AIRS/Aqua Level-1B calibration subset including clear cases, special calibration sites, random nadir spots, and high clouds. The AIRS Visible/Near Infrared (VIS/NIR) level 1B data set contains AIRS visible and near-infrared calibrated and geolocated radiances in W/m^2/micron/steradian. This data set is generated from AIRS level 1A digital numbers (DN), including 4 channels in the 0.4 to 1.0 um region of the spectrum. not-provided AK_AVHRR Alaska AVHRR Twice-Monthly Composites USGS_LTA 1990-06-16 -179, 51, -116, 70 https://cmr.earthdata.nasa.gov/search/concepts/C1220565954-USGS_LTA.json The goal of the Alaska Advanced Very High Resolution Radiometer (AVHRR) project is to compile a time series data set of calibrated, georegistered daily observations and twice-monthly maximum normalized difference vegetation index (NDVI) composites for Alaska's annual growing season (April-October). This data set has applications for environmental monitoring and for assessing impacts of global climate change. An Alaska AVHRR data set is comprised of twice-monthly maximum NDVI composites of daily satellite observations. The NDVI composites contain 10 bands of information, including AVHRR channels 1-5, maximum NDVI, satellite zenith, solar zenith, and relative azimuth. The daily observations, bands 1-9, have been calibrated to reflectance, scaled to byte data, and geometrically registered to the Albers Equal-Area Conic map projection. The 10th band is a pointer to identify the date and scene ID of the source daily observation (scene) for each pixel. The compositing process required each daily overpass to be registered to a common map projection to ensure that from day to day each 1-km pixel represented the exact same ground location. The Albers Equal-Area Conic map projection provides for equal area representation, which enables easy measurement of area throughout the data. Each daily observation for the growing season was registered to a base image using image-to-image correlation. The NDVI data are calculated from the calibrated, geometrically registered daily observations. The NDVI value is the difference between near-infrared (AVHRR Channel 2) and visible (AVHRR Channel 1) reflectance values divided by total measured reflectance. A maximum NDVI compositing process was used on the daily observations. The NDVI is examined pixel by pixel for each observation during the compositing period to determine and retain the maximum value. Often when displaying data covering large areas, such as AVHRR data, it is beneficial to include an overlay of either familiar linework for reflectance or polygon data sets to derive statistical summaries of regions. All of the linework images represent lines in raster format as 1-km cells and the strata are represented as polygons registered to the AVHRR data. The linework and polygon data sets include international boundaries, Alaskan roads with the Trans-Alaska Pipeline, and a raster polygon mask of the State. not-provided ALOS Alos African Coverage ESA archive ESA 2006-07-09 2009-05-12 -26, -37, 53, 37 https://cmr.earthdata.nasa.gov/search/concepts/C1965336815-ESA.json ALOS Africa is a dataset of the best available (cloud minimal, below 10%) African coverage acquired by AVNIR-2 in OBS mode and PRISM in OB1 mode (all Backward, Nadir and Forward views, in separated products), two different collections one for each instrument. The processing level for both AVNIR-2 and PRISM products is L1B. not-provided ALOS.AVNIR-2.L1C ALOS AVNIR-2 L1C ESA 2006-04-28 2011-04-20 -180, -90, 180, 90 https://cmr.earthdata.nasa.gov/search/concepts/C2119689548-ESA.json This collection is providing access to the ALOS-1 AVNIR-2 (Advanced Visible and Near Infrared Radiometer type 2) L1C data acquired by ESA stations in the ADEN zone plus some worldwide data requested by European scientists. The ADEN zone (https://earth.esa.int/eogateway/documents/20142/37627/ALOS-ADEN-Zone.pdf) was the area belonging to the European Data node and covered both the European and the African continents, large part of the Greenland and the Middle East. The full mission is covered, obviously with gaps outside to the ADEN zone: • Time windows: from 2006-04-28 to 2011-04-20 • Orbits: from 1375 to 27898 • Path (corresponds to JAXA track number): from 1 to 670 • Row (corresponds to JAXA scene centre frame number): from 370 to 5230 One single Level 1C product types is offered for the OBS instrument mode: AV2_OBS_1C. not-provided @@ -150,6 +160,16 @@ CDDIS_VLBI_data_aux.v1 CDDIS VLBI Auxilliary Files CDDIS 2005-01-01 -180, -90, CEAMARC_CASO_200708030_EVENT_BATHYMETRY_PLOTS.v1 2007-08 V3 CEAMARC-CASO Bathymetry Plots Over Time During Events AU_AADC 2007-12-17 2008-01-26 139.01488, -67.07104, 150.06479, -42.88246 https://cmr.earthdata.nasa.gov/search/concepts/C1214308504-AU_AADC.json A routine was developed in R ('bathy_plots.R') to plot bathymetry data over time during individual CEAMARC events. This is so we can analyse benthic data in relation to habitat, ie. did we trawl over a slope or was the sea floor relatively flat. Note that the depth range in the plots is autoscaled to the data, so a small range in depths appears as a scatetring of points. As long as you look at the depth scale though interpretation will be ok. The R files need a file of bathymetry data in '200708V3_one_minute.csv' which is a file containing a data export from the underway PostgreSQL ship database and 'events.csv' which is a stripped down version of the events export from the ship board events database export. If you wish to run the code again you may need to change the pathnames in the R script to relevant locations. If you have opened the csv files in excel at any stage and the R script gets an error you may need to format the date/time columns as yyyy-mm-dd hh;mm:ss, save and close the file as csv without opening it again and then run the R script. However, all output files are here for every CEAMARC event. Filenames contain a reference to CEAMARC event id. Files are in eps format and can be viewed using Ghostview which is available as a free download on the internet. not-provided CEOS_CalVal_Test_Sites-Algeria3 CEOS Cal Val Test Site - Algeria 3 - Pseudo-Invariant Calibration Site (PICS) USGS_LTA 1972-08-11 5.22, 29.09, 10.01, 31.36 https://cmr.earthdata.nasa.gov/search/concepts/C1220567099-USGS_LTA.json On the background of these requirements for sensor calibration, intercalibration and product validation, the subgroup on Calibration and Validation of the Committee on Earth Observing System (CEOS) formulated the following recommendation during the plenary session held in China at the end of 2004, with the goal of setting-up and operating an internet based system to provide sensor data, protocols and guidelines for these purposes: Background: Reference Datasets are required to support the understanding of climate change and quality assure operational services by Earth Observing satellites. The data from different sensors and the resulting synergistic data products require a high level of accuracy that can only be obtained through continuous traceable calibration and validation activities. Requirement: Initiate an activity to document a reference methodology to predict Top of Atmosphere (TOA) radiance for which currently flying and planned wide swath sensors can be intercompared, i.e. define a standard for traceability. Also create and maintain a fully accessible web page containing, on an instrument basis, links to all instrument characteristics needed for intercomparisons as specified above, ideally in a common format. In addition, create and maintain a database (e.g. SADE) of instrument data for specific vicarious calibration sites, including site characteristics, in a common format. Each agency is responsible for providing data for their instruments in this common format. Recommendation : The required activities described above should be supported for an implementation period of two years and a maintenance period over two subsequent years. The CEOS should encourage a member agency to accept the lead role in supporting this activity. CEOS should request all member agencies to support this activity by providing appropriate information and data in a timely manner. Pseudo-Invariant Calibration Sites (PICS): Algeria 3 is one of six CEOS reference Pseudo-Invariant Calibration Sites (PICS) that are CEOS Reference Test Sites. Besides the nominally good site characteristics (temporal stability, uniformity, homogeneity, etc.), these six PICS were selected by also taking into account their heritage and the large number of datasets from multiple instruments that already existed in the EO archives and the long history of characterization performed over these sites. The PICS have high reflectance and are usually made up of sand dunes with climatologically low aerosol loading and practically no vegetation. Consequently, these PICS can be used to evaluate the long-term stability of instrument and facilitate inter-comparison of multiple instruments. not-provided CH-OG-1-GPS-10S.v0.0 10 sec GPS ground tracking data SCIOPS 2001-05-28 -63.51, -45.69, 170.42, 78.87 https://cmr.earthdata.nasa.gov/search/concepts/C1214586614-SCIOPS.json This data set comprises GPS ground data of a sample rate of 10 sec, generated by decoding and sampling GPS high rate ground data. This raw data passed no quality control. The data are given in the Rinex 2.1 format. not-provided +CIESIN_SEDAC_EPI_2008.v2008.00 2008 Environmental Performance Index (EPI) SEDAC 1994-01-01 2007-12-31 -180, -55, 180, 90 https://cmr.earthdata.nasa.gov/search/concepts/C179001707-SEDAC.json The 2008 Environmental Performance Index (EPI) centers on two broad environmental protection objectives: (1) reducing environmental stresses on human health, and (2) promoting ecosystem vitality and sound natural resource management. Derived from a careful review of the environmental literature, these twin goals mirror the priorities expressed by policymakers. Environmental health and ecosystem vitality are gauged using 25 indicators tracked in six well-established policy categories: Environmental Health (Environmental Burden of Disease, Water, and Air Pollution), Air Pollution (effects on ecosystems), Water (effects on ecosystems), Biodiversity and Habitat, Productive Natural Resources (Forestry, Fisheries, and Agriculture), and Climate Change. The 2008 EPI utilizes a proximity-to-target methodology in which performance on each indicator is rated on a 0 to 100 scale (100 represents �at target�). By identifying specific targets and measuring how close each country comes to them, the EPI provides a foundation for policy analysis and a context for evaluating performance. Issue-by-issue and aggregate rankings facilitate cross-country comparisons both globally and within relevant peer groups. The 2008 EPI is the result of collaboration among the Yale Center for Environmental Law and Policy (YCELP), Columbia University Center for International Earth Science Information Network (CIESIN), World Economic Forum (WEF), and the Joint Research Centre (JRC), European Commission. not-provided +CIESIN_SEDAC_EPI_2010.v2010.00 2010 Environmental Performance Index (EPI) SEDAC 1994-01-01 2009-12-31 -180, -55, 180, 90 https://cmr.earthdata.nasa.gov/search/concepts/C179002147-SEDAC.json The 2010 Environmental Performance Index (EPI) ranks 163 countries on environmental performance based on twenty-five indicators grouped within ten core policy categories addressing environmental health, air quality, water resource management, biodiversity and habitat, forestry, fisheries, agriculture, and climate change in the context of two broad objectives: environmental health and ecosystem vitality. The EPI�s proximity-to-target methodology facilitates cross-country comparisons among economic and regional peer groups. It was formally released in Davos, Switzerland, at the annual meeting of the World Economic Forum on January 28, 2010. The 2010 EPI is the result of collaboration between the Yale Center for Environmental Law and Policy (YCELP) and the Columbia University Center for International Earth Science Information Network (CIESIN). not-provided +CIESIN_SEDAC_EPI_2012.v2012.00 2012 Environmental Performance Index and Pilot Trend Environmental Performance Index SEDAC 2000-01-01 2010-12-31 -180, -55, 180, 90 https://cmr.earthdata.nasa.gov/search/concepts/C1000000000-SEDAC.json The 2012 Environmental Performance Index (EPI) ranks 132 countries on 22 performance indicators in the following 10 policy categories: environmental burden of disease, water (effects on human health), air pollution (effects on human health), air pollution (ecosystem effects), water resources (ecosystem effects), biodiversity and habitat, forestry, fisheries, agriculture and climate change. These categories track performance and progress on two broad policy objectives, environmental health and ecosystem vitality. Each indicator has an associated environmental public health or ecosystem sustainability target. The EPI's proximity-to-target methodology facilitates cross-country comparisons among economic and regional peer groups. The Pilot Trend Environmental Performance Index (Trend EPI) ranks countries on the change in their environmental performance over the last decade. As a complement to the EPI, the Trend EPI shows who is improving and who is declining over time. The 2012 EPI and Pilot Trend EPI were formally released in Davos, Switzerland, at the annual meeting of the World Economic Forum on January 27, 2012. These are the result of collaboration between the Yale Center for Environmental Law and Policy (YCELP) and the Columbia University Center for International Earth Science Information Network (CIESIN). The Interactive Website for the 2012 EPI is at http://epi.yale.edu/. not-provided +CIESIN_SEDAC_EPI_2014.v2014.00 2014 Environmental Performance Index (EPI) SEDAC 2002-01-01 2014-12-31 -180, -55, 180, 90 https://cmr.earthdata.nasa.gov/search/concepts/C1000000541-SEDAC.json The 2014 Environmental Performance Index (EPI) ranks 178 countries on 20 performance indicators in the following 9 policy categories: health impacts, air quality, water and sanitation, water resources, agriculture, forests, fisheries, biodiversity and habitat, and climate and energy. These categories track performance and progress on two broad policy objectives, environmental health and ecosystem vitality. The EPI's proximity-to-target methodology facilitates cross-country comparisons among economic and regional peer groups. The data set includes the 2014 EPI and component scores, backcast EPI scores for 2002-2012, and time-series source data. The 2014 EPI was formally released in Davos, Switzerland, at the annual meeting of the World Economic Forum on January 25, 2014. These are the result of collaboration between the Yale Center for Environmental Law and Policy (YCELP) and the Columbia University Center for International Earth Science Information Network (CIESIN). The Interactive Website for the 2014 EPI is at http://epi.yale.edu/. not-provided +CIESIN_SEDAC_EPI_2016.v2016.00 2016 Environmental Performance Index (EPI) SEDAC 1950-01-01 2016-12-31 -180, -55, 180, 90 https://cmr.earthdata.nasa.gov/search/concepts/C1419908204-SEDAC.json The 2016 Environmental Performance Index (EPI) ranks 180 countries on 20 performance indicators in the following 9 policy categories: health impacts, air quality, water and sanitation, water resources, agriculture, forests, fisheries, biodiversity and habitat, and climate and energy. These categories track performance and progress on two broad policy objectives, environmental health and ecosystem vitality. The EPI's proximity-to-target methodology facilitates cross-country comparisons among economic and regional peer groups. The data set includes the 2016 EPI and component scores, backcast EPI scores for 1950-2016, and time-series source data. The 2016 EPI was formally released in Davos, Switzerland, at the annual meeting of the World Economic Forum on January 23, 2016. These are the result of collaboration between the Yale Center for Environmental Law and Policy (YCELP) and Yale Data-Driven Environmental Solutions Group, Yale University, Columbia University Center for International Earth Science Information Network (CIESIN), and the World Economic Forum (WEF). The Interactive Website for the 2016 EPI is at https://epi.yale.edu. not-provided +CIESIN_SEDAC_ESI_2000.v2000.00 2000 Pilot Environmental Sustainability Index (ESI) SEDAC 1978-01-01 1999-12-31 -180, -55, 180, 90 https://cmr.earthdata.nasa.gov/search/concepts/C179001887-SEDAC.json The 2000 Pilot Environmental Sustainability Index (ESI) is an exploratory effort to construct an index that measures the ability of a nation's economy to achieve sustainable development, with the long term goal of finding a single indicator for environmental sustainability analagous to that of the Gross Domestic Product (GDP). The index covering 56 countries is a composite measure of the current status of a nation's environmental systems, pressures on those systems, human vulnerability to environmental change, national capacity to respond, and contributions to global environmental stewardship. The index was unveiled at the World Economic Forum's annual meeting, January 2000, Davos, Switzerland. The 2000 Pilot ESI is the result of collaboration among the World Economic Forum (WEF), Yale Center for Environmental Law and Policy (YCELP), and the Columbia University Center for International Earth Science Information Network (CIESIN). not-provided +CIESIN_SEDAC_ESI_2001.v2001.00 2001 Environmental Sustainability Index (ESI) SEDAC 1980-01-01 2000-12-31 -180, -55, 180, 90 https://cmr.earthdata.nasa.gov/search/concepts/C1000000220-SEDAC.json The 2001 Environmental Sustainability Index (ESI) utilizes a refined methodology based on the 2000 Pilot ESI effort, to construct an index covering 122 countries that measures the overall progress towards environmental sustainability. The index is a composite measure of the current status of a nation's environmental systems, pressures on those systems, human vulnerability to environmental change, national capacity to respond, and contributions to global environmental stewardship. The refinements included the addition and deletion of indicators, filling gaps in data coverage, new data sets, and the modification of the aggregation scheme. The index was unveiled at the World Economic Forum's annual meeting, January 2001, Davos, Switzerland. The 2001 ESI is the result of collaboration among the World Economic Forum (WEF), Yale Center for Environmental Law and Policy (YCELP), and the Columbia University Center for International Earth Science Information Network (CIESIN). not-provided +CIESIN_SEDAC_ESI_2002.v2002.00 2002 Environmental Sustainability Index (ESI) SEDAC 1980-01-01 2000-12-31 -180, -55, 180, 90 https://cmr.earthdata.nasa.gov/search/concepts/C179001967-SEDAC.json The 2002 Environmental Sustainability Index (ESI) measures overall progress toward environmental sustainability for 142 countries based on environmental systems, stresses, human vulnerability, social and institutional capacity and global stewardship. The addition of a climate change indicator, reduction in number of capacity indicators, and an improved imputation methodology contributed to an improvement from the 2001 ESI. The index was unveiled at the World Economic Forum's annual meeting, January 2002, New York. The 2002 ESI is the result of collaboration among the World Economic Forum (WEF), Yale Center for Environmental Law and Policy (YCELP), and the Columbia University Center for International Earth Science Information Network (CIESIN). not-provided +CIESIN_SEDAC_ESI_2005.v2005.00 2005 Environmental Sustainability Index (ESI) SEDAC 1980-01-01 2000-12-31 -180, -55, 180, 90 https://cmr.earthdata.nasa.gov/search/concepts/C179001889-SEDAC.json The 2005 Environmental Sustainability Index (ESI) is a measure of overall progress towards environmental sustainability, developed for 146 countries. The index provides a composite profile of national environmental stewardship based on a compilation of 21 indicators derived from 76 underlying data sets. The 2005 version of the ESI represents a significant update and improvement on earlier versions; the country ESI scores or rankings should not be compared to earlier versions because of changes to the methodology and underlying data. The index was unveiled at the World Economic Forum's annual meeting, January 2005, Davos, Switzerland. The 2005 ESI is a joint product of the Yale Center for Environmental Law and Policy (YCELP) and the Columbia University Center for International Earth Science Information Network (CIESIN), in collaboration with the World Economic Forum (WEF) and the Joint Research Centre (JRC), European Commission. not-provided +CIESIN_SEDAC_USPAT_USUEXT2015.v1.00 2015 Urban Extents from VIIRS and MODIS for the Continental U.S. Using Machine Learning Methods SEDAC 2015-01-01 2015-12-31 -180, -56, 180, 84 https://cmr.earthdata.nasa.gov/search/concepts/C1648035940-SEDAC.json The 2015 Urban Extents from VIIRS and MODIS for the Continental U.S. Using Machine Learning Methods data set models urban settlements in the Continental United States (CONUS) as of 2015. When applied to the combination of daytime spectral and nighttime lights satellite data, the machine learning methods achieved high accuracy at an intermediate-resolution of 500 meters at large spatial scales. The input data for these models were two types of satellite imagery: Visible Infrared Imaging Radiometer Suite (VIIRS) Nighttime Light (NTL) data from the Day/Night Band (DNB), and Moderate Resolution Imaging Spectroradiometer (MODIS) corrected daytime Normalized Difference Vegetation Index (NDVI). Although several machine learning methods were evaluated, including Random Forest (RF), Gradient Boosting Machine (GBM), Neural Network (NN), and the Ensemble of RF, GBM, and NN (ESB), the highest accuracy results were achieved with NN, and those results were used to delineate the urban extents in this data set. not-provided CLDMSK_L2_VIIRS_NOAA20_NRT.v1 VIIRS/NOAA-20 Cloud Mask L2 6-Min Swath 750m (NRT) ASIPS 2020-10-08 -180, -90, 180, 90 https://cmr.earthdata.nasa.gov/search/concepts/C2003160566-ASIPS.json The NOAA-20 Visible Infrared Imaging Radiometer Suite (VIIRS) NASA Level-2 (L2) Cloud Mask is one of two continuity products designed to sustain the long-term records of both Moderate Resolution Imaging Spectroradiometer (MODIS) and VIIRS heritages. CLDMSK_L2_VIIRS_NOAA20_NRT is the shortname for the NOAA-20 VIIRS Near Real-time incarnation of the Cloud Mask continuity product derived from the MODIS-VIIRS cloud mask (MVCM) algorithm, which itself is based on the MODIS (MOD35) algorithm. MVCM describes a continuity algorithm that is central to both MODIS data (from Terra and Aqua missions) and VIIRS data (from SNPP and Joint Polar Satellite System missions). Please bear in mind that the term MVCM does not appear as an attribute within the product’s metadata. Implemented to consistently handle MODIS and VIIRS inputs, the NOAA-20 VIIRS collection-1 products use calibration-adjusted NASA VIIRS L1B as inputs. The nominal spatial resolution of the NOAA-20 VIIRS L2 Cloud mask is 750 meters. not-provided CLDMSK_L2_VIIRS_SNPP_NRT.v1 VIIRS/SNPP Cloud Mask L2 6-Min Swath 750m (NRT) ASIPS 2019-04-18 -180, -90, 180, 90 https://cmr.earthdata.nasa.gov/search/concepts/C1607563719-ASIPS.json The Suomi National Polar-orbiting Partnership (SNPP) Visible Infrared Imaging Radiometer Suite (VIIRS) NASA Level-2 (L2) Cloud Mask is one of two continuity products designed to sustain the long-term records of both Moderate Resolution Imaging Spectroradiometer (MODIS) and VIIRS heritages. CLDMSK_L2_VIIRS_SNPP is the shortname for the SNPP VIIRS incarnation of the Cloud Mask continuity product derived from the MODIS-VIIRS cloud mask (MVCM) algorithm, which itself is based on the MODIS (MOD35) algorithm. MVCM describes a continuity algorithm that is central to both MODIS data (from Terra and Aqua missions) and VIIRS data (from SNPP and Joint Polar Satellite System missions). Please bear in mind that the term MVCM does not appear as an attribute within the product’s metadata. Implemented to consistently handle MODIS and VIIRS inputs, the SNPP VIIRS collection-1 products use calibration-adjusted NASA VIIRS L1B as inputs. The nominal spatial resolution of the SNPP VIIRS L2 Cloud mask is 750 meters. not-provided COARE_cm_er2.mas.v1 MODIS Airborne Simulator (MAS) Measurements Taken Onboard the NASA ER-2 During the TOGA COARE Intensive Observing Period. LAADS 1993-01-03 1993-03-04 -180, -90, 180, 90 https://cmr.earthdata.nasa.gov/search/concepts/C1625703857-LAADS.json The MODIS Airborne Simulator (MAS) Measurements, taken onboard the NASA ER-2 during the TOGA COARE Intensive Observing Period, are available upon request from NASA LAADS. Browse products are available at https://ladsweb.modaps.eosdis.nasa.gov/missions-and-measurements/mas/. The ER-2 navigation data are available from the same site in sub directory nasa_er2/nav. Browse imagery of the data may be viewed from the MAS Homepage at: https://mas.arc.nasa.gov/data/deploy_html/toga_home.html. MAS Level 1B data are available on 8500 density 8mm tape from TOGA COARE User Services at the Goddard DAAC. Each tape contains all the flight lines for one MAS flight (one day). The number of flight lines varies, but is generally between 10 and 20. The volume of data varies, but is generally 1 to 3 gigabytes per flight. Detailed instructions for reading MAS tapes is contained in MAS_Usr_Guide.ps. To obtain the data on tape, contact the DAAC User Services Office. For help with NASA TOGA COARE data residing at the GSFC DAAC, contact Pat Hrubiak at hrubiak@daac.gsfc.nasa.gov. BACK GROUND: TOGA COARE was a multidisciplinary, international research effort that investigated the scientific phenomena associated with the interaction between the atmosphere and the ocean in the warm pool region of the western Pacific. The field experiment phase of the program took place from 1 November 1992 through 28 February 1993 and involved the deployment of oceanographic ships and buoys, several ship and land based Doppler radars, multiple low and high level aircraft equipped with Doppler radar and other airborne sensors, as well as a variety of surface based instruments for in situ observations. The NASA component of TOGA COARE, while contributing directly to over all COARE objectives, emphasized scientific objectives associated with the Tropical Rainfall Measuring Mission (TRMM) and NASA's cloud and radiation program. AIRCRAFT INFORMATION: The NASA ER-2 is a high altitude, single pilot aircraft based at Ames Research Center, Moffett Field, CA, and deployed globally in support of a variety of atmospheric research projects. It has a maximum altitude of 70,000 feet (21 km), a range of 3000 nautical miles, a maximum flight duration of 8 hours (nominal 6.5 hours) and a top speed of 410 knots true air speed. The aircraft accommodates about 2700 pounds (1200 kg) of payload. For the TOGA COARE campaign, the ER-2 payload consisted of a variety of radiometers, a lidar, a conductivity probe and a camera. FLIGHT INFORMATION: The following table relates MAS data files to ER-2 and DC-8 flight numbers and to the UTC dates for the 13 mission flights of the NASA/TOGA COARE campaign and 2 additional flights of the ER-2 on which MAS data was acquired. The objectives (Obj) column is included for the convenience of the user; the mission objective defaulted to radiation (Rad) unless convection (Con) was forecast in the target area. Date (UTC) ER-2 Flight DC-8 Flight MAS TapeID Obj-Jan 11-12 93-053 93-01-06 93-053 RadJan 17-18 93-054 93-01-07 93-054 Con Jan 18-19 93-055 93-01-08 93-055 Con Jan 25-26 93-056 93-01-09 93-056 RadJan 28-29 93-057 93-057 Jan 31-Feb 1 93-058 93-01-10 93-058 Rad Feb 2 93-059 93-059 Feb 4 93-060 93-01-11 93-060 Con Feb 6 93-01-12 Con Feb 7 93-061 93-061 Feb 8-9 93-062 93-01-13 93-062 Con Feb 10-11 93-063 93-01-14 93-063 Con Feb 17-18 93-01-15 93-064 Con Feb 19-20 93-064 93-064 Feb 20-21 93-065 93-01-16 93-065 Con Feb 22-23 93-066 93-01-17 Con Feb 23-24 93-067 93-01-18 Rad. INSTRUMENT INFORMATION: The MODIS Airborne Simulator is a visible/infrared imaging radiometer that was mounted, for this campaign, in the right aft wing pod of the ER-2 aircraft. Through cross track scanning to the aircraft direction of flight, the MAS instrument builds a continuous sequence image of the atmosphere surface features under the aircraft. Wavelength channels of the instrument are selected for specific cloud and surface remote sensing applications. Also the channels are those which will be incorporated in measurements by the space borne MODIS instrument. The MAS instrument acquires eleven simultaneous wavelengths with 100 meters or better resolution at the surface. Principles of Operation: The MAS Spectrometer acquires high spatial resolution imagery in the wavelength range 0.55 to 14.3 microns. A total of 50 spectral bands are available in this range, and currently the digitize is configured before each mission to record in any 12 of these bands during flight. For all pre-1994 MAS missions, the 12-channel digitize was configured with four 10-bit channels and seven 8-bit channels. The MAS spectrometer is mated to a scanner sub-assembly which collects image data with an IFOV of 2.5 mrad, giving a ground resolution of 50 meters from 20,000 meters altitude,and a cross track scan width of 85.92 degrees. A 50 channel digitizer which records all 50 spectral bands at 12 bit resolution became operational in January 1995. DATA ORGANIZATION Data Format: The archive tapes are created by writing each output data file (1 straight-line flight track) to tape in fixed-length blocks of 16384 bytes, in time ascending order. One end-of-file (EOF) mark is written at the end of the data blocks for each file, and an extra EOF is written at the end of the data on the tape. The last block of each file has good data at the start of the block and unused bytes (filled with null characters) at the end. Information on the length of the file is encoded in the header when the file is created. No file name,protection, or ownership information is written onto the archive tape. All information necessary to identify the file is stored in the file itself. Documentation: In addition to this document, please obtain Volume 3, MODIS Airborne Simulator Level 1B Data Users Guide, resident in this directory in postscript file MAS_Usr_Guide.ps. Browse Products: There are 2 GIF image files per flight line, named 93ddd??v.gif and 93ddd??i.gif, where 93 is the year, ddd the Julian day of the flight, ?? the flight line number, and v or i, indicating respectively visible (VIS) or Infrared (IR) imagery. Images from each flight, accompanied by a flight statistics summary file, reside in a sub directory named with the date of the flight (02feb93) under mas/images. not-provided @@ -214,7 +234,6 @@ GreenBay.v0 2010 Measurements made in Green Bay, Wisconsin OB_DAAC 2010-09-17 - IKONOS_MSI_L1B.v1 IKONOS Level 1B Multispectral 4-Band Satellite Imagery CSDA 1999-10-14 2015-03-31 -180, -90, 180, 90 https://cmr.earthdata.nasa.gov/search/concepts/C2497453433-CSDA.json The IKONOS Level 1B Multispectral 4-Band Imagery collection contains satellite imagery acquired from Maxar Technologies (formerly known as DigitalGlobe) by the Commercial Smallsat Data Acquisition (CSDA) Program. Imagery was collected by the IKONOS satellite using the Optical Sensor Assembly instrument across the global land surface from October 1999 to March 2015. This satellite imagery is in the visible and near-infrared waveband range with data in the blue, green, red, and near-infrared wavelengths. The spatial resolution is 3.2m at nadir and the temporal resolution is approximately 3 days. The data are provided in National Imagery Transmission Format (NITF) and GeoTIFF formats. This level 1B data is sensor corrected and is an un-projected (raw) product. The data potentially serve a wide variety of applications that require high resolution imagery. Data access is restricted based on a National Geospatial-Intelligence Agency (NGA) license, and investigators must be approved by the CSDA Program. not-provided IKONOS_Pan_L1B.v1 IKONOS Level 1B Panchromatic Satellite Imagery CSDA 1999-10-24 2015-03-31 -180, -90, 180, 90 https://cmr.earthdata.nasa.gov/search/concepts/C2497468825-CSDA.json The IKONOS Panchromatic Imagery collection contains satellite imagery acquired from Maxar Technologies (formerly known as DigitalGlobe) by the Commercial Smallsat Data Acquisition (CSDA) Program. Imagery was collected by the IKONOS satellite using the Optical Sensor Assembly instrument across the global land surface from October 1999 to March 2015. This data product includes panchromatic imagery with a spatial resolution of 0.82m at nadir and a temporal resolution of approximately 3 days. The data are provided in National Imagery Transmission Format (NITF) and GeoTIFF formats. This level 1B data is sensor corrected and is an un-projected (raw) product. The data potentially serve a wide variety of applications that require high resolution imagery. Data access is restricted based on a National Geospatial-Intelligence Agency (NGA) license, and investigators must be approved by the CSDA Program. not-provided IMS1_HYSI_GEO.v1.0 IMS-1 HYSI TOA Radiance and Reflectance Product ISRO 2008-06-22 2012-09-10 -6.0364, -78.8236, 152.6286, 78.6815 https://cmr.earthdata.nasa.gov/search/concepts/C1214622602-ISRO.json The data received from IMS1, HySI which operates in 64 spectral bands in VNIR bands(400-900nm) with 500 meter spatial resolution and swath of 128 kms. not-provided -ISERV.v1 International Space Station SERVIR Environmental Research and Visualization System V1 USGS_EROS 2013-03-27 -180, -90, 180, 90 https://cmr.earthdata.nasa.gov/search/concepts/C1379906336-USGS_EROS.json Abstract: The ISS SERVIR Environmental Research and Visualization System (ISERV) acquired images of the Earth's surface from the International Space Station (ISS). The goal was to improve automatic image capturing and data transfer. ISERV's main component was the optical assembly which consisted of a 9.25 inch Schmidt-Cassegrain telescope, a focal reducer (field of view enlarger), a digital single lens reflex camera, and a high precision focusing mechanism. A motorized 2-axis pointing mount allowed pointing at targets approximately 23 degrees from nadir in both along- and across-track directions. not-provided KOPRI-KPDC-00000008.v1 1998 Seismic Data, Antarctica AMD_KOPRI 1998-12-07 1998-12-11 -66.266667, -64.616667, -64.416667, -62.995 https://cmr.earthdata.nasa.gov/search/concepts/C2244292774-AMD_KOPRI.json "Korean Antarctic survey carried out as part of step 2 project in year 2 of 'the Antarctic Undersea Geological Survey' was conducted in the Ⅱ region around the northwestern continent of the Antarctic Peninsula. This area is northwest of Anvers Island, including areas around the pericontinent from the continental shelf to the continental rise zone. The investigation period for this project took a total of 8 days for moving navigation, the survey of the side lines and drilling investigation. After seismic investigation, a surface drilling investigation was conducted in coring point was decided from the reference seismic section. 10 researcher from ‘Korea Ocean Research and Development Institute’ participated in the field survey. We took on lease Russian icebreaker ""Yuzhmorgeologiya""." not-provided KOPRI-KPDC-00000009.v1 1997 Seismic Data, Antarctica AMD_KOPRI 1997-12-23 1997-12-28 -64.699722, -63.525, -62.157778, -62.041389 https://cmr.earthdata.nasa.gov/search/concepts/C2244293126-AMD_KOPRI.json Korean Antarctic survey carried out as part of step 2 project in year 1 of ‘The Antarctic Undersea Geological Survey’ in 1997 was conducted in a continental shelf in the northwestern part of the Antarctic Peninsula. The research period took a total of 8 days, including 6 days for the seismic survey and 2 days for the drilling investigation. We took on lease Norway R/V 'Polar Duke' and 10 researchers from ‘Korea Ocean Research and Development Institute’ participated as field investigation personnel. The Teac single-channel recorder, EPC Recorder, Q/C MicroMax system etc. was used mainly by Sleeve gun used as a sound source, compressor for creating compressed air, DFS-V Recorder for multi-channel Seismic record, 12 –channel geophone of seismic streamers. Additional Gravity Core was used for sediment research through drilling. not-provided KOPRI-KPDC-00000011.v1 1996 Seismic Data, Antarctica AMD_KOPRI 1996-12-17 1996-12-26 -62.766667, -63.583333, -60.233333, -62.733333 https://cmr.earthdata.nasa.gov/search/concepts/C2244293499-AMD_KOPRI.json "Korean Antarctic survey carried out as in year 3 project of 'the Antarctic Undersea Geological Survey' was conducted in the basin region of western part of the Bransfeed Strait between the Antarctic Peninsula and the South Shetland Islands . During the field investigation, the seismic investigation and the drilling investigation was conducted at the same time. The investigation period took 9 days. 10 researchers from ‘Korea Ocean Research and Development Institute’ and 3 academic personnel participated in the cruise as field investigation personnel. We took on lease Russian R/V ""Yuzhmorgeologiya"" which is marine geology, geophysical survey vessel and Icebreaker." not-provided