diff --git a/datasets/OMPS_N20_NMSO2_PCA_L2_Step1_NRT.v1.json b/datasets/OMPS_N20_NMSO2_PCA_L2_Step1_NRT.v1.json index fbef51801d..27f32163cc 100644 --- a/datasets/OMPS_N20_NMSO2_PCA_L2_Step1_NRT.v1.json +++ b/datasets/OMPS_N20_NMSO2_PCA_L2_Step1_NRT.v1.json @@ -28,6 +28,12 @@ "type": "application/json", "title": "CMR JSON metadata for collection" }, + { + "rel": "child", + "href": "https://cmr.earthdata.nasa.gov/stac/OMINRT/collections/OMPS_N20_NMSO2_PCA_L2_Step1_NRT.v1/2024", + "type": "application/json", + "title": "2024 catalog" + }, { "rel": "self", "href": "https://cmr.earthdata.nasa.gov/stac/OMINRT/collections/OMPS_N20_NMSO2_PCA_L2_Step1_NRT.v1", @@ -40,7 +46,7 @@ "title": "OMINRT" } ], - "title": "OMPS-N20 NM PCA SO2 Step 1 Total Column 1-Orbit L2 Swath 17x13km Near Real Time NRT", + "title": "OMPS-N20 NM PCA SO2 Step 1 Total Column 1-Orbit L2 Swath 17x13km NRT", "extent": { "spatial": { "bbox": [ diff --git a/datasets/OMPS_NPP_LP_NRT_AER.v1.json b/datasets/OMPS_NPP_LP_NRT_AER.v1.json new file mode 100644 index 0000000000..45a3743c26 --- /dev/null +++ b/datasets/OMPS_NPP_LP_NRT_AER.v1.json @@ -0,0 +1,71 @@ +{ + "type": "Collection", + "id": "OMPS_NPP_LP_NRT_AER.v1", + "stac_version": "1.0.0", + "description": "The OMPS-NPP L2 LP Aerosol Extinction Vertical Profile swath l2 3slit (AER) product contains the retrieved aerosol extinction coefficients measured by the Ozone Mapping and Profiling Suite (OMPS) Limb-Profiler (LP) sensor on the Suomi-NPP satellite. The AER product measures stratospheric aerosol abundance and evolution at 6 wavelengths (510, 600, 675, 745, 869 and 997 nm) to complement the OMPS LP measurements of stratospheric and mesospheric profile ozone. This product replaces the previous single wavelength 675 nm (AER675) product. Each granule contains data from the daylight portion of each orbit measured for a full day. Spatial coverage is global (-90 to 90 degrees latitude), and there are about 14.5 orbits per day each measuring three limb profiles spaced approximately 250 km in the cross-track direction. The profiles are measured from the ground up to about 80 km with a vertical resolution of the retrieved profiles of approximately 1.8 km. The files are written using the Hierarchical Data Format Version 5 or HDF5. The /ProfileFields/RetrievedExtCoeff dataset is produced via a neural network trained on LP-L2-AER data for NRT processing. ", + "links": [ + { + "rel": "root", + "href": "https://cmr.earthdata.nasa.gov/stac/", + "type": "application/json", + "title": "NASA CMR STAC Proxy" + }, + { + "rel": "items", + "href": "https://cmr.earthdata.nasa.gov/stac/OMINRT/collections/OMPS_NPP_LP_NRT_AER.v1/items", + "type": "application/json", + "title": "Granules in this collection" + }, + { + "rel": "about", + "href": "https://cmr.earthdata.nasa.gov/search/concepts/C3186057053-OMINRT.html", + "type": "text/html", + "title": "HTML metadata for collection" + }, + { + "rel": "via", + "href": "https://cmr.earthdata.nasa.gov/search/concepts/C3186057053-OMINRT.json", + "type": "application/json", + "title": "CMR JSON metadata for collection" + }, + { + "rel": "child", + "href": "https://cmr.earthdata.nasa.gov/stac/OMINRT/collections/OMPS_NPP_LP_NRT_AER.v1/2024", + "type": "application/json", + "title": "2024 catalog" + }, + { + "rel": "self", + "href": "https://cmr.earthdata.nasa.gov/stac/OMINRT/collections/OMPS_NPP_LP_NRT_AER.v1", + "type": "application/json" + }, + { + "rel": "parent", + "href": "https://cmr.earthdata.nasa.gov/stac/OMINRT", + "type": "application/json", + "title": "OMINRT" + } + ], + "title": "OMPS-NPP LP NRT Aerosol Extinction Vertical Profile swath multi-wavelength orbital 3slit", + "extent": { + "spatial": { + "bbox": [ + [ + -180, + -90, + 180, + 90 + ] + ] + }, + "temporal": { + "interval": [ + [ + "2018-01-16T00:00:00Z", + null + ] + ] + } + }, + "license": "not-provided" +} \ No newline at end of file diff --git a/nasa_cmr_catalog.json b/nasa_cmr_catalog.json index 2181e15816..3a884b2973 100644 --- a/nasa_cmr_catalog.json +++ b/nasa_cmr_catalog.json @@ -1273,6 +1273,19 @@ "description": "AM1EPHNE is the Terra Near Real Time (NRT) 2-hour spacecraft Extrapolated ephemeris data file in native format. The file name format is the following: AM1EPHNE.Ayyyyddd.hhmm.vvv.yyyydddhhmmss where from left to right: E = Extrapolated; N = Native format; A = AM1 (Terra); yyyy = data year, ddd = Julian data day, hh = data hour, mm = data minute; vvv = Version ID; yyyy = production year, ddd = Julian production day, hh = production hour, mm = production minute, and ss = production second. Data set information: http://modis.gsfc.nasa.gov/sci_team/", "license": "not-provided" }, + { + "id": "AMZ1-WFI-L4-SR-1", + "title": "AMAZONIA-1/WFI - Level-4-SR - Cloud Optimized GeoTIFF", + "catalog": "INPE", + "state_date": "2024-01-01", + "end_date": "2024-06-09", + "bbox": "-135.151782, -45.613218, 106.18473, 63.78312", + "url": "https://cmr.earthdata.nasa.gov/search/concepts/C3108204639-INPE.json", + "metadata": "https://cmr.earthdata.nasa.gov/search/concepts/C3108204639-INPE.html", + "href": "https://cmr.earthdata.nasa.gov/stac/INPE/collections/AMZ1-WFI-L4-SR-1", + "description": "AMAZONIA-1/WFI Surface Reflectance product over Brazil. L4 SR product provides orthorectified surface reflectance images. This dataset is provided as Cloud Optimized GeoTIFF (COG).", + "license": "not-provided" + }, { "id": "APSF", "title": "Aerial Photo Single Frames", @@ -1988,6 +2001,97 @@ "description": "The NASA Making Earth System Data Records for Use in Research Environments (MEaSUREs) (https://earthdata.nasa.gov/community/community-data-system-programs/measures-projects) Combined ASTER and MODIS Emissivity for Land (CAMEL) dataset provides monthly emissivity uncertainty at 0.05 degree (~5 kilometer) resolution (CAM5K30UC). CAM5K30UC is an estimation of total emissivity uncertainty, comprising 3 independent components of variability: temporal, spatial, and algorithm. Each measure of uncertainty is provided for all 13 hinge points of emissivity and each latitude-longitude point. Additional details regarding the methodology are available in the User Guide and Algorithm Theoretical Basis Document (ATBD) (https://lpdaac.usgs.gov/documents/219/cam5k30_v2_user_guide_atbd.pdf). Corresponding emissivity values can be found in the CAM5K30EM data product. Provided in the CAM5K30UC product are layers for algorithm uncertainty, spatial uncertainty, temporal uncertainty, total uncertainty, latitude, longitude, spectral wavelength, CAMEL quality, and total uncertainty quality information. ", "license": "not-provided" }, + { + "id": "CB4-MUX-L4-SR-1", + "title": "CBERS-4/MUX - Level-4-SR - Cloud Optimized GeoTIFF", + "catalog": "INPE", + "state_date": "2016-01-01", + "end_date": "2024-06-09", + "bbox": "-79.392902, -40.793661, 49.863137, 28.185483", + "url": "https://cmr.earthdata.nasa.gov/search/concepts/C3108204643-INPE.json", + "metadata": "https://cmr.earthdata.nasa.gov/search/concepts/C3108204643-INPE.html", + "href": "https://cmr.earthdata.nasa.gov/stac/INPE/collections/CB4-MUX-L4-SR-1", + "description": "CBERS-4/MUX Surface Reflectance product over Brazil. L4 SR product provides orthorectified surface reflectance images. This dataset is provided as Cloud Optimized GeoTIFF (COG).", + "license": "not-provided" + }, + { + "id": "CB4-WFI-L4-SR-1", + "title": "CBERS-4/WFI - Level-4-SR - Cloud Optimized GeoTIFF", + "catalog": "INPE", + "state_date": "2016-01-01", + "end_date": "2024-06-09", + "bbox": "-84.468045, -46.643149, 57.533125, 42.454712", + "url": "https://cmr.earthdata.nasa.gov/search/concepts/C3108204413-INPE.json", + "metadata": "https://cmr.earthdata.nasa.gov/search/concepts/C3108204413-INPE.html", + "href": "https://cmr.earthdata.nasa.gov/stac/INPE/collections/CB4-WFI-L4-SR-1", + "description": "CBERS-4/WFI Surface Reflectance product over Brazil. L4 SR product provides orthorectified surface reflectance images. This dataset is provided as Cloud Optimized GeoTIFF (COG).", + "license": "not-provided" + }, + { + "id": "CB4A-WFI-L4-SR-1", + "title": "CBERS-4A/WFI - Level-4-SR - Cloud Optimized GeoTIFF", + "catalog": "INPE", + "state_date": "2020-01-01", + "end_date": "2024-06-09", + "bbox": "-81.507167, -38.111915, 51.482289, 39.663251", + "url": "https://cmr.earthdata.nasa.gov/search/concepts/C3108204696-INPE.json", + "metadata": "https://cmr.earthdata.nasa.gov/search/concepts/C3108204696-INPE.html", + "href": "https://cmr.earthdata.nasa.gov/stac/INPE/collections/CB4A-WFI-L4-SR-1", + "description": "CBERS-4A/WFI Surface Reflectance product over Brazil. L4 SR product provides orthorectified surface reflectance images. This dataset is provided as Cloud Optimized GeoTIFF (COG).", + "license": "not-provided" + }, + { + "id": "CB4A-WPM-PCA-FUSED-1", + "title": "CBERS-4A/WPM - Multispectral and Panchromatic Bands Fusioned", + "catalog": "INPE", + "state_date": "2023-03-02", + "end_date": "2024-06-16", + "bbox": "-74.678026, -34.572211, -34.099281, 6.02882", + "url": "https://cmr.earthdata.nasa.gov/search/concepts/C3108204169-INPE.json", + "metadata": "https://cmr.earthdata.nasa.gov/search/concepts/C3108204169-INPE.html", + "href": "https://cmr.earthdata.nasa.gov/stac/INPE/collections/CB4A-WPM-PCA-FUSED-1", + "description": "This collection contains 2 meter high-resolution, RGB products, generated using the Principal Components Fusion (PCA) method, with values coded between 1 and 255, with 0 being reserved for 'No Data'. This product is derived from the original CBERS-4A WPM Level-4 Digital Number with 10 bit of quantization.", + "license": "not-provided" + }, + { + "id": "CBERS-WFI-8D-1", + "title": "CBERS/WFI - Level-4-SR - Data Cube - LCF 8 days", + "catalog": "INPE", + "state_date": "2020-01-01", + "end_date": "2024-05-31", + "bbox": "-76.2226604, -36.733211, -32.761135, 6.013904", + "url": "https://cmr.earthdata.nasa.gov/search/concepts/C3108204417-INPE.json", + "metadata": "https://cmr.earthdata.nasa.gov/search/concepts/C3108204417-INPE.html", + "href": "https://cmr.earthdata.nasa.gov/stac/INPE/collections/CBERS-WFI-8D-1", + "description": "Earth Observation Data Cube generated from CBERS-4/WFI and CBERS-4A/WFI Level-4 SR products over Brazil extension. This dataset is provided in Cloud Optimized GeoTIFF (COG) file format. The dataset is processed with 64 meters of spatial resolution, reprojected and cropped to BDC_LG grid Version 2 (BDC_LG V2), considering a temporal compositing function of 8 days using the Least Cloud Cover First (LCF) best pixel approach.", + "license": "not-provided" + }, + { + "id": "CBERS4-MUX-2M-1", + "title": "CBERS-4/MUX - Level-4-SR - Data Cube - LCF 2 months", + "catalog": "INPE", + "state_date": "2016-01-01", + "end_date": "2024-04-30", + "bbox": "-75.9138367, -34.6755646, -27.9114219, 5.9260044", + "url": "https://cmr.earthdata.nasa.gov/search/concepts/C3108204197-INPE.json", + "metadata": "https://cmr.earthdata.nasa.gov/search/concepts/C3108204197-INPE.html", + "href": "https://cmr.earthdata.nasa.gov/stac/INPE/collections/CBERS4-MUX-2M-1", + "description": "Earth Observation Data Cube generated from CBERS-4/MUX Level-4 SR product over Brazil extension. This dataset is provided in Cloud Optimized GeoTIFF (COG) file format. The dataset is processed with 20 meters of spatial resolution, reprojected and cropped to BDC_MD grid Version 2 (BDC_MD V2), considering a temporal compositing function of 2 months using the Least Cloud Cover First (LCF) best pixel approach.", + "license": "not-provided" + }, + { + "id": "CBERS4-WFI-16D-2", + "title": "CBERS-4/WFI - Level-4-SR - Data Cube - LCF 16 days", + "catalog": "INPE", + "state_date": "2016-01-01", + "end_date": "2024-05-23", + "bbox": "-76.2226604, -36.7332109, -32.7611351, 6.0139036", + "url": "https://cmr.earthdata.nasa.gov/search/concepts/C3108204143-INPE.json", + "metadata": "https://cmr.earthdata.nasa.gov/search/concepts/C3108204143-INPE.html", + "href": "https://cmr.earthdata.nasa.gov/stac/INPE/collections/CBERS4-WFI-16D-2", + "description": "Earth Observation Data Cube generated from CBERS-4/WFI Level-4 SR product over Brazil extension. This dataset is provided in Cloud Optimized GeoTIFF (COG) file format. The dataset is processed with 64 meters of spatial resolution, reprojected and cropped to BDC_LG grid Version 2 (BDC_LG V2), considering a temporal compositing function of 16 days using the Least Cloud Cover First (LCF) best pixel approach.", + "license": "not-provided" + }, { "id": "CDDIS MEASURES products strain rate grids.v1", "title": "CDDIS SESES MEaSUREs products strain rate grids", @@ -3223,6 +3327,19 @@ "description": "The Long-Term Data Record (LTDR) produces, validates, and distributes a global land surface climate data record (CDR) that uses both mature and well-tested algorithms in concert with the best-available polar-orbiting satellite data from past to the present. The CDR is critically important to studying global climate change. The LTDR project is unique in that it serves as a bridge that connects data derived from the NOAA Advanced Very High Resolution Radiometer (AVHRR), the EOS Moderate resolution Imaging Spectroradiometer (MODIS), the Suomi National Polar-orbiting Partnership (SNPP) Visible Infrared Imaging Radiometer Suite (VIIRS), and Joint Polar Satellite System (JPSS) VIIRS missions. The LTDR draws from the following eight AVHRR missions: NOAA-7, NOAA-9, NOAA-11, NOAA-14, NOAA-16, NOAA-18, NOAA-19, and MetOp-B. Currently, the project generates a daily surface reflectance product as the fundamental climate data record (FCDR) and derives daily Normalized Differential Vegetation Index (NDVI) and Leaf-Area Index/fraction of absorbed Photosynthetically Active Radiation (LAI/fPAR) as two thematic CDRs (TCDR). LAI/fPAR was developed as an experimental product. The METOP-B AVHRR Atmospherically Corrected Normalized Difference Vegetation Index (NDVI) Daily L3 Global 0.05 Deg CMG, short-name M1_AVH13C1 is generated from GIMMS Advanced Processing System (GAPS) BRDF-corrected Surface Reflectance product (M1_AVH01C1). The M1_AVH13C1 product is available in HDF4 file format. ", "license": "not-provided" }, + { + "id": "MCD14DL_C5_NRT.v005", + "title": "MODIS/Aqua+Terra Thermal Anomalies/Fire locations 1km FIRMS V005 NRT", + "catalog": "LM_FIRMS", + "state_date": "2014-01-28", + "end_date": "", + "bbox": "-180, -80, 180, 80", + "url": "https://cmr.earthdata.nasa.gov/search/concepts/C1219768065-LM_FIRMS.json", + "metadata": "https://cmr.earthdata.nasa.gov/search/concepts/C1219768065-LM_FIRMS.html", + "href": "https://cmr.earthdata.nasa.gov/stac/LM_FIRMS/collections/MCD14DL_C5_NRT.v005", + "description": "Near Real-Time (NRT) MODIS Thermal Anomalies / Fire locations processed by FIRMS (Fire Information for Resource Management System) - Land Atmosphere Near real time Capability for EOS (LANCE), using swath products (MOD14/MYD14) rather than the tiled MOD14A1 and MYD14A1 products. The thermal anomalies / active fire represent the center of a 1km pixel that is flagged by the MODIS MOD14/MYD14 Fire and Thermal Anomalies algorithm (Giglio 2003) as containing one or more fires within the pixel. This is the most basic fire product in which active fires and other thermal anomalies, such as volcanoes, are identified.MCD14DL are available in the following formats: TXT, SHP, KML, WMS. These data are also provided through the FIRMS Fire Email Alerts. Please note only the TXT and SHP files contain all the attributes.", + "license": "not-provided" + }, { "id": "MIANACP.v1", "title": "MISR Aerosol Climatology Product V001", @@ -3771,7 +3888,7 @@ }, { "id": "OMPS_N20_NMSO2_PCA_L2_Step1_NRT.v1", - "title": "OMPS-N20 NM PCA SO2 Step 1 Total Column 1-Orbit L2 Swath 17x13km Near Real Time NRT", + "title": "OMPS-N20 NM PCA SO2 Step 1 Total Column 1-Orbit L2 Swath 17x13km NRT", "catalog": "OMINRT", "state_date": "2018-01-16", "end_date": "", @@ -3783,7 +3900,7 @@ "license": "not-provided" }, { - "id": "OMPS_NPP_LP_NN_AER.v1", + "id": "OMPS_NPP_LP_NRT_AER.v1", "title": "OMPS-NPP LP NRT Aerosol Extinction Vertical Profile swath multi-wavelength orbital 3slit", "catalog": "OMINRT", "state_date": "2018-01-16", @@ -3791,7 +3908,7 @@ "bbox": "-180, -90, 180, 90", "url": "https://cmr.earthdata.nasa.gov/search/concepts/C3186057053-OMINRT.json", "metadata": "https://cmr.earthdata.nasa.gov/search/concepts/C3186057053-OMINRT.html", - "href": "https://cmr.earthdata.nasa.gov/stac/OMINRT/collections/OMPS_NPP_LP_NN_AER.v1", + "href": "https://cmr.earthdata.nasa.gov/stac/OMINRT/collections/OMPS_NPP_LP_NRT_AER.v1", "description": "The OMPS-NPP L2 LP Aerosol Extinction Vertical Profile swath l2 3slit (AER) product contains the retrieved aerosol extinction coefficients measured by the Ozone Mapping and Profiling Suite (OMPS) Limb-Profiler (LP) sensor on the Suomi-NPP satellite. The AER product measures stratospheric aerosol abundance and evolution at 6 wavelengths (510, 600, 675, 745, 869 and 997 nm) to complement the OMPS LP measurements of stratospheric and mesospheric profile ozone. This product replaces the previous single wavelength 675 nm (AER675) product. Each granule contains data from the daylight portion of each orbit measured for a full day. Spatial coverage is global (-90 to 90 degrees latitude), and there are about 14.5 orbits per day each measuring three limb profiles spaced approximately 250 km in the cross-track direction. The profiles are measured from the ground up to about 80 km with a vertical resolution of the retrieved profiles of approximately 1.8 km. The files are written using the Hierarchical Data Format Version 5 or HDF5. The /ProfileFields/RetrievedExtCoeff dataset is produced via a neural network trained on LP-L2-AER data for NRT processing. ", "license": "not-provided" }, @@ -4484,6 +4601,19 @@ "description": "The AHI/Himawari-09 Dark Target Aerosol 10-Min L2 Full Disk 10 km product, short-name XAERDT_L2_AHI_H09 is provided at 10-km spatial resolution (at-nadir) and a 10-minute full-disk cadence that typically yields about 142 granules over the daylit hours of a 24-hour period (there are no images produced at 02:20 or 14:20 UTC for navigation purposes). The Himawari-9 platform currently serves in the operational Himawari position (near 140.7\u00b0E) since it was launched November 2, 2016, and replaces Himawari-8. The Himawari-9/AHI collection record spans from 13th December 2022 through 31st December 2022. The XAERDT_L2_AHI_H09 product is a part of the Geostationary Earth Orbit (GEO)\u2013Low-Earth Orbit (LEO) Dark Target Aerosol project under NASA\u2019s Making Earth System Data Records for Use in Research Environments (MEaSUREs) program, led by Robert Levy, uses a special version of the MODIS Dark Target (DT) aerosol retrieval algorithm to produce Aerosol Optical Depth (AOD) and other aerosol parameters derived independently from seven sensor/platform combinations, where 3 are in GEO and 4 are in LEO. The 3 GEO sensors include Advanced Baseline Imagers (ABI) on both GOES-16 (GOES-East) and GOES-17 (GOES-West), and Advanced Himawari Imager (AHI) on Himawari-8. The 4 LEO sensors include MODIS on both Terra and Aqua, and VIIRS on both Suomi-NPP and NOAA-20. Adding the LEO sensors reinforces a major goal of this project, which is to render a consistent science maturity level across DT aerosol products derived from both types and sources of orbital satellites. The XAERDT_L2_AHI_H09 product, in netCDF4 format, contains 45 Science Data Set (SDS) layers that include 8 geolocation and 37 geophysical SDSs. For more information consult LAADS product description page at: https://ladsweb.modaps.eosdis.nasa.gov/missions-and-measurements/products/XAERDT_L2_AHI_H09 Or, Dark Target aerosol team Page at: https://darktarget.gsfc.nasa.gov/", "license": "not-provided" }, + { + "id": "a-numerical-solver-for-heat-and-mass-transport-in-snow-based-on-fenics.v1.0", + "title": "A numerical solver for heat and mass transport in snow based on FEniCS", + "catalog": "ENVIDAT", + "state_date": "2022-01-01", + "end_date": "2022-01-01", + "bbox": "9.8472494, 46.812044, 9.8472494, 46.812044", + "url": "https://cmr.earthdata.nasa.gov/search/concepts/C2789814662-ENVIDAT.json", + "metadata": "https://cmr.earthdata.nasa.gov/search/concepts/C2789814662-ENVIDAT.html", + "href": "https://cmr.earthdata.nasa.gov/stac/ENVIDAT/collections/a-numerical-solver-for-heat-and-mass-transport-in-snow-based-on-fenics.v1.0", + "description": "This python code uses the Finite Element library FEniCS (via docker) to solve the one dimensional partial differential equations for heat and mass transfer in snow. The results are written in vtk format. The dataset contains the code and the output data to reproduce the key Figure 5 from the related publication: _Sch\u00fcrholt, K., Kowalski, J., L\u00f6we, H.; Elements of future snowpack modeling - Part 1: A physical instability arising from the non-linear coupling of transport and phase changes, The Cryosphere, 2022_ The code and potential updates can be accessed directly through git via: https://gitlabext.wsl.ch/snow-physics/snowmodel_fenics", + "license": "not-provided" + }, { "id": "a6efcb0868664248b9cb212aba44313d", "title": "ESA Aerosol Climate Change Initiative (Aerosol CCI): Level 2 aerosol products from MERIS (ALAMO algorithm), Version 2.2", @@ -4510,6 +4640,19 @@ "description": "The AAMH CPEX dataset contains products obtained from the MetOp-A, MetOp-B, NOAA-18, and NOAA-19 satellites. These data were collected in support of the NASA Convective Processes Experiment (CPEX) field campaign. The CPEX field campaign took place in the North Atlantic-Gulf of Mexico-Caribbean Sea region from 25 May to 25 June 2017. CPEX conducted a total of sixteen DC-8 missions from 27 May to 24 June. The CPEX campaign collected data to help explain convective storm initiation, organization, growth, and dissipation in the North Atlantic-Gulf of Mexico-Caribbean Oceanic region during the early summer of 2017. These data are available from May 26, 2017, through July 15, 2017, and are available in netCDF-4 format.", "license": "not-provided" }, + { + "id": "above-and-below-ground-herbivore-communities-along-elevation.v1.0", + "title": "Above- and below-ground herbivore communities along elevation", + "catalog": "ENVIDAT", + "state_date": "2020-01-01", + "end_date": "2020-01-01", + "bbox": "5.95587, 45.81802, 10.49203, 47.80838", + "url": "https://cmr.earthdata.nasa.gov/search/concepts/C2789814648-ENVIDAT.json", + "metadata": "https://cmr.earthdata.nasa.gov/search/concepts/C2789814648-ENVIDAT.html", + "href": "https://cmr.earthdata.nasa.gov/stac/ENVIDAT/collections/above-and-below-ground-herbivore-communities-along-elevation.v1.0", + "description": "Despite the common role of above- and below-ground herbivore communities in mediating ecosystem functioning, our understanding of the variation of species communities along natural gradient is largely strongly biased toward aboveground organisms. This dataset enables to study the variations in assemblages of two dominant groups of herbivores, namely, aboveground orthoptera and belowground nematodes together with their food plants. Herbivores and plant surveys were conducted in 48 natural grasslands along six elevation gradients, selected to span the major macro-climatic and environmental conditions of the Swiss Alps. It compiles herbivores and plant surveys, information on the study sites as well as plant and herbivores functional traits sought to be involved in trophic interactions and to respond to climatic variation along the elevation. Plant functional traits considered are the SLA, the LDMC, the C/N content, the punch strength (i.e. force required to pierce the leave lamina), the mandibular strength for Orthoptera insect. Data were collected during the summer 2016 and 2017. ", + "license": "not-provided" + }, { "id": "aces1am.v1", "title": "ACES Aircraft and Mechanical Data", @@ -4588,6 +4731,58 @@ "description": "The ALTUS Cloud Electrification Study (ACES) was based at the Naval Air Facility Key West in Florida. During August 2002, ACES researchers conducted overflights of thunderstorms over the southwestern corner of Florida. For the first time in NASA research, an uninhabited aerial vehicle (UAV) named ALTUS was used to collect cloud electrification data. Carrying field mills, optical sensors, electric field sensors and other instruments, ALTUS allowed scientists to collect cloud electrification data for the first time from above the storm, from its birth through dissipation. This experiment allowed scientists to achieve the dual goals of gathering weather data safely and testing new aircraft technology. This dataset consists of data collected from the following instruments: Slow/Fast antenna, Electric Field Mill, Optical Pulse Sensors, Searchcoil Magnetometer, Accelerometer, and Gerdien Conductivity Probe. These data were collected at 200KHz from the first 16 telemetry items collected on the aircraft, were initiated by an operator selected trigger (e.g. DOPS), and continued collecting for as long as the trigger continued.", "license": "not-provided" }, + { + "id": "aerosol-data-davos-wolfgang.v1.0", + "title": "Aerosol Data Davos Wolfgang", + "catalog": "ENVIDAT", + "state_date": "2020-01-01", + "end_date": "2020-01-01", + "bbox": "9.853594, 46.835577, 9.853594, 46.835577", + "url": "https://cmr.earthdata.nasa.gov/search/concepts/C2789814678-ENVIDAT.json", + "metadata": "https://cmr.earthdata.nasa.gov/search/concepts/C2789814678-ENVIDAT.html", + "href": "https://cmr.earthdata.nasa.gov/stac/ENVIDAT/collections/aerosol-data-davos-wolfgang.v1.0", + "description": "Aerosol properties were measured between February 8 and March 31 2019 at the measurement site Davos Wolfgang (LON: 9.853594, LAT: 46.835577). Optical and aerodynamic particle counters, as well as a scanning mobility particle size spectrometer and an ice nuclei counter were deployed to report particle concentrations and size distributions in fine (10-1000 nm) and coarse mode (> 1000 nm), cloud condensation nuclei concentrations (CCNCs) and ice nuclei particle concentrations (ICNCs). The ambient particles were transported via a heated inlet to be distributed to the particle detecting devices inside the setup room. Optical Particle Counter (OPC): Light scattering of a diode laser beam caused by travelling particles is used in the both, the OPC-N3 (0.41 - 38.5 μm) and GT-526S (0.3 \u2013 5 μm), to determine their size and number concentration. For the OPC-N3, particle size spectra and concentration data are used afterwards to calculate PM₁, PM₂,₅ and PM₁₀ (assumptions: particle density: 1.65 g cmˉ³, refractive index: 1.5+i0). Aerodynamic Particle Sizer (APS): The APS (3321, TSI Inc.) measured the particle size distribution for aerodynamic diameters between 0.5 μm and ~20 μm by the particle\u2019s time-of-flight and light-scattering intensity (assumptions: particle density 1 g cmˉ³). Scanning Mobility Particle Size Spectrometer (SMPS): Particle number concentrations in a size range between 12 and 460 nm (electrical mobility diameter) were measured at Davos Wolfgang, using a Scanning Mobility Particle Sizer Spectrometer (3938, TSI Inc.). The classifier (3082, TSI Inc.) was equipped with a neutralizer (3088, TSI Inc.) and a differential mobility analyzer working with negative polarity (3081, TSI Inc.). The size selected particles were counted by a water-based condensation particle counter (3788 , TSI Inc.). The TSI AIM software was used to provide particle size distributions by applying multiple charge and diffusion loss corrections (assumptions: particle density 1 g cmˉ³). Coriolis μ and DRINCZ: A microbial air sampler (Coriolis μ, bertin Instruments) was used to collect airborne particles for investigating their ice nucleating ability with a droplet freezing device. Particles larger than 0.5 μm were drawn with an air flow rate of up to 300 l minˉ¹ into the cone and centrifuged into the wall of the cone due to the forming vortex. The liquid sample was transferred into the DRoplet Ice Nuclei Counter Zurich (DRINCZ, ETH Zurich) to study heterogeneous ice formation (immersion freezing mode) of ambient airborne particles. ", + "license": "not-provided" + }, + { + "id": "aerosol-data-weissfluhjoch.v1.0", + "title": "Aerosol Data Weissfluhjoch", + "catalog": "ENVIDAT", + "state_date": "2020-01-01", + "end_date": "2020-01-01", + "bbox": "9.806475, 46.832964, 9.806475, 46.832964", + "url": "https://cmr.earthdata.nasa.gov/search/concepts/C2789814736-ENVIDAT.json", + "metadata": "https://cmr.earthdata.nasa.gov/search/concepts/C2789814736-ENVIDAT.html", + "href": "https://cmr.earthdata.nasa.gov/stac/ENVIDAT/collections/aerosol-data-weissfluhjoch.v1.0", + "description": "Aerosol properties were measured between February 8 and March 31 2019 at the measurement site Weissfluhjoch (LON: 9.806475, LAT: 46.832964). Optical and aerodynamic particle counters, as well as a scanning mobility particle size spectrometer and an ice nuclei counter were deployed to report particle concentrations and size distributions in fine (10-1000 nm) and coarse mode (> 1000 nm), cloud condensation nuclei concentrations (CCNCs), and ice nuclei particle concentrations (ICNCs). The ambient particles were transported via a heated inlet to be distributed to the particle detecting devices inside the setup room. Optical Particle Counter (OPC): Light scattering of a diode laser beam caused by travelling particles is used in the both, the OPC-N3 (0.41 - 38.5 μm) and GT-526S (0.3 \u2013 5 μm), to determine their size and number concentration. For the OPC-N3, particle size spectra and concentration data are used afterwards to calculate PM₁, PM₂,₅ and PM₁₀ (assumptions: particle density: 1.65 g cmˉ³, refractive index: 1.5+i0). Aerodynamic Particle Sizer (APS): The APS (3321, TSI Inc.) measured the particle size distribution for aerodynamic diameters between 0.5 μm and ~20 μm by the particle\u2019s time-of-flight and light-scattering intensity (assumptions: particle density 1 g cmˉ³). Scanning Mobility Particle Size Spectrometer (SMPS): Particle number concentrations in a size range between 12 and 460 nm (electrical mobility diameter) were measured at Davos Wolfgang, using a Scanning Mobility Particle Sizer Spectrometer (SMPS 3938, TSI Inc.). The classifier (3082, TSI Inc.) was equipped with a neutralizer (3088, TSI Inc.) and a differential mobility analyzer working with negative polarity (3081, TSI Inc.). The size selected particles were counted by a water-based condensation particle counter (3787 TSI Inc.). The TSI AIM software was used to provide particle size distributions by applying multiple charge and diffusion loss corrections (assumptions: particle density 1 g cmˉ³). Coriolis μ and LINDA: A microbial air sampler (Coriolis μ, bertin Instruments) was used to collect airborne particles for investigating their ice nucleating ability with a droplet freezing device. Particles larger than 0.5 μm were drawn with an air flow rate of up to 300 l min‾¹ into the cone and centrifuged into the wall of the cone due to the forming vortex. The liquid sample was transferred into the LED based Ice Nucleation Detection Apparatus (LINDA, University of Basel) to study heterogeneous ice formation (immersion freezing mode) of ambient airborne particles. ", + "license": "not-provided" + }, + { + "id": "alnus-glutinosa-orientus-ishidae-flavescence-doree.v1.0", + "title": "Alnus glutinosa (L.) Gaertn. and Orientus ishidae (Matsumura, 1902) share phytoplasma genotypes linked to the \u201cFlavescence dor\u00e9e\u201d epidemics", + "catalog": "ENVIDAT", + "state_date": "2021-01-01", + "end_date": "2021-01-01", + "bbox": "8.4484863, 45.8115721, 9.4372559, 46.4586735", + "url": "https://cmr.earthdata.nasa.gov/search/concepts/C2789814963-ENVIDAT.json", + "metadata": "https://cmr.earthdata.nasa.gov/search/concepts/C2789814963-ENVIDAT.html", + "href": "https://cmr.earthdata.nasa.gov/stac/ENVIDAT/collections/alnus-glutinosa-orientus-ishidae-flavescence-doree.v1.0", + "description": "Flavescence dor\u00e9e (FD) is a grapevine disease caused by associated phytoplasmas (FDp), which are epidemically spread by their main vector Scaphoideus titanus. The possible roles of alternative and secondary FDp plant hosts and vectors have gained interest to better understand the FDp ecology and epidemiology. A survey conducted in the surroundings of a vineyard in the Swiss Southern Alps aimed at studying the possible epidemiological role of the FDp secondary vector Orientus ishidae and the FDp host plant Alnus glutinosa is reported. Data used for the publication. Insects were captured by using a sweeping net (on common alder trees) and yellow sticky traps (Rebell Giallo, Andermatt Biocontrol AG, Switzerland) placed in the vineyard canopy. Insects were later determined and selected for molecular analyses. Grapevines and common alder samples were collected using the standard techniques. The molecular analyses were conducted in order to identify samples infected by the Flavescence dor\u00e9e phytoplasma (16SrV-p) and the Bois Noir phytoplasma (16SrXII-p). A selection of the infected sampled were further characterized by map genotype and sequenced in order to compare the genotypes in insects, grapevines and common alder trees. ", + "license": "not-provided" + }, + { + "id": "alpine3d-simulations-of-future-climate-scenarios-for-graubunden.v1.0", + "title": "Alpine3D simulations of future climate scenarios for Graubunden", + "catalog": "ENVIDAT", + "state_date": "2019-01-01", + "end_date": "2019-01-01", + "bbox": "8.6737061, 46.2216525, 10.6347656, 47.1075228", + "url": "https://cmr.earthdata.nasa.gov/search/concepts/C2789814545-ENVIDAT.json", + "metadata": "https://cmr.earthdata.nasa.gov/search/concepts/C2789814545-ENVIDAT.html", + "href": "https://cmr.earthdata.nasa.gov/stac/ENVIDAT/collections/alpine3d-simulations-of-future-climate-scenarios-for-graubunden.v1.0", + "description": "This is the simulation dataset from _\"Response of snow cover and runoff to climate change in high Alpine catchments of Eastern Switzerland\"_, M. Bavay, T. Gr\u00fcnewald, M. Lehning, Advances in Water Resources __55__, 4-16, 2013 A model study on the impact of climate change on snow cover and runoff has been conducted for the Swiss Canton of Graub\u00fcnden. The model Alpine3D has been forced with the data from 35 Automatic Weather Stations in order to investigate snow and runoff dynamics for the current climate. The data set has then been modified to reflect climate change as predicted for the 2021-2050 and 2070-2095 periods from an ensemble of regional climate models. The predicted changes in snow cover will be moderate for 2021-2050 and become drastic in the second half of the century. Towards the end of the century the snow cover changes will roughly be equivalent to an elevation shift of 800 m. Seasonal snow water equivalents will decrease by one to two thirds and snow seasons will be shortened by five to nine weeks in 2095. Small, higher elevation catchments will show more winter runoff, earlier spring melt peaks and reduced summer runoff. Where glacierized areas exist, the transitional increase in glacier melt will initially offset losses from snow melt. Larger catchments, which reach lower elevations will show much smaller changes since they are already dominated by summer precipitation.", + "license": "not-provided" + }, { "id": "amprimpacts.v1", "title": "Advanced Microwave Precipitation Radiometer (AMPR) IMPACTS", @@ -4679,6 +4874,19 @@ "description": "Horizontal blue ice core collected from the surface of a blue ice area in Scharffenbergbotnen, Heimefrontfjella, DML. Samples were collected in austral summer 2003/2004 and transported to Finland for chemical analyses. The blue ice core is estimated to represent a 1000-year period of climate history 20 - 40 kyr B.P.. The results of the analyses will be available in 2005.", "license": "not-provided" }, + { + "id": "ch2014.v1", + "title": "Alpine3D simulations of future climate scenarios CH2014", + "catalog": "ENVIDAT", + "state_date": "2014-01-01", + "end_date": "2014-01-01", + "bbox": "8.227, 46.79959, 8.227, 46.79959", + "url": "https://cmr.earthdata.nasa.gov/search/concepts/C2789814657-ENVIDAT.json", + "metadata": "https://cmr.earthdata.nasa.gov/search/concepts/C2789814657-ENVIDAT.html", + "href": "https://cmr.earthdata.nasa.gov/stac/ENVIDAT/collections/ch2014.v1", + "description": "# Overview The CH2014-Impacts initiative is a concerted national effort to describe impacts of climate change in Switzerland quantitatively, drawing on the scientific resources available in Switzerland today. The initiative links the recently developed Swiss Climate Change Scenarios CH2011 with an evolving base of quantitative impact models. The use of a common climate data set across disciplines and research groups sets a high standard of consistency and comparability of results. Impact studies explore the wide range of climatic changes in temperature and precipitation projected in CH2011 for the 21st century, which vary with the assumed global level of greenhouse gases, the time horizon, the underlying climate model, and the geographical region within Switzerland. The differences among climate projections are considered using three greenhouse gas scenarios, three future time periods in the 21st century, and three climate uncertainty levels (Figure 1). Impacts are shown with respect to the reference period 1980-2009 of CH2011, and add to any impacts that have already emerged as a result of earlier climate change. # Experimental Setup Future snow cover changes are simulated with the physics-based model Alpine3D (Lehning et al., 2006). It is applied to two regions: The canton of Graub\u00fcnden and the Aare catchment. These domains are modeled with a Digital Elevation Model (DEM) with a resolution of 200 m \u00d7 200 m. This defines the simulation grid that has to be filled with land cover data and downscaled meteorological input data for each cell for the time period of interest at hourly resolution. The reference data set consists of automatic weather station data. All meteorological input parameters are spatially interpolated to the simulation grid. The reference period comprises only thirteen years (1999\u20132012), because the number of available high elevation weather stations for earlier times is not sufficient to achieve unbiased distribution of the observations with elevation. The model uses projected temperature and precipitation changes for all greenhouse gas scenarios (A1B, A2, and RCP3PD) and CH2011 time periods (2035, 2060, and 2085). # Data Snow cover changes are projected to be relatively small in the near term (2035) (Figure 5.1 top), in particular at higher elevations above 2000 m asl. As shown by Bavay et al. (2013) the spread in projected snow cover for this period is greater between different climate model chains (Chapter 3) than between the reference period and the model chain exhibiting the most moderate change. In the 2085 period much larger changes with the potential to fundamentally transform the snow dominated alpine area become apparent (Figure 5.1 bottom). These changes include a shortening of the snow season by 5\u20139 weeks for the A1B scenario. This is roughly equivalent to an elevation shift of 400\u2013800 m. The slight increase of winter precipitation and therefore snow fall projected in the CH2011 scenarios (with high associated uncertainty) can no longer compensate for the effect of increasing winter temperatures even at high elevations. In terms of Snow Water Equivalents (SWE), the projected reduction is up to two thirds toward the end of the century (2085). A continuous snow cover will be restricted to a shorter time period and/or to regions at increasingly high elevation. In Bern, for example, the number of days per year with at least 5 cm snow depth will decrease by 90% from now 20 days to only 2 days on average. ", + "license": "not-provided" + }, { "id": "chesapeake_val_2013.v0", "title": "2013 Chesapeake Bay measurements", @@ -4744,6 +4952,19 @@ "description": "Indian Remote Sensing satellites (IRS) are a series of Earth Observation satellites, built, launched and maintained by Indian Space Research Organisation. The IRS series provides many remote sensing services to India and international ground stations. The satellite has two panchromatic cameras that were especially designed for in flight stereo viewing. However, this collection contains the monoscopic data.", "license": "not-provided" }, + { + "id": "envidat-lwf-34.v2019-03-06", + "title": "10-HS Pfynwald", + "catalog": "ENVIDAT", + "state_date": "2019-01-01", + "end_date": "2019-01-01", + "bbox": "7.61211, 46.30279, 7.61211, 46.30279", + "url": "https://cmr.earthdata.nasa.gov/search/concepts/C2789815241-ENVIDAT.json", + "metadata": "https://cmr.earthdata.nasa.gov/search/concepts/C2789815241-ENVIDAT.html", + "href": "https://cmr.earthdata.nasa.gov/stac/ENVIDAT/collections/envidat-lwf-34.v2019-03-06", + "description": "Continuous measurement of soil water content at 10 and 80 cm depth (3 replications) with 10-HS soil moisture probes (Decagon Incorporation, Pullman, WA, USA). ### Purpose: ### Monitoring of the soil water matrix potential ### Paper Citation: ### * Dobbertin, M.; Eilmann, B.; Bleuler, P.; Giuggiola, A.; Graf Pannatier, E.; Landolt, W.; Schleppi, P.; Rigling, A., 2010: Effect of irrigation on needle morphology, shoot and stem growth in a drought-exposed Pinus sylvestris forest. Tree Physiology, 30, 3: 346-360. [doi: 10.1093/treephys/tpp123](http://doi.org/10.1093/treephys/tpp123) ", + "license": "not-provided" + }, { "id": "fife_hydrology_strm_15m_1.v1", "title": "15 Minute Stream Flow Data: USGS (FIFE)", @@ -4952,6 +5173,19 @@ "description": "2014 Lake Erie measurements.", "license": "not-provided" }, + { + "id": "latent-reserves-in-the-swiss-nfi.v1.0", + "title": "'Latent reserves' within the Swiss NFI", + "catalog": "ENVIDAT", + "state_date": "2020-01-01", + "end_date": "2020-01-01", + "bbox": "5.95587, 45.81802, 10.49203, 47.80838", + "url": "https://cmr.earthdata.nasa.gov/search/concepts/C2789815280-ENVIDAT.json", + "metadata": "https://cmr.earthdata.nasa.gov/search/concepts/C2789815280-ENVIDAT.html", + "href": "https://cmr.earthdata.nasa.gov/stac/ENVIDAT/collections/latent-reserves-in-the-swiss-nfi.v1.0", + "description": "The files refer to the data used in Portier et al. \"\u2018Latent reserves\u2019: a hidden treasure in National Forest Inventories\" (2020) *Journal of Ecology*. **'Latent reserves'** are defined as plots in National Forest Inventories (NFI) that have been free of human influence for >40 to >70 years. They can be used to investigate and acquire a deeper understanding of attributes and processes of near-natural forests using existing long-term data. To determine which NFI sample plots could be considered \u2018latent reserves\u2019, criteria were defined based on the information available in the Swiss NFI database: * Shrub forests were excluded. * Plots must have been free of any kind of management, including salvage logging or sanitary cuts, for a minimum amount of time. Thresholds of 40, 50, 60 and 70 years without intervention were tested. * To ensure that species composition was not influenced by past management, plots where potential vegetation was classified as deciduous by Ellenberg & Kl\u00f6tzli (1972) had to have an observed proportion of deciduous trees matching the theoretical proportion expected in a natural deciduous forest, as defined by Kienast, Brzeziecki, & Wildi (1994). * Plots had to originate from natural regeneration. * Intensive livestock grazing must never have occurred on the plots. The tables stored here were derived from the first, second and third campaigns of the Swiss NFI. The raw data from the Swiss NFI can be provided free of charge within the scope of a contractual agreement (http://www.lfi.ch/dienstleist/daten-en.php). **** The files 'Data figure 2' to 'Data figure 8' are publicly available and contain the data used to produce the figures published in the paper. The files 'Plot-level data for characterisation of 'latent reserves' and 'Tree-level data for characterisation of 'latent reserves' contain all the data required to reproduce the section of the article concerning the characterisation of 'latent reserves' and the comparison to managed forests. The file 'Data for mortality analyses' contains the data required to reproduce the section of the article concerning tree mortality in 'latent reserves'. The access to these three files is restricted as they contain some raw data from the Swiss NFI, submitted to the Swiss law and only accessible upon contractual agreement. ", + "license": "not-provided" + }, { "id": "law_dome_annual_msa.v1", "title": "150 year MSA sea ice proxy record from Law Dome, Antarctica", @@ -4978,6 +5212,45 @@ "description": "This work presents results from a short firn core spanning 15 years collected from near Mount Brown, Wilhelm II Land, East Antarctica. Variations of methanesulphonic acid (MSA) at Mount Brown were positively correlated with sea-ice extent from the coastal region surrounding Mount Brown (60-1208 E) and from around the entire Antarctic coast (0-3608 E). Previous results from Law Dome identified this MSA-sea-ice relationship and proposed it as an Antarctic sea-ice proxy (Curran and others, 2003), with the strongest results found for the local Law Dome region. Our data provide supporting evidence for the Law Dome proxy (at another site in East Antarctica), but a deeper Mount Brown ice core is required to confirm the sea-ice decline suggested by Curran and others (2003). Results also indicate that this deeper record may also provide a more circum-Antarctic sea-ice proxy. This work was completed as part of ASAC project 757 (ASAC_757).", "license": "not-provided" }, + { + "id": "mosaic-cbers4-brazil-3m-1", + "title": "CBERS-4/WFI Image Mosaic of Brazil - 3 Months", + "catalog": "INPE", + "state_date": "2020-04-01", + "end_date": "2020-06-30", + "bbox": "-76.6054059, -33.7511817, -27.7877802, 6.3052432", + "url": "https://cmr.earthdata.nasa.gov/search/concepts/C3108204634-INPE.json", + "metadata": "https://cmr.earthdata.nasa.gov/search/concepts/C3108204634-INPE.html", + "href": "https://cmr.earthdata.nasa.gov/stac/INPE/collections/mosaic-cbers4-brazil-3m-1", + "description": "CBERS-4/WFI image mosaic of Brazil with 64m of spatial resolution. The mosaic was prepared in order to demonstrate the technological capabilities of the Brazil Data Cube project tools. The false color composition is based on the WFI bands 15, 16 and 13 assigned to RGB channels. The temporal composition encompasses 03-months of images, starting in April 2020 and ending in June 2020, with a best pixel selection approach called Least Cloud Cover First (LCF). More information on LCF can be found at Brazil Data Cube web site (https://brazil-data-cube.github.io/specifications/processing-flow.html#temporal-compositing). This Image Mosaic used more than 1200 CBERS-4 scenes and was generated based on an existing CBERS-4/WFI image collection.", + "license": "not-provided" + }, + { + "id": "mosaic-cbers4a-paraiba-3m-1", + "title": "CBERS-4A/WFI Image Mosaic of Brazil Para\u00edba State - 3 Months", + "catalog": "INPE", + "state_date": "2020-07-01", + "end_date": "2020-09-30", + "bbox": "-38.8134896, -8.3976443, -34.7223714, -5.87659", + "url": "https://cmr.earthdata.nasa.gov/search/concepts/C3108204719-INPE.json", + "metadata": "https://cmr.earthdata.nasa.gov/search/concepts/C3108204719-INPE.html", + "href": "https://cmr.earthdata.nasa.gov/stac/INPE/collections/mosaic-cbers4a-paraiba-3m-1", + "description": "CBERS-4A/WFI image mosaic of Brazil Para\u00edba State with 55m of spatial resolution. The mosaic was prepared in order to demonstrate the technological capabilities of the Brazil Data Cube project tools. The false color composition is based on the WFI bands 16, 15 and 14 assigned to RGB channels. The temporal composition encompasses 03-months of images, starting in July 2020 and ending in September 2020, with a best pixel selection approach called Least Cloud Cover First (LCF). More information on LCF can be found at Brazil Data Cube web site (https://brazil-data-cube.github.io/specifications/processing-flow.html#temporal-compositing). This Image Mosaic used more than 50 CBERS-4A scenes and was generated based on an existing CBERS-4A/WFI image collection.", + "license": "not-provided" + }, + { + "id": "pfynwaldgasexchange.v1.0", + "title": "2013-2020 gas exchange at Pfynwald", + "catalog": "ENVIDAT", + "state_date": "2021-01-01", + "end_date": "2021-01-01", + "bbox": "7.6105556, 46.3001905, 7.6163921, 46.3047564", + "url": "https://cmr.earthdata.nasa.gov/search/concepts/C2789816347-ENVIDAT.json", + "metadata": "https://cmr.earthdata.nasa.gov/search/concepts/C2789816347-ENVIDAT.html", + "href": "https://cmr.earthdata.nasa.gov/stac/ENVIDAT/collections/pfynwaldgasexchange.v1.0", + "description": "Gas exchange was measured on control, irrigated and irrigation-stop trees at the irrigation experiment Pfynwald, during the years 2013, 2014, 2016-2020. The measurement campaigns served different purposes, resulting in a large dataset containing survey data, CO2 response curves of photosynthesis, light response curves of photosynthesis, and fluorescence measurements. Measurements were done with LiCor 6400 and LiCor 6800 instruments. Until 2016, measurements were done on excised branches or branches lower in the canopy. From 2016 onwards, measurements were done in the top of the canopy using fixed installed scaffolds. All metadata can be found in the attached documents.", + "license": "not-provided" + }, { "id": "urn:ogc:def:EOP:VITO:VGT_S10.v1", "title": "10 Days Synthesis of SPOT VEGETATION Images (VGT-S10)", diff --git a/nasa_cmr_catalog.tsv b/nasa_cmr_catalog.tsv index b621536c8d..2c4cb02cd6 100644 --- a/nasa_cmr_catalog.tsv +++ b/nasa_cmr_catalog.tsv @@ -97,6 +97,7 @@ ALOS.PALSAR.FBS.FBD.PLR.products ALOS PALSAR products ESA 2006-05-02 2011-04-14 ALOSIPY ALOS PALSAR International Polar Year Antarctica ESA 2008-07-25 2010-03-31 -180, -90, 180, -50 https://cmr.earthdata.nasa.gov/search/concepts/C1965336817-ESA.json International Polar Year (IPY), focusing on the north and south polar regions, aimed to investigate the impact of how changes to the ice sheets affect ocean and climate change to the habitats in these regions. IPY was a collaborative project involving over sixty countries for two years from March 2007 to March 2009. To meet the project goal, world space agencies observed these regions intensively using their own Earth observation satellites. One of these satellites, ALOS - with the PALSAR (Phased Array type L-band Synthetic Aperture Radar) sensor - observed these regions independently from day-night conditions or weather conditions. Carrying on this initiative, ESA is providing the ALOS PALSAR IPY Antarctica dataset, which consists of full resolution ALOS PALSAR ScanSAR WB1 products (100m spatial resolution) over Antarctica from July 2008 (cycle 21) to December 2008 (Cycle 24) and from May 2009 (cycle 27) to March 2010 (cycle 31). Missing products between the two periods above is due to L0 data over Antarctica not being available in ADEN archives and not processed to L1. Spatial coverage: Check the spatial coverage of the collection on a _$$map$$ https://tpm-ds.eo.esa.int/smcat/ALOSIPY/ available on the Third Party Missions Dissemination Service. not-provided ALOS_PRISM_L1B Alos PRISM L1B ESA 2006-07-09 2011-03-31 -180, -90, 180, 90 https://cmr.earthdata.nasa.gov/search/concepts/C2119689640-ESA.json This collection provides access to the ALOS-1 PRISM (Panchromatic Remote-sensing Instrument for Stereo Mapping) L1B data acquired by ESA stations in the ADEN zone plus some data requested by European scientists over their areas of interest around the world. The ADEN zone (https://earth.esa.int/eogateway/documents/20142/37627/ALOS-ADEN-Zone.pdf) was the area belonging to the European Data node and covered both the European and African continents, a large part of Greenland and the Middle East. The full mission is covered, though with gaps outside of the ADEN zone: Time window: from 2006-07-09 to 2011-03-31 Orbits: from 2425 to 24189 Path (corresponds to JAXA track number): from 1 to 668 Row (corresponds to JAXA scene centre frame number): from 55 to 7185. Two different Level 1B product types (Panchromatic images in VIS-NIR bands, 2.5 m resolution at nadir) are offered, one for each available sensor mode: PSM_OB1_11 -> composed of up to three views; Nadir, Forward and Backward at 35 km swath PSM_OB2_11 -> composed of up to two views; Nadir view at 70 km width and Backward view at 35 km width. All ALOS PRISM EO-SIP products have, at least, the Nadir view which is used for the frame number identification. All views are packaged together; each view, in CEOS format, is stored in a directory named according to the view ID according to the JAXA naming convention. not-provided AM1EPHNE.v6.1NRT Files containing only extrapolated orbital metadata, to be read via SDP Toolkit, Binary Format LANCEMODIS 2016-01-24 -180, -90, 180, 90 https://cmr.earthdata.nasa.gov/search/concepts/C1426293893-LANCEMODIS.json AM1EPHNE is the Terra Near Real Time (NRT) 2-hour spacecraft Extrapolated ephemeris data file in native format. The file name format is the following: AM1EPHNE.Ayyyyddd.hhmm.vvv.yyyydddhhmmss where from left to right: E = Extrapolated; N = Native format; A = AM1 (Terra); yyyy = data year, ddd = Julian data day, hh = data hour, mm = data minute; vvv = Version ID; yyyy = production year, ddd = Julian production day, hh = production hour, mm = production minute, and ss = production second. Data set information: http://modis.gsfc.nasa.gov/sci_team/ not-provided +AMZ1-WFI-L4-SR-1 AMAZONIA-1/WFI - Level-4-SR - Cloud Optimized GeoTIFF INPE 2024-01-01 2024-06-09 -135.151782, -45.613218, 106.18473, 63.78312 https://cmr.earthdata.nasa.gov/search/concepts/C3108204639-INPE.json AMAZONIA-1/WFI Surface Reflectance product over Brazil. L4 SR product provides orthorectified surface reflectance images. This dataset is provided as Cloud Optimized GeoTIFF (COG). not-provided APSF Aerial Photo Single Frames USGS_LTA 1970-01-01 -180, -90, 180, 90 https://cmr.earthdata.nasa.gov/search/concepts/C1220567654-USGS_LTA.json The Aerial Photography Single Frame Records collection is a large and diverse group of imagery acquired by Federal organizations from 1937 to the present. Over 6.4 million frames of photographic images are available for download as medium and high resolution digital products. The high resolution data provide access to photogrammetric quality scans of aerial photographs with sufficient resolution to reveal landscape detail and to facilitate the interpretability of landscape features. Coverage is predominantly over the United States and includes portions of Central America and Puerto Rico. Individual photographs vary in scale, size, film type, quality, and coverage. not-provided AQUARIUS_ANCILLARY_CELESTIALSKY_V1.v1 Aquarius Celestial Sky Microwave Emission Map Ancillary Dataset V1.0 POCLOUD 2011-09-01 2015-06-07 -180, -90, 180, 90 https://cmr.earthdata.nasa.gov/search/concepts/C2617176761-POCLOUD.json "This datasets contains three maps of L-band (wavelength = 21 cm) brightness temperature of the celestial sky (""Galaxy"") used in the processing of the NASA Aquarius instrument data. The maps report Sky brightness temperatures in Kelvin gridded on the Earth Centered Inertial (ECI) reference frame epoch J2000. They are sampled over 721 Declinations between -90 degrees and +90 degrees and 1441 Right Ascensions between 0 degrees and 360 degrees, all evenly spaced at 0.25 degrees intervals. The brightness temperatures are assumed temporally invariant and polarization has been neglected. They include microwave continuum and atomic hydrogen line (HI) emissions. The maps differ only in how the strong radio source Cassiopeia A has been included into the whole sky background surveys: 1/ TB_no_Cas_A does not include Cassiopeia A and reports only the whole Sky surveys. 2/ TB_Cas_A_1cell spread Cas A total flux homogeneously over 1 map grid cell (i.e. 9.8572E-6 sr). 3/ TB_Cas_A_beam spreads Cas A over surrounding grid cells using a convolution by a Gaussian beam with HPBW of 35 arcmin (equivalent to the instrument used for the Sky surveys). Cassiopeia A is a supernova remnant (SNR) in the constellation Cassiopeia and the brightest extra-solar radio source in the sky at frequencies above 1." not-provided AQUARIUS_L2_SSS_CAP_V5.v5.0 Aquarius CAP Level 2 Sea Surface Salinity, Wind Speed & Direction Data V5.0 POCLOUD 2011-08-26 2015-06-05 -180, -90, 180, 90 https://cmr.earthdata.nasa.gov/search/concepts/C2205121315-POCLOUD.json The version 5.0 Aquarius CAP Level 2 product contains the fourth release of the AQUARIUS/SAC-D orbital/swath data based on the Combined Active Passive (CAP) algorithm. CAP is a P.I. produced dataset developed and provided by JPL. This Level 2 dataset contains sea surface salinity (SSS), wind speed and wind direction data derived from 3 different radiometers and the onboard scatterometer. The CAP algorithm simultaneously retrieves the salinity, wind speed and direction by minimizing the sum of squared differences between model and observations. The main improvements in CAP V5.0 relative to the previous version include: updates to the Geophysical Model Functions to 4th order harmonics with the inclusion of sea surface temperature (SST) and stability at air-sea interface effects; use of the Canadian Meteorological Center (CMC) SST product as the new source ancillary sea surface temperature data in place of NOAA OI SST. Each L2 data file covers one 98 minute orbit. The Aquarius instrument is onboard the AQUARIUS/SAC-D satellite, a collaborative effort between NASA and the Argentinian Space Agency Comision Nacional de Actividades Espaciales (CONAE). The instrument consists of three radiometers in push broom alignment at incidence angles of 29, 38, and 46 degrees incidence angles relative to the shadow side of the orbit. Footprints for the beams are: 76 km (along-track) x 94 km (cross-track), 84 km x 120 km and 96km x 156 km, yielding a total cross-track swath of 370 km. The radiometers measure brightness temperature at 1.413 GHz in their respective horizontal and vertical polarizations (TH and TV). A scatterometer operating at 1.26 GHz measures ocean backscatter in each footprint that is used for surface roughness corrections in the estimation of salinity. The scatterometer has an approximate 390km swath. not-provided @@ -152,6 +153,13 @@ C1_PANF_STUC00GTD.v1 Cartosat-1 PANF Standard Products ISRO 2005-08-05 -180, -9 CAM5K30CF.v002 Combined ASTER and MODIS Emissivity database over Land (CAMEL) Coefficient Monthly Global 0.05Deg V002 LPCLOUD 2000-04-01 2017-01-01 -180, -90, 180, 90 https://cmr.earthdata.nasa.gov/search/concepts/C2763266335-LPCLOUD.json The NASA Making Earth System Data Records for Use in Research Environments (MEaSUREs) (https://earthdata.nasa.gov/community/community-data-system-programs/measures-projects) Combined ASTER and MODIS Emissivity for Land (CAMEL) dataset provides monthly coefficients at 0.05 degree (~5 kilometer) resolution (CAM5K30CF). The CAMEL Principal Components Analysis (PCA) input coefficients utilized in the CAMEL high spectral resolution (HSR) algorithm are provided in the CAM5K30CF data product and are congruent to the temporally equivalent CAM5K30EM emissivity data product. Additional details regarding the methodology are available in the User Guide and Algorithm Theoretical Basis Document (ATBD) (https://lpdaac.usgs.gov/documents/219/cam5k30_v2_user_guide_atbd.pdf). Provided in the CAM5K30CF product are layers for PCA coefficients, number of PCA coefficients, laboratory version, snow fraction derived from MODIS Snow Cover data (MOD10), latitude, longitude, and the CAMEL quality information. PCA coefficients are dependent on the version of lab PC data and number of PCs used. not-provided CAM5K30EM.v002 Combined ASTER and MODIS Emissivity database over Land (CAMEL) Emissivity Monthly Global 0.05Deg V002 LPCLOUD 2000-04-01 2017-01-01 -180, -90, 180, 90 https://cmr.earthdata.nasa.gov/search/concepts/C2763266338-LPCLOUD.json The NASA Making Earth System Data Records for Use in Research Environments (MEaSUREs) (https://earthdata.nasa.gov/community/community-data-system-programs/measures-projects) Combined ASTER and MODIS Emissivity for Land (CAMEL) dataset provides monthly emissivity at 0.05 degree (~5 kilometer) resolution (CAM5K30EM). The CAM5K30EM data product was created by combining the University of Wisconsin-Madison MODIS Infrared Emissivity dataset (UWIREMIS) and the Jet Propulsion Laboratory ASTER Global Emissivity Dataset Version 4 (GED V4). The two datasets have been integrated to capitalize on the unique strengths of each product's characteristics. The integration steps include: adjustment of ASTER GED Version 3 emissivities for vegetation and snow cover variations to produce ASTER GED Version 4, aggregation of ASTER GED Version 4 emissivities from 100 meter resolution to the University of Wisconsin-Madison MODIS Baseline Fit (UWBF) 5 kilometer resolution, merging of the 5 ASTER spectral emissivities with the UWBF emissivity to create CAMEL at 13 hinge points, and extension of the 13 hinge points to high spectral resolution (HSR) utilizing the Principal Component (PC) regression method. Additional details regarding the methodology are available in the User Guide and Algorithm Theoretical Basis Document (ATBD) (https://lpdaac.usgs.gov/documents/219/cam5k30_v2_user_guide_atbd.pdf). Provided in the CAM5K30EM product are layers for the CAMEL emissivity, ASTER Normalized Difference Vegetation Index (NDVI), snow fraction derived from MODIS (MOD10), latitude, longitude, CAMEL quality, ASTER quality, and Best Fit Emissivity (BFE) quality information. not-provided CAM5K30UC.v002 Combined ASTER and MODIS Emissivity database over Land (CAMEL) Uncertainty Monthly Global 0.05Deg V002 LPCLOUD 2000-04-01 2017-01-01 -180, -90, 180, 90 https://cmr.earthdata.nasa.gov/search/concepts/C2763266343-LPCLOUD.json The NASA Making Earth System Data Records for Use in Research Environments (MEaSUREs) (https://earthdata.nasa.gov/community/community-data-system-programs/measures-projects) Combined ASTER and MODIS Emissivity for Land (CAMEL) dataset provides monthly emissivity uncertainty at 0.05 degree (~5 kilometer) resolution (CAM5K30UC). CAM5K30UC is an estimation of total emissivity uncertainty, comprising 3 independent components of variability: temporal, spatial, and algorithm. Each measure of uncertainty is provided for all 13 hinge points of emissivity and each latitude-longitude point. Additional details regarding the methodology are available in the User Guide and Algorithm Theoretical Basis Document (ATBD) (https://lpdaac.usgs.gov/documents/219/cam5k30_v2_user_guide_atbd.pdf). Corresponding emissivity values can be found in the CAM5K30EM data product. Provided in the CAM5K30UC product are layers for algorithm uncertainty, spatial uncertainty, temporal uncertainty, total uncertainty, latitude, longitude, spectral wavelength, CAMEL quality, and total uncertainty quality information. not-provided +CB4-MUX-L4-SR-1 CBERS-4/MUX - Level-4-SR - Cloud Optimized GeoTIFF INPE 2016-01-01 2024-06-09 -79.392902, -40.793661, 49.863137, 28.185483 https://cmr.earthdata.nasa.gov/search/concepts/C3108204643-INPE.json CBERS-4/MUX Surface Reflectance product over Brazil. L4 SR product provides orthorectified surface reflectance images. This dataset is provided as Cloud Optimized GeoTIFF (COG). not-provided +CB4-WFI-L4-SR-1 CBERS-4/WFI - Level-4-SR - Cloud Optimized GeoTIFF INPE 2016-01-01 2024-06-09 -84.468045, -46.643149, 57.533125, 42.454712 https://cmr.earthdata.nasa.gov/search/concepts/C3108204413-INPE.json CBERS-4/WFI Surface Reflectance product over Brazil. L4 SR product provides orthorectified surface reflectance images. This dataset is provided as Cloud Optimized GeoTIFF (COG). not-provided +CB4A-WFI-L4-SR-1 CBERS-4A/WFI - Level-4-SR - Cloud Optimized GeoTIFF INPE 2020-01-01 2024-06-09 -81.507167, -38.111915, 51.482289, 39.663251 https://cmr.earthdata.nasa.gov/search/concepts/C3108204696-INPE.json CBERS-4A/WFI Surface Reflectance product over Brazil. L4 SR product provides orthorectified surface reflectance images. This dataset is provided as Cloud Optimized GeoTIFF (COG). not-provided +CB4A-WPM-PCA-FUSED-1 CBERS-4A/WPM - Multispectral and Panchromatic Bands Fusioned INPE 2023-03-02 2024-06-16 -74.678026, -34.572211, -34.099281, 6.02882 https://cmr.earthdata.nasa.gov/search/concepts/C3108204169-INPE.json This collection contains 2 meter high-resolution, RGB products, generated using the Principal Components Fusion (PCA) method, with values coded between 1 and 255, with 0 being reserved for 'No Data'. This product is derived from the original CBERS-4A WPM Level-4 Digital Number with 10 bit of quantization. not-provided +CBERS-WFI-8D-1 CBERS/WFI - Level-4-SR - Data Cube - LCF 8 days INPE 2020-01-01 2024-05-31 -76.2226604, -36.733211, -32.761135, 6.013904 https://cmr.earthdata.nasa.gov/search/concepts/C3108204417-INPE.json Earth Observation Data Cube generated from CBERS-4/WFI and CBERS-4A/WFI Level-4 SR products over Brazil extension. This dataset is provided in Cloud Optimized GeoTIFF (COG) file format. The dataset is processed with 64 meters of spatial resolution, reprojected and cropped to BDC_LG grid Version 2 (BDC_LG V2), considering a temporal compositing function of 8 days using the Least Cloud Cover First (LCF) best pixel approach. not-provided +CBERS4-MUX-2M-1 CBERS-4/MUX - Level-4-SR - Data Cube - LCF 2 months INPE 2016-01-01 2024-04-30 -75.9138367, -34.6755646, -27.9114219, 5.9260044 https://cmr.earthdata.nasa.gov/search/concepts/C3108204197-INPE.json Earth Observation Data Cube generated from CBERS-4/MUX Level-4 SR product over Brazil extension. This dataset is provided in Cloud Optimized GeoTIFF (COG) file format. The dataset is processed with 20 meters of spatial resolution, reprojected and cropped to BDC_MD grid Version 2 (BDC_MD V2), considering a temporal compositing function of 2 months using the Least Cloud Cover First (LCF) best pixel approach. not-provided +CBERS4-WFI-16D-2 CBERS-4/WFI - Level-4-SR - Data Cube - LCF 16 days INPE 2016-01-01 2024-05-23 -76.2226604, -36.7332109, -32.7611351, 6.0139036 https://cmr.earthdata.nasa.gov/search/concepts/C3108204143-INPE.json Earth Observation Data Cube generated from CBERS-4/WFI Level-4 SR product over Brazil extension. This dataset is provided in Cloud Optimized GeoTIFF (COG) file format. The dataset is processed with 64 meters of spatial resolution, reprojected and cropped to BDC_LG grid Version 2 (BDC_LG V2), considering a temporal compositing function of 16 days using the Least Cloud Cover First (LCF) best pixel approach. not-provided CDDIS MEASURES products strain rate grids.v1 CDDIS SESES MEaSUREs products strain rate grids CDDIS 1992-01-01 -180, -90, 180, 90 https://cmr.earthdata.nasa.gov/search/concepts/C2978524117-CDDIS.json Making Earth System Data Records for Use in Research Environments (MEaSUREs) empowers the research community to participate in developing and generating data products that complement and augment NASA produced and distributed Earth science data products. NASA’s Enhanced Solid Earth Science Earth Science Data Record (ESDR) System (ESESES) continues and extends mature geodetic data product generation and archival as part of the MEaSUREs SESES project providing new, multi-decade, calibrated and validated geodetic-derived ESDRs obtained by the Scripps Institution of Oceanography (SIO) and NASA's Jet Propulsion Laboratory (JPL). These data-derived products include continuous multi-year high-rate GNSS, seismogeodetic, and meteorological time series, a catalog of transient deformation in tectonically active areas known for aseismic motion such as ETS with focus in Cascadia, and continuous estimation and cataloging of total near-surface water content derived from continuous GNSS time series over the continental U.S. not-provided CDDIS MEaSURES products velocities.v1 CDDIS SESES MEaSUREs products velocities CDDIS 1992-01-01 -180, -90, 180, 90 https://cmr.earthdata.nasa.gov/search/concepts/C2978562718-CDDIS.json Making Earth System Data Records for Use in Research Environments (MEaSUREs) empowers the research community to participate in developing and generating data products that complement and augment NASA produced and distributed Earth science data products. NASA’s Enhanced Solid Earth Science Earth Science Data Record (ESDR) System (ESESES) continues and extends mature geodetic data product generation and archival as part of the MEaSUREs SESES project providing new, multi-decade, calibrated and validated geodetic-derived ESDRs obtained by the Scripps Institution of Oceanography (SIO) and NASA's Jet Propulsion Laboratory (JPL). These data-derived products include continuous multi-year high-rate GNSS, seismogeodetic, and meteorological time series, a catalog of transient deformation in tectonically active areas known for aseismic motion such as ETS with focus in Cascadia, and continuous estimation and cataloging of total near-surface water content derived from continuous GNSS time series over the continental U.S. not-provided CDDIS_GNSS_products_IGS20.v1 CDDIS GNSS ITRF2020 IGS products (IGS20) CDDIS 1983-01-01 -180, -90, 180, 90 https://cmr.earthdata.nasa.gov/search/concepts/C2433571719-CDDIS.json These data-derived products are the International GNSS Service (IGS) Analysis Centers' (AC) contribution to the International Terrestrial Reference Frame (ITRF) 2020. not-provided @@ -247,6 +255,7 @@ Leaf_Photosynthesis_Traits_1224.v1 A Global Data Set of Leaf Photosynthetic Rate Level_2A_aerosol_cloud_optical_products Aeolus L2A Aerosol/Cloud optical product ESA 2021-05-26 -180, -90, 180, 90 https://cmr.earthdata.nasa.gov/search/concepts/C2207498185-ESA.json "The Level 2A aerosol/cloud optical products of the Aeolus mission include geo-located consolidated backscatter and extinction profiles, backscatter-to-extinction coefficient, LIDAR ratio, scene classification, heterogeneity index and attenuated backscatter signals. Resolution - Horizontal resolution of L2A optical properties at observation scale (~87 km); Exceptions are group properties (horizontal accumulation of measurements from ~3 km to ~87 km) and attenuated backscatters (~3 km); Note: the resolution of ""groups"" in the L2A can only go down to 5 measurements at the moment, i.e. ~15 km horizontal resolution. This could be configured to go to 1 measurement - Vertical resolution 250-2000 m (Defined by Range Bin Settings https://earth.esa.int/eogateway/instruments/aladin/overview-of-the-main-wind-rbs-changes)." not-provided M1_AVH09C1.v6 METOP-B AVHRR Atmospherically Corrected Surface Reflectance Daily L3 Global 0.05 Deg CMG LAADS 2013-01-16 -180, -90, 180, 90 https://cmr.earthdata.nasa.gov/search/concepts/C2187507677-LAADS.json The Long-Term Data Record (LTDR) produces, validates, and distributes a global land surface climate data record (CDR) that uses both mature and well-tested algorithms in concert with the best-available polar-orbiting satellite data from past to the present. The CDR is critically important to studying global climate change. The LTDR project is unique in that it serves as a bridge that connects data derived from the NOAA Advanced Very High Resolution Radiometer (AVHRR), the EOS Moderate resolution Imaging Spectroradiometer (MODIS), the Suomi National Polar-orbiting Partnership (SNPP) Visible Infrared Imaging Radiometer Suite (VIIRS), and Joint Polar Satellite System (JPSS) VIIRS missions. The LTDR draws from the following eight AVHRR missions: NOAA-7, NOAA-9, NOAA-11, NOAA-14, NOAA-16, NOAA-18, NOAA-19, and MetOp-B. Currently, the project generates a daily surface reflectance product as the fundamental climate data record (FCDR) and derives daily Normalized Differential Vegetation Index (NDVI) and Leaf-Area Index/fraction of absorbed Photosynthetically Active Radiation (LAI/fPAR) as two thematic CDRs (TCDR). LAI/fPAR was developed as an experimental product. The METOP-B AVHRR Atmospherically Corrected Surface Reflectance Daily L3 Global 0.05 Deg CMG, short-name M1_ AVH09C1 is generated from GIMMS Advanced Processing System (GAPS) BRDF-corrected Surface Reflectance product (AVH01C1). The M1_ AVH09C1 consist of BRDF-corrected surface reflectance for bands 1, 2, and 3, data Quality flags, angles (solar zenith, view zenith, and relative azimuth), and thermal data (thermal bands 3, 4, and 5). The AVH09C1 product is available in HDF4 file format. not-provided M1_AVH13C1.v6 METOP-B AVHRR Atmospherically Corrected Normalized Difference Vegetation Index Daily L3 Global 0.05 Deg. CMG LAADS 2013-01-16 -180, -90, 180, 90 https://cmr.earthdata.nasa.gov/search/concepts/C2751635237-LAADS.json The Long-Term Data Record (LTDR) produces, validates, and distributes a global land surface climate data record (CDR) that uses both mature and well-tested algorithms in concert with the best-available polar-orbiting satellite data from past to the present. The CDR is critically important to studying global climate change. The LTDR project is unique in that it serves as a bridge that connects data derived from the NOAA Advanced Very High Resolution Radiometer (AVHRR), the EOS Moderate resolution Imaging Spectroradiometer (MODIS), the Suomi National Polar-orbiting Partnership (SNPP) Visible Infrared Imaging Radiometer Suite (VIIRS), and Joint Polar Satellite System (JPSS) VIIRS missions. The LTDR draws from the following eight AVHRR missions: NOAA-7, NOAA-9, NOAA-11, NOAA-14, NOAA-16, NOAA-18, NOAA-19, and MetOp-B. Currently, the project generates a daily surface reflectance product as the fundamental climate data record (FCDR) and derives daily Normalized Differential Vegetation Index (NDVI) and Leaf-Area Index/fraction of absorbed Photosynthetically Active Radiation (LAI/fPAR) as two thematic CDRs (TCDR). LAI/fPAR was developed as an experimental product. The METOP-B AVHRR Atmospherically Corrected Normalized Difference Vegetation Index (NDVI) Daily L3 Global 0.05 Deg CMG, short-name M1_AVH13C1 is generated from GIMMS Advanced Processing System (GAPS) BRDF-corrected Surface Reflectance product (M1_AVH01C1). The M1_AVH13C1 product is available in HDF4 file format. not-provided +MCD14DL_C5_NRT.v005 MODIS/Aqua+Terra Thermal Anomalies/Fire locations 1km FIRMS V005 NRT LM_FIRMS 2014-01-28 -180, -80, 180, 80 https://cmr.earthdata.nasa.gov/search/concepts/C1219768065-LM_FIRMS.json Near Real-Time (NRT) MODIS Thermal Anomalies / Fire locations processed by FIRMS (Fire Information for Resource Management System) - Land Atmosphere Near real time Capability for EOS (LANCE), using swath products (MOD14/MYD14) rather than the tiled MOD14A1 and MYD14A1 products. The thermal anomalies / active fire represent the center of a 1km pixel that is flagged by the MODIS MOD14/MYD14 Fire and Thermal Anomalies algorithm (Giglio 2003) as containing one or more fires within the pixel. This is the most basic fire product in which active fires and other thermal anomalies, such as volcanoes, are identified.MCD14DL are available in the following formats: TXT, SHP, KML, WMS. These data are also provided through the FIRMS Fire Email Alerts. Please note only the TXT and SHP files contain all the attributes. not-provided MIANACP.v1 MISR Aerosol Climatology Product V001 LARC 1999-11-22 -180, -90, 180, 90 https://cmr.earthdata.nasa.gov/search/concepts/C185127378-LARC.json MIANACP_1 is the Multi-angle Imaging SpectroRadiometer (MISR) Aerosol Climatology Product version 1. It is 1) the microphysical and scattering characteristics of pure aerosol upon which routine retrievals are based; 2) mixtures of pure aerosol to be compared with MISR observations; and 3) likelihood value assigned to each mode geographically. The ACP describes mixtures of up to three component aerosol types from a list of eight components, in varying proportions. ACP component aerosol particle data quality depends on the ACP input data, which are based on aerosol particles described in the literature, and consider MISR-specific sensitivity to particle size, single-scattering albedo, and shape, and shape - roughly: small, medium and large; dirty and clean; spherical and nonspherical [Kahn et al. , 1998; 2001]. Also reported in the ACP are the mixtures of these components used by the retrieval algorithm. The MISR instrument consists of nine pushbroom cameras which measure radiance in four spectral bands. Global coverage is achieved in nine days. The cameras are arranged with one camera pointing toward the nadir, four cameras pointing forward, and four cameras pointing aftward. It takes seven minutes for all nine cameras to view the same surface location. The view angles relative to the surface reference ellipsoid, are 0, 26.1, 45.6, 60.0, and 70.5 degrees. The spectral band shapes are nominally Gaussian, centered at 443, 555, 670, and 865 nm. not-provided MIANCAGP.v1 MISR Ancillary Geographic Product V001 LARC 1999-11-07 2005-06-30 -180, -90, 180, 90 https://cmr.earthdata.nasa.gov/search/concepts/C183897339-LARC.json MIANCAGP_1 is the Multi-angle Imaging SpectroRadiometer (MISR) Ancillary Geographic Product version 1. It is a set of 233 pre-computed files. Each AGP file pertains to a single Terra orbital path. MISR production software relies on information in the AGP, such as digital terrain elevation, as input to the algorithms which generate MISR products. The AGP contains eleven fields of geographical data. This product consists primarily of geolocation data on a Space Oblique Mercator (SOM) Grid. It has 233 parts, corresponding to the 233 repeat orbits of the EOS-AM1 Spacecraft. The MISR instrument consists of nine pushbroom cameras which measure radiance in four spectral bands. Global coverage is achieved in nine days. The cameras are arranged with one camera pointing toward the nadir, four cameras pointing forward, and four cameras pointing aftward. It takes seven minutes for all nine cameras to view the same surface location. The view angles relative to the surface reference ellipsoid, are 0, 26.1, 45.6, 60.0, and 70.5 degrees. The spectral band shapes are nominally Gaussian, centered at 443, 555, 670, and 865 nm. not-provided MIANCARP.v2 MISR Ancillary Radiometric Product V002 LARC 1999-12-28 -180, -90, 180, 90 https://cmr.earthdata.nasa.gov/search/concepts/C179031521-LARC.json MIANCARP_2 is the Multi-angle Imaging SpectroRadiometer (MISR) Ancillary Radiometric Product version 2. It is composed of 4 files covering instrument characterization data, pre-flight calibration data, in-flight calibration data, and configuration parameters. The MISR instrument consists of nine pushbroom cameras which measure radiance in four spectral bands. Global coverage is achieved in nine days. The cameras are arranged with one camera pointing toward the nadir, four cameras pointing forward, and four cameras pointing aftward. It takes seven minutes for all nine cameras to view the same surface location. The view angles relative to the surface reference ellipsoid, are 0, 26.1, 45.6, 60.0, and 70.5 degrees. The spectral band shapes are nominally Gaussian, centered at 443, 555, 670, and 865 nm. not-provided @@ -289,8 +298,8 @@ NSF-ANT13-55533.v1 A Multi-decadal Record of Antarctic Benthos: Image Analysis t NSIDC-0212.v1 Airborne Cloud Radar (ACR) Reflectivity, Wakasa Bay, Japan, Version 1 NSIDCV0 2003-01-14 2003-02-03 130, 30, 150, 40 https://cmr.earthdata.nasa.gov/search/concepts/C1386204153-NSIDCV0.json This data set includes 94 GHz co- and cross-polarized radar reflectivity. The Airborne Cloud Radar (ACR) sensor was mounted to a NASA P-3 aircraft flown over the Sea of Japan, the Western Pacific Ocean, and the Japanese Islands. not-provided OMAERUV.v003 OMI/Aura Near UV Aerosol Optical Depth and Single Scattering Albedo 1-orbit L2 Swath 13x24 km V003 NRT OMINRT 2004-07-15 -180, -90, 180, 90 https://cmr.earthdata.nasa.gov/search/concepts/C1000000120-OMINRT.json The OMI/Aura level-2 near UV Aerosol data product 'OMAERUV', recently re-processed using an enhanced algorithm, is now released (April 2012) to the public. The data is available from the NASA Goddard Earth Sciences Data and Information Services Center (GES DISC), http://disc.gsfc.nasa.gov/Aura/OMI/omaeruv_v003.shtml NASA Aura satellite sensors are tracking important atmospheric pollutants from space since its launch in July, 2004. The Ozone Monitoring Instrument(OMI), one of the four Aura satellite sensors with its 2600 km viewing swath width provides daily global measurements of four important US Environmental Protection Agency criteria pollutants (Tropospheric ozone, Nitrogen dioxide,Sulfur dioxide and Aerosols from biomass burning and industrial emissions, HCHO, BrO, OClO and surface UV irradiance. OMI is a contribution of the Netherlands Agency for Aerospace Programs (NIVR)in collaboration with Finish Meterological Institute (FMI), to the US EOS-Aura Mission. The principal investigator (Dr. Pieternel Levelt) institute is the KNMI (Royal Netherlands Meteorological Institute). The Level-2 OMI Aerosol Product OMAERUV from the Aura-OMI is now available from NASAs GSFC Earth Sciences (GES) Data and Information Services Center (DISC) for public access. OMAERUV retrieval algorithm is developed by the US OMI Team Scientists. Dr. Omar Torres (GSFC/NASA) is the principal investigator of this product. The OMAERUV product contains Aerosol Absorption and Aerosol Extinction Optical Depths, and Single Scattering Albedo at three different wavelengths (354, 388 and 500 nm), Aerosol Index, and other ancillary and geolocation parameters, in the OMI field of view (13x24 km). Another standard OMI aerosol product is OMAERO, that is based on the KNMI multi-wavelength spectral fitting algorithm. OMAERUV files are stored in EOS Hierarchical Data Format (HDF-EOS5). Each file contains data from the day lit portion of an orbit (~53 minutes). There are approximately 14 orbits per day. The maximum file size for the OMAERUV data product is about 6 Mbytes. A list of tools for browsing and extracting data from these files can be found at: http://disc.gsfc.nasa.gov/Aura/tools.shtml A short OMAERUV Readme Document that includes brief algorithm description and currently known data quality issues is provided by the OMAERUV Algorithm lead (see http://disc.gsfc.nasa.gov/Aura/OMI/omaeruv_v003.shtml) For more information on Ozone Monitoring Instrument and atmospheric data products, please visit the OMI-Aura sites: http://aura.gsfc.nasa.gov/ http://www.knmi.nl/omi/research/documents/ . OMAERUV Data Groups and Parameters: The OMAERUV data file contains a swath which consists of two groups: Data fields: Total Aerosol Optical Depth (extinction optical depth) and Aerosol Absorption Optical Depths (at 354, 388 and 500 nm), Single Scattering Albedo, UV Aerosol Index, Visible Aerosol Index, and other intermediate and ancillary parameters (e.g. Estimates of Aerosol Total Extinction and Absorption Optical Depths and Single Scattering Albedo at five atmospheric levels, Aerosol Type, Aerosol Layer Height, Normalized Radiance, Lambert equivalent Reflectivity, Surface Albedo, Imaginary Component of Refractive Index) and Data Quality Flags. Geolocation Fields: Latitude, Longitude, Time(TAI93), Seconds, Solar Zenith Angles, Viewing Zenith Angles, Relative Azimuth Angle, Terrain Pressure, Ground Pixel Quality Flags. For the full set of Aura products available from the GES DISC, please see the link below. http://disc.sci.gsfc.nasa.gov/Aura/ Atmospheric Composition data from Aura and other satellite sensors can be ordered from the following sites: http://disc.sci.gsfc.nasa.gov/acdisc/ not-provided OMCLDRR.v003 OMI/Aura Cloud Pressure and Fraction (Raman Scattering) 1-Orbit L2 Swath 13x24 km V003 NRT OMINRT 2004-07-15 -180, -90, 180, 90 https://cmr.earthdata.nasa.gov/search/concepts/C1000000100-OMINRT.json The reprocessed Aura OMI Version 003 Level 2 Cloud Data Product OMCLDRR is made available (in April 2012) to the public from the NASA Goddard Earth Sciences Data and Information Services Center (GES DISC). http://disc.gsfc.nasa.gov/Aura/OMI/omcldrr_v003.shtml ) Aura OMI provides two Level-2 Cloud products (OMCLDRR and OMCLDO2) at pixel resolution (13 x 24 km at nadir) that are based on two different algorithms, the Rotational Raman Scattering method and the O2-O2 absorption method. This level-2 global cloud product (OMCLDRR) provides effective cloud pressure and effective cloud fraction that is based on the least square fitting of the Ring spectrum (filling-in of Fraunhofer lines in the range 392 to 398 nm due to rotational Raman scattering). This product also contains many ancillary and derived parameters, terrain and geolocation information, solar and satellite viewing angles, and quality flags. The shortname for this Level-2 OMI Cloud Pressure and Fraction product is OMCLDRR and the algorithm lead for this product is NASA OMI scientist Dr. Joanna Joinner. OMCLDRR files are stored in EOS Hierarchical Data Format (HDF-EOS5). Each file contains data from the day lit portion of an orbit (53 minutes). There are approximately 14 orbits per day. The maximum file size for the OMCLDRR data product is about 9 Mbytes. A list of tools for browsing and extracting data from these files can be found at: http://disc.gsfc.nasa.gov/Aura/tools.shtml . A short OMCLDRR Readme Document that includes brief algorithm description and data quality is also provided by the OMCLDRR Algorithm lead. The Ozone Monitoring Instrument (OMI) was launched aboard the EOS-Aura satellite on July 15, 2004(1:38 pm equator crossing time, ascending mode). OMI with its 2600 km viewing swath width provides almost daily global coverage. OMI is a contribution of the Netherlands Agency for Aerospace Programs (NIVR)in collaboration with Finish Meterological Institute (FMI), to the US EOS-Aura Mission. OMI is designed to monitor stratospheric and tropospheric ozone, clouds, aerosols and smoke from biomass burning, SO2 from volcanic eruptions, and key tropospheric pollutants (HCHO, NO2) and ozone depleting gases (OClO and BrO). OMI sensor counts, calibrated and geolocated radiances, and all derived geophysical atmospheric products are archived at the NASA GES DISC. For more information on Ozone Monitoring Instrument and atmospheric data products, please visit the OMI-Aura sites: http://aura.gsfc.nasa.gov/instruments/omi/ http://www.knmi.nl/omi/research/documents/ . Data Category Parameters: The OMCLDRR data file contains one swath which consists of two groups: Data fields: Two Effective Cloud Fraction and two Cloud Top Pressures that are based on two different clear and cloudy scene reflectivity criteria, Chlorophyll Amount, Effective Reflectivity (394.1 micron), UV Aerosol Index (based on 360 and 388 nm), and many Auxiliary Algorithm Parameter and Quality Flags. Geolocation Fields: Latitude, Longitude, Time, Solar Zenith Angle, Viewing Zenith Angle, Relative Azimuth Angle, Terrain Height, and Ground Pixel Quality Flags. OMI Atmospheric data and documents are available from the following sites: http://disc.gsfc.nasa.gov/Aura/OMI/ http://mirador.gsfc.nasa.gov/ not-provided -OMPS_N20_NMSO2_PCA_L2_Step1_NRT.v1 OMPS-N20 NM PCA SO2 Step 1 Total Column 1-Orbit L2 Swath 17x13km Near Real Time NRT OMINRT 2018-01-16 -180, -90, 180, 90 https://cmr.earthdata.nasa.gov/search/concepts/C3186057121-OMINRT.json The OMPS-N20 NM PCA SO2 Step1 Total Column 1-Orbit L2 Swath 17x13km collection 1 product contains the retrieved sulfur dioxide (SO2) measured by the Ozone Mapping and Profiling Suite (OMPS) Nadir-Mapper (NM) sensor on the NOAA-20 (JPSS-1) satellite. The product is based on the NASA Goddard Space Flight Center principal component analysis (PCA) spectral fitting algorithm (Li et al., 2013, 2017) used to retrieve the SO2 total column amounts assuming different SO2 plume heights, including the boundary layer (lowest 1 km of the atmosphere), the lower (centered at 3 km), middle (centered at 8 km) and upper (centered at 13 km) troposphere, as well as the lower stratosphere (centered at 18 km). Each granule contains data from the daylight portion for a single orbit or about 50 minutes. Spatial coverage is global (-90 to 90 degrees latitude), and there are about 14 orbits per day each with a swath width of 2600 km. There are 104 pixels in the cross-track direction before February 13, 2019 with a pixel resolution of about 17 km x 17 km at nadir. Since then, the pixel resolution has been enhanced to 17 km x 13 km at nadir, with 140 pixels in the cross-track direction. The files are written using netCDF version 4. not-provided -OMPS_NPP_LP_NN_AER.v1 OMPS-NPP LP NRT Aerosol Extinction Vertical Profile swath multi-wavelength orbital 3slit OMINRT 2018-01-16 -180, -90, 180, 90 https://cmr.earthdata.nasa.gov/search/concepts/C3186057053-OMINRT.json The OMPS-NPP L2 LP Aerosol Extinction Vertical Profile swath l2 3slit (AER) product contains the retrieved aerosol extinction coefficients measured by the Ozone Mapping and Profiling Suite (OMPS) Limb-Profiler (LP) sensor on the Suomi-NPP satellite. The AER product measures stratospheric aerosol abundance and evolution at 6 wavelengths (510, 600, 675, 745, 869 and 997 nm) to complement the OMPS LP measurements of stratospheric and mesospheric profile ozone. This product replaces the previous single wavelength 675 nm (AER675) product. Each granule contains data from the daylight portion of each orbit measured for a full day. Spatial coverage is global (-90 to 90 degrees latitude), and there are about 14.5 orbits per day each measuring three limb profiles spaced approximately 250 km in the cross-track direction. The profiles are measured from the ground up to about 80 km with a vertical resolution of the retrieved profiles of approximately 1.8 km. The files are written using the Hierarchical Data Format Version 5 or HDF5. The /ProfileFields/RetrievedExtCoeff dataset is produced via a neural network trained on LP-L2-AER data for NRT processing. not-provided +OMPS_N20_NMSO2_PCA_L2_Step1_NRT.v1 OMPS-N20 NM PCA SO2 Step 1 Total Column 1-Orbit L2 Swath 17x13km NRT OMINRT 2018-01-16 -180, -90, 180, 90 https://cmr.earthdata.nasa.gov/search/concepts/C3186057121-OMINRT.json The OMPS-N20 NM PCA SO2 Step1 Total Column 1-Orbit L2 Swath 17x13km collection 1 product contains the retrieved sulfur dioxide (SO2) measured by the Ozone Mapping and Profiling Suite (OMPS) Nadir-Mapper (NM) sensor on the NOAA-20 (JPSS-1) satellite. The product is based on the NASA Goddard Space Flight Center principal component analysis (PCA) spectral fitting algorithm (Li et al., 2013, 2017) used to retrieve the SO2 total column amounts assuming different SO2 plume heights, including the boundary layer (lowest 1 km of the atmosphere), the lower (centered at 3 km), middle (centered at 8 km) and upper (centered at 13 km) troposphere, as well as the lower stratosphere (centered at 18 km). Each granule contains data from the daylight portion for a single orbit or about 50 minutes. Spatial coverage is global (-90 to 90 degrees latitude), and there are about 14 orbits per day each with a swath width of 2600 km. There are 104 pixels in the cross-track direction before February 13, 2019 with a pixel resolution of about 17 km x 17 km at nadir. Since then, the pixel resolution has been enhanced to 17 km x 13 km at nadir, with 140 pixels in the cross-track direction. The files are written using netCDF version 4. not-provided +OMPS_NPP_LP_NRT_AER.v1 OMPS-NPP LP NRT Aerosol Extinction Vertical Profile swath multi-wavelength orbital 3slit OMINRT 2018-01-16 -180, -90, 180, 90 https://cmr.earthdata.nasa.gov/search/concepts/C3186057053-OMINRT.json The OMPS-NPP L2 LP Aerosol Extinction Vertical Profile swath l2 3slit (AER) product contains the retrieved aerosol extinction coefficients measured by the Ozone Mapping and Profiling Suite (OMPS) Limb-Profiler (LP) sensor on the Suomi-NPP satellite. The AER product measures stratospheric aerosol abundance and evolution at 6 wavelengths (510, 600, 675, 745, 869 and 997 nm) to complement the OMPS LP measurements of stratospheric and mesospheric profile ozone. This product replaces the previous single wavelength 675 nm (AER675) product. Each granule contains data from the daylight portion of each orbit measured for a full day. Spatial coverage is global (-90 to 90 degrees latitude), and there are about 14.5 orbits per day each measuring three limb profiles spaced approximately 250 km in the cross-track direction. The profiles are measured from the ground up to about 80 km with a vertical resolution of the retrieved profiles of approximately 1.8 km. The files are written using the Hierarchical Data Format Version 5 or HDF5. The /ProfileFields/RetrievedExtCoeff dataset is produced via a neural network trained on LP-L2-AER data for NRT processing. not-provided OMSO2.v003 OMI/Aura Sulphur Dioxide (SO2) Total Column 1-orbit L2 Swath 13x24 km V003 NRT OMINRT 2004-07-15 -180, -90, 180, 90 https://cmr.earthdata.nasa.gov/search/concepts/C1000000121-OMINRT.json The Ozone Monitoring Instrument (OMI) was launched aboard the EOS-Aura satellite on July 15, 2004 (1:38 pm equator crossing time, ascending mode). OMI with its 2600 km viewing swath width provides almost daily global coverage. OMI is a contribution of the Netherlands Space Office (NSO) in collaboration with Finish Meterological Institute (FMI), to the US EOS-Aura Mission. The principal investigator (Dr. Pieternel Levelt) institute is the KNMI (Royal Netherlands Meteorological Institute). OMI is designed to monitor stratospheric and tropospheric ozone, clouds, aerosols and smoke from biomass burning, SO2 from volcanic eruptions, and key tropospheric pollutants (HCHO,NO2) and ozone depleting gases (OClO and BrO). OMI sensor counts, calibrated and geolocated radiances, and all derived geophysical atmospheric products will be archived at the NASA Goddard DAAC. The Sulfer Dioxide Product 'OMSO2' from the Aura-OMI is now publicly available from NASA GSFC Earth Sciences (GES) Data and Information Services Center (DISC) for public access. OMSO2 product contains three values of SO2 Vertical column corresponding to three a-priori vertical profiles used in the retrieval algorithm. It also contains quality flags, geolocation and other ancillary information. The shortname for this Level-2 OMI total column SO2 product is OMSO2 and the algorithm leads for this product are NASA/UMBC OMI scientists Drs. Nikolay Krotkov (nickolay.a.krotkov@nasa.gov),Kai Yang(kai.yang@nasa.gov) and Arlin J. Krueger(krueger@umbc.edu). OMSO2 files are stored in EOS Hierarchical Data Format (HDF-EOS5). Each file contains data from the day lit portion of an orbit (~53 minutes). There are approximately 14 orbits per day. The maximum file size for the OMSO2 data product is about 21 Mbytes. On-line spatial and parameter subset options are available during data download A list of tools for browsing and extracting data from these files can be found at: http://disc.gsfc.nasa.gov/Aura/tools.shtml A short OMSO2 Readme Document that includes brief algorithm description and documents that provides known data quality related issues are available from the UMBC OMI site ( http://so2.gsfc.nasa.gov/docs.php ) For more information on Ozone Monitoring Instrument and atmospheric data products, please visit the OMI-Aura sites: http://aura.gsfc.nasa.gov/ http://so2.gsfc.nasa.gov/ http://www.knmi.nl/omi/research/documents/. For the full set of Aura products and other atmospheric composition data available from the GES DISC, please see the links below. http://disc.sci.gsfc.nasa.gov/Aura/ http://disc.gsfc.nasa.gov/acdisc/ not-provided OMTO3.v003 OMI/Aura Ozone (O3) Total Column 1-Orbit L2 Swath 13x24 km V003 NRT OMINRT 2004-07-15 -180, -90, 180, 90 https://cmr.earthdata.nasa.gov/search/concepts/C1000000140-OMINRT.json The OMI/Aura Level-2 Total Column Ozone Data Product OMTO3 Near Real Time data is made available from the OMI SIPS NASA for the public access. The Ozone Monitoring Instrument (OMI)was launched aboard the EOS-Aura satellite on July 15, 2004(1:38 pm equator crossing time, ascending mode). OMI with its 2600 km viewing swath width provides almost daily global coverage. OMI is a contribution of the Netherlands Agency for Aerospace Programs (NIVR)in collaboration with Finish Meterological Institute (FMI), to the US EOS-Aura Mission. The principal investigator's (Dr. Pieternel Levelt) institute is the KNMI (Royal Netherlands Meteorological Institute). OMI is designed to monitor stratospheric and tropospheric ozone, clouds, aerosols and smoke from biomass burning, SO2 from volcanic eruptions, and key tropospheric pollutants (HCHO, NO2) and ozone depleting gases (OClO and BrO). OMI sensor counts, calibrated and geolocated radiances, and all derived geophysical atmospheric products will be archived at the NASA Goddard DAAC. This level-2 global total column ozone product (OMTO3)is based on the enhanced TOMS version-8 algorithm that essentially uses the ultraviolet radiance data at 317.5 and 331.2 nm. OMI additional hyper-spectral measurements help in the corrections for the factors that induce uncertainty in ozone retrieval (e.g., cloud and aerosol, sea-glint effects, profile shape sensitivity, SO2 and other trace gas contamination). In addition to the total ozone values this product also contains some auxiliary derived and ancillary input parameters including N-values, effective Lambertian scene-reflectivity, UV aerosol index, SO2 index, cloud fraction, cloud pressure, ozone below clouds, terrain height, geolocation, solar and satellite viewing angles, and extensive quality flags. The shortname for this Level-2 OMI total column ozone product is OMTO3 and the algorithm lead for this product is NASA OMI scientist Dr. Pawan K. Bhartia ( Pawan.K.Bhartia@nasa.gov). OMTO3 files are stored in EOS Hierarchical Data Format (HDF-EOS5). Each file contains data from the day lit portion of an orbit (~53 minutes). There are approximately 14 orbits per day. The maximum file size for the OMTO3 data product is about 35 Mbytes. A list of tools for browsing and extracting data from these files can be found at: http://disc.gsfc.nasa.gov/Aura/tools.shtml For more information on Ozone Monitoring Instrument and atmospheric data products, please visit the OMI-Aura sites: http://aura.gsfc.nasa.gov/ http://www.knmi.nl/omi/research/documents/ . Data Category Parameters: The OMTO3 data file contains one swath which consists of two groups: Data fields: OMI Total Ozone,Effective Reflectivity (331 - 360 nm), N-value, Cloud Fraction, Cloud Top Pressure, O3 below Cloud, UV Aerosol Index, SO2 index, Wavelength used in the algorithm, many Auxiliary Algorithm Parameter and Quality Flags Geolocation Fields: Latitude, Longitude, Time, Relative Azimuth, Solar Zenith and Azimuth, Viewing Zenith and Azimuth angles, Spacecraft Altitude, Latitude, Longitude, Terrain Height, Ground Pixel Quality Flags.For the full set of Aura data products available from the GES DISC, please see the link http://disc.sci.gsfc.nasa.gov/Aura/ . not-provided OMTO3e.v003 OMI/Aura Ozone (O3) Total Column Daily L3 Global 0.25deg Lat/Lon Grid NRT OMINRT 2004-07-15 -180, -90, 180, 90 https://cmr.earthdata.nasa.gov/search/concepts/C1428966163-OMINRT.json The OMI science team produces this Level-3 Aura/OMI Global TOMS-Like Total Column Ozone gridded product OMTO3e (0.25deg Lat/Lon grids). The OMTO3e product selects the best pixel (shortest path length) data from the good quality filtered level-2 total column ozone data (OMTO3) that fall in the 0.25 x 0.25 degree global grids. Each file contains total column ozone, radiative cloud fraction and solar and viewing zenith angles. OMTO3e files are stored in EOS Hierarchical Data Format (HDF-EOS5). Each file contains daily data from approximately 15 orbits. The maximum file size for the OMTO3e data product is about 2.8 Mbytes. (The shortname for this Level-3 TOMS-Like Total Column Ozone gridded product is OMTO3e) . not-provided @@ -344,14 +353,20 @@ XAERDT_L2_ABI_G16.v1 ABI/GOES-16 Dark Target Aerosol 10-Min L2 Full Disk 10 km L XAERDT_L2_ABI_G17.v1 ABI/GOES-17 Dark Target Aerosol 10-Min L2 Full Disk 10 km LAADS 2019-01-01 2022-12-31 -180, -90, 180, 90 https://cmr.earthdata.nasa.gov/search/concepts/C2859265967-LAADS.json The ABI/GOES-17 Dark Target Aerosol 10-Min L2 Full Disk 10 km product, short-name XAERDT_L2_ABI_G17 is provided at 10-km spatial resolution (at-nadir) and a 10-minute full-disk cadence that typically yields about 144 granules over the daylit hours of a 24-hour period. The Geostationary Operational Environmental Satellite – GOES-17 served in the operational GOES-West position (near -137°W), from February 12, 2019, through January 4, 2023. The GOES-16/ABI collection record spans from January 2019 through December 2022. The XAERDT_L2_ABI_G17 product is a part of the Geostationary Earth Orbit (GEO)–Low-Earth Orbit (LEO) Dark Target Aerosol project under NASA’s Making Earth System Data Records for Use in Research Environments (MEaSUREs) program, led by Robert Levy, uses a special version of the MODIS Dark Target (DT) aerosol retrieval algorithm to produce Aerosol Optical Depth (AOD) and other aerosol parameters derived independently from seven sensor/platform combinations, where 3 are in GEO and 4 are in LEO. The 3 GEO sensors include Advanced Baseline Imagers (ABI) on both GOES-16 (GOES-East) and GOES-17 (GOES-West), and Advanced Himawari Imager (AHI) on Himawari-8. The 4 LEO sensors include MODIS on both Terra and Aqua, and VIIRS on both Suomi-NPP and NOAA-20. Adding the LEO sensors reinforces a major goal of this project, which is to render a consistent science maturity level across DT aerosol products derived from both types and sources of orbital satellites. The XAERDT_L2_ABI_G17 product, in netCDF4 format, contains 45 Science Data Set (SDS) layers that include 8 geolocation and 37 geophysical SDSs. For more information consult LAADS product description page at: https://ladsweb.modaps.eosdis.nasa.gov/missions-and-measurements/products/XAERDT_L2_ABI_G17 Or, Dark Target aerosol team Page at: https://darktarget.gsfc.nasa.gov/ not-provided XAERDT_L2_AHI_H08.v1 AHI/Himawari-08 Dark Target Aerosol 10-Min L2 Full Disk 10 km LAADS 2019-01-01 2022-12-31 -180, -90, 180, 90 https://cmr.earthdata.nasa.gov/search/concepts/C2859255251-LAADS.json The AHI/Himawari-08 Dark Target Aerosol 10-Min L2 Full Disk 10 km product, short-name XAERDT_L2_AHI_H08 is provided at 10-km spatial resolution (at-nadir) and a 10-minute full-disk cadence that typically yields about 142 granules over the daylit hours of a 24-hour period (there are no images produced at 02:20 or 14:20 UTC for navigation purposes). The Himawari-8 platform served in the operational Himawari position (near 140.7°E) between October 2014 and 13 December 2022. Himawari-9 replaced Himawari-8 and is currently operational. The Himawari-8/AHI collection record spans from January 2019 through 12th December 2022. The final 19 days of 2022 (December 13 through 31) are served by L2 products derived from the Himawari-9/AHI instrument. The XAERDT_L2_AHI_H08 product is a part of the Geostationary Earth Orbit (GEO)–Low-Earth Orbit (LEO) Dark Target Aerosol project under NASA’s Making Earth System Data Records for Use in Research Environments (MEaSUREs) program, led by Robert Levy, uses a special version of the MODIS Dark Target (DT) aerosol retrieval algorithm to produce Aerosol Optical Depth (AOD) and other aerosol parameters derived independently from seven sensor/platform combinations, where 3 are in GEO and 4 are in LEO. The 3 GEO sensors include Advanced Baseline Imagers (ABI) on both GOES-16 (GOES-East) and GOES-17 (GOES-West), and Advanced Himawari Imager (AHI) on Himawari-8. The 4 LEO sensors include MODIS on both Terra and Aqua, and VIIRS on both Suomi-NPP and NOAA-20. Adding the LEO sensors reinforces a major goal of this project, which is to render a consistent science maturity level across DT aerosol products derived from both types and sources of orbital satellites. The XAERDT_L2_AHI_H08 product, in netCDF4 format, contains 45 Science Data Set (SDS) layers that include 8 geolocation and 37 geophysical SDSs. For more information consult LAADS product description page at: https://ladsweb.modaps.eosdis.nasa.gov/missions-and-measurements/products/XAERDT_L2_AHI_H08 Or, Dark Target aerosol team Page at: https://darktarget.gsfc.nasa.gov/ not-provided XAERDT_L2_AHI_H09.v1 AHI/Himawari-09 Dark Target Aerosol 10-Min L2 Full Disk 10 km LAADS 2022-12-13 2022-12-31 -180, -90, 180, 90 https://cmr.earthdata.nasa.gov/search/concepts/C2859261579-LAADS.json The AHI/Himawari-09 Dark Target Aerosol 10-Min L2 Full Disk 10 km product, short-name XAERDT_L2_AHI_H09 is provided at 10-km spatial resolution (at-nadir) and a 10-minute full-disk cadence that typically yields about 142 granules over the daylit hours of a 24-hour period (there are no images produced at 02:20 or 14:20 UTC for navigation purposes). The Himawari-9 platform currently serves in the operational Himawari position (near 140.7°E) since it was launched November 2, 2016, and replaces Himawari-8. The Himawari-9/AHI collection record spans from 13th December 2022 through 31st December 2022. The XAERDT_L2_AHI_H09 product is a part of the Geostationary Earth Orbit (GEO)–Low-Earth Orbit (LEO) Dark Target Aerosol project under NASA’s Making Earth System Data Records for Use in Research Environments (MEaSUREs) program, led by Robert Levy, uses a special version of the MODIS Dark Target (DT) aerosol retrieval algorithm to produce Aerosol Optical Depth (AOD) and other aerosol parameters derived independently from seven sensor/platform combinations, where 3 are in GEO and 4 are in LEO. The 3 GEO sensors include Advanced Baseline Imagers (ABI) on both GOES-16 (GOES-East) and GOES-17 (GOES-West), and Advanced Himawari Imager (AHI) on Himawari-8. The 4 LEO sensors include MODIS on both Terra and Aqua, and VIIRS on both Suomi-NPP and NOAA-20. Adding the LEO sensors reinforces a major goal of this project, which is to render a consistent science maturity level across DT aerosol products derived from both types and sources of orbital satellites. The XAERDT_L2_AHI_H09 product, in netCDF4 format, contains 45 Science Data Set (SDS) layers that include 8 geolocation and 37 geophysical SDSs. For more information consult LAADS product description page at: https://ladsweb.modaps.eosdis.nasa.gov/missions-and-measurements/products/XAERDT_L2_AHI_H09 Or, Dark Target aerosol team Page at: https://darktarget.gsfc.nasa.gov/ not-provided +a-numerical-solver-for-heat-and-mass-transport-in-snow-based-on-fenics.v1.0 A numerical solver for heat and mass transport in snow based on FEniCS ENVIDAT 2022-01-01 2022-01-01 9.8472494, 46.812044, 9.8472494, 46.812044 https://cmr.earthdata.nasa.gov/search/concepts/C2789814662-ENVIDAT.json This python code uses the Finite Element library FEniCS (via docker) to solve the one dimensional partial differential equations for heat and mass transfer in snow. The results are written in vtk format. The dataset contains the code and the output data to reproduce the key Figure 5 from the related publication: _Schürholt, K., Kowalski, J., Löwe, H.; Elements of future snowpack modeling - Part 1: A physical instability arising from the non-linear coupling of transport and phase changes, The Cryosphere, 2022_ The code and potential updates can be accessed directly through git via: https://gitlabext.wsl.ch/snow-physics/snowmodel_fenics not-provided a6efcb0868664248b9cb212aba44313d ESA Aerosol Climate Change Initiative (Aerosol CCI): Level 2 aerosol products from MERIS (ALAMO algorithm), Version 2.2 FEDEO 2008-01-01 2008-12-31 -180, -90, 180, 90 https://cmr.earthdata.nasa.gov/search/concepts/C2548142742-FEDEO.json The ESA Climate Change Initiative Aerosol project has produced a number of global aerosol Essential Climate Variable (ECV) products from a set of European satellite instruments with different characteristics. This dataset comprises the Level 2 aerosol products from MERIS for 2008, using the ALAMO algorithm, version 2.2. The data have been provided by Hygeos.For further details about these data products please see the linked documentation. not-provided aamhcpex.v1 AAMH CPEX GHRC_DAAC 2017-05-26 2017-07-16 154.716, 0.6408, -19.5629, 44.9689 https://cmr.earthdata.nasa.gov/search/concepts/C2645106424-GHRC_DAAC.json The AAMH CPEX dataset contains products obtained from the MetOp-A, MetOp-B, NOAA-18, and NOAA-19 satellites. These data were collected in support of the NASA Convective Processes Experiment (CPEX) field campaign. The CPEX field campaign took place in the North Atlantic-Gulf of Mexico-Caribbean Sea region from 25 May to 25 June 2017. CPEX conducted a total of sixteen DC-8 missions from 27 May to 24 June. The CPEX campaign collected data to help explain convective storm initiation, organization, growth, and dissipation in the North Atlantic-Gulf of Mexico-Caribbean Oceanic region during the early summer of 2017. These data are available from May 26, 2017, through July 15, 2017, and are available in netCDF-4 format. not-provided +above-and-below-ground-herbivore-communities-along-elevation.v1.0 Above- and below-ground herbivore communities along elevation ENVIDAT 2020-01-01 2020-01-01 5.95587, 45.81802, 10.49203, 47.80838 https://cmr.earthdata.nasa.gov/search/concepts/C2789814648-ENVIDAT.json Despite the common role of above- and below-ground herbivore communities in mediating ecosystem functioning, our understanding of the variation of species communities along natural gradient is largely strongly biased toward aboveground organisms. This dataset enables to study the variations in assemblages of two dominant groups of herbivores, namely, aboveground orthoptera and belowground nematodes together with their food plants. Herbivores and plant surveys were conducted in 48 natural grasslands along six elevation gradients, selected to span the major macro-climatic and environmental conditions of the Swiss Alps. It compiles herbivores and plant surveys, information on the study sites as well as plant and herbivores functional traits sought to be involved in trophic interactions and to respond to climatic variation along the elevation. Plant functional traits considered are the SLA, the LDMC, the C/N content, the punch strength (i.e. force required to pierce the leave lamina), the mandibular strength for Orthoptera insect. Data were collected during the summer 2016 and 2017. not-provided aces1am.v1 ACES Aircraft and Mechanical Data GHRC_DAAC 2002-07-10 2002-08-30 -85, 23, -81, 26 https://cmr.earthdata.nasa.gov/search/concepts/C1977826980-GHRC_DAAC.json The ACES Aircraft and Mechanical Data consist of aircraft (e.g. pitch, roll, yaw) and mechanical (e.g. aircraft engine speed, tail commands, fuel levels) data recorded by the Altus II Unmanned Aerial Vehicle (Altus II UAV) system during the Altus Cumulus Electrification Study (ACES) based at the Naval Air Facility Key West in Florida. ACES aimed to provide extensive observations of the cloud electrification process and its effects by using the Altus II UAV to collect cloud top observations of thunderstorms. The campaign also worked to validate satellite lightning measurements. The Altus II aircraft and mechanical data files are available from July 10 through August 30, 2002 in MATLAB data format (.mat). not-provided aces1cont.v1 ACES CONTINUOUS DATA V1 GHRC_DAAC 2002-07-10 2002-08-30 -85, 23, -81, 26 https://cmr.earthdata.nasa.gov/search/concepts/C1977847043-GHRC_DAAC.json The ALTUS Cloud Electrification Study (ACES) was based at the Naval Air Facility Key West in Florida. During August, 2002, ACES researchers conducted overflights of thunderstorms over the southwestern corner of Florida. For the first time in NASA research, an uninhabited aerial vehicle (UAV) named ALTUS was used to collect cloud electrification data. Carrying field mills, optical sensors, electric field sensors and other instruments, ALTUS allowed scientists to collect cloudelectrification data for the first time from above the storm, from its birth through dissipation. This experiment allowed scientists to achieve the dual goals of gathering weather data safely and testing new aircraft technology. This dataset consists of data collected from seven instruments: the Slow/Fast antenna, Electric Field Mill, Dual Optical Pulse Sensor, Searchcoil Magnetometer, Accelerometers, Gerdien Conductivity Probe, and the Fluxgate Magnetometer. Data consists of sensor reads at 50HZ throughout the flight from all 64 channels. not-provided aces1efm.v1 ACES ELECTRIC FIELD MILL V1 GHRC_DAAC 2002-07-10 2002-08-30 -85, 23, -81, 26 https://cmr.earthdata.nasa.gov/search/concepts/C1977847178-GHRC_DAAC.json The ALTUS Cloud Electrification Study (ACES) was based at the Naval Air Facility Key West in Florida. During August 2002, ACES researchers conducted overflights of thunderstorms over the southwestern corner of Florida. For the first time in NASA research, an uninhabited aerial vehicle (UAV) named ALTUS was used to collect cloud electrification data. Carrying field mills, optical sensors, electric field sensors and other instruments, ALTUS allowed scientists to collect cloud electrification data for the first time from above the storm, from it's birth through dissipation. This experiment allowed scientists to achieve the dual goals of gathering weather data safely and testing new aircraft technology. This dataset consists of data from Electric Field Mills, which yield information about the atmospheric electrical fields above the instruments. not-provided aces1log.v1 ACES LOG DATA GHRC_DAAC 2002-07-10 2002-08-30 -85, 23, -81, 26 https://cmr.earthdata.nasa.gov/search/concepts/C1977853903-GHRC_DAAC.json The ALTUS Cloud Electrification Study (ACES) was based at the Naval Air Facility Key West in Florida. During August 2002, ACES researchers conducted overflights of thunderstorms over the southwestern corner of Florida. For the first time in NASA research, an uninhabited aerial vehicle (UAV) named ALTUS was used to collect cloud electrification data. Carrying field mills, optical sensors, electric field sensors and other instruments, ALTUS allowed scientists to collect cloud electrification data for the first time from above the storm, from its birth through dissipation. This experiment allowed scientists to achieve the dual goals of gathering weather data safely and testing new aircraft technology. This dataset consists of log data from each flight, and yields instrument and aircraft status throughout the flight. not-provided aces1time.v1 ACES TIMING DATA GHRC_DAAC 2002-07-10 2002-08-30 -85, 23, -81, 26 https://cmr.earthdata.nasa.gov/search/concepts/C1977855412-GHRC_DAAC.json The ALTUS Cloud Electrification Study (ACES) was based at the Naval Air Facility Key West in Florida. During August or 2002, ACES researchers overflights of thunderstorms over the southwestern corner of Florida. For the first time in NASA research, an uninhabited aerial vehicle (UAV) named ALTUS was used to collect cloud electrification data. Carrying field mills, optical sensors, electric field sensors and other instruments, ALTUS allowed scientists to collect cloud electrification data for the first time from above the storm, from its birth through dissipation. This experiment allowed scientists to achieve the dual goals of gathering weather data safely and testing new aircraft technology. This dataset consists of timing data used for the experiment. When used it provides: syncclock_time = time found at the syncclock (VSI-SYnCCLOCK-32) in seconds from first file name, syncclock_m_time = time found at the syncclock (VSI-SYnCCLOCK-32) in Matlab dateform format, system_time = system time in seconds from first file name, system_m_time = system time in dateform format, gps_time = time found at the GPS unit in seconds from first file name, gps_m_time = time found at GPS unit in dateform, cmos_time = time found at the computer CMOS in seconds from first file name, cmos_m_time = time found at the computer CMOS in dateform. not-provided aces1trig.v1 ACES TRIGGERED DATA GHRC_DAAC 2002-07-10 2002-08-30 -85, 23, -81, 26 https://cmr.earthdata.nasa.gov/search/concepts/C1977858342-GHRC_DAAC.json The ALTUS Cloud Electrification Study (ACES) was based at the Naval Air Facility Key West in Florida. During August 2002, ACES researchers conducted overflights of thunderstorms over the southwestern corner of Florida. For the first time in NASA research, an uninhabited aerial vehicle (UAV) named ALTUS was used to collect cloud electrification data. Carrying field mills, optical sensors, electric field sensors and other instruments, ALTUS allowed scientists to collect cloud electrification data for the first time from above the storm, from its birth through dissipation. This experiment allowed scientists to achieve the dual goals of gathering weather data safely and testing new aircraft technology. This dataset consists of data collected from the following instruments: Slow/Fast antenna, Electric Field Mill, Optical Pulse Sensors, Searchcoil Magnetometer, Accelerometer, and Gerdien Conductivity Probe. These data were collected at 200KHz from the first 16 telemetry items collected on the aircraft, were initiated by an operator selected trigger (e.g. DOPS), and continued collecting for as long as the trigger continued. not-provided +aerosol-data-davos-wolfgang.v1.0 Aerosol Data Davos Wolfgang ENVIDAT 2020-01-01 2020-01-01 9.853594, 46.835577, 9.853594, 46.835577 https://cmr.earthdata.nasa.gov/search/concepts/C2789814678-ENVIDAT.json Aerosol properties were measured between February 8 and March 31 2019 at the measurement site Davos Wolfgang (LON: 9.853594, LAT: 46.835577). Optical and aerodynamic particle counters, as well as a scanning mobility particle size spectrometer and an ice nuclei counter were deployed to report particle concentrations and size distributions in fine (10-1000 nm) and coarse mode (> 1000 nm), cloud condensation nuclei concentrations (CCNCs) and ice nuclei particle concentrations (ICNCs). The ambient particles were transported via a heated inlet to be distributed to the particle detecting devices inside the setup room. Optical Particle Counter (OPC): Light scattering of a diode laser beam caused by travelling particles is used in the both, the OPC-N3 (0.41 - 38.5 μm) and GT-526S (0.3 – 5 μm), to determine their size and number concentration. For the OPC-N3, particle size spectra and concentration data are used afterwards to calculate PM₁, PM₂,₅ and PM₁₀ (assumptions: particle density: 1.65 g cmˉ³, refractive index: 1.5+i0). Aerodynamic Particle Sizer (APS): The APS (3321, TSI Inc.) measured the particle size distribution for aerodynamic diameters between 0.5 μm and ~20 μm by the particle’s time-of-flight and light-scattering intensity (assumptions: particle density 1 g cmˉ³). Scanning Mobility Particle Size Spectrometer (SMPS): Particle number concentrations in a size range between 12 and 460 nm (electrical mobility diameter) were measured at Davos Wolfgang, using a Scanning Mobility Particle Sizer Spectrometer (3938, TSI Inc.). The classifier (3082, TSI Inc.) was equipped with a neutralizer (3088, TSI Inc.) and a differential mobility analyzer working with negative polarity (3081, TSI Inc.). The size selected particles were counted by a water-based condensation particle counter (3788 , TSI Inc.). The TSI AIM software was used to provide particle size distributions by applying multiple charge and diffusion loss corrections (assumptions: particle density 1 g cmˉ³). Coriolis μ and DRINCZ: A microbial air sampler (Coriolis μ, bertin Instruments) was used to collect airborne particles for investigating their ice nucleating ability with a droplet freezing device. Particles larger than 0.5 μm were drawn with an air flow rate of up to 300 l minˉ¹ into the cone and centrifuged into the wall of the cone due to the forming vortex. The liquid sample was transferred into the DRoplet Ice Nuclei Counter Zurich (DRINCZ, ETH Zurich) to study heterogeneous ice formation (immersion freezing mode) of ambient airborne particles. not-provided +aerosol-data-weissfluhjoch.v1.0 Aerosol Data Weissfluhjoch ENVIDAT 2020-01-01 2020-01-01 9.806475, 46.832964, 9.806475, 46.832964 https://cmr.earthdata.nasa.gov/search/concepts/C2789814736-ENVIDAT.json Aerosol properties were measured between February 8 and March 31 2019 at the measurement site Weissfluhjoch (LON: 9.806475, LAT: 46.832964). Optical and aerodynamic particle counters, as well as a scanning mobility particle size spectrometer and an ice nuclei counter were deployed to report particle concentrations and size distributions in fine (10-1000 nm) and coarse mode (> 1000 nm), cloud condensation nuclei concentrations (CCNCs), and ice nuclei particle concentrations (ICNCs). The ambient particles were transported via a heated inlet to be distributed to the particle detecting devices inside the setup room. Optical Particle Counter (OPC): Light scattering of a diode laser beam caused by travelling particles is used in the both, the OPC-N3 (0.41 - 38.5 μm) and GT-526S (0.3 – 5 μm), to determine their size and number concentration. For the OPC-N3, particle size spectra and concentration data are used afterwards to calculate PM₁, PM₂,₅ and PM₁₀ (assumptions: particle density: 1.65 g cmˉ³, refractive index: 1.5+i0). Aerodynamic Particle Sizer (APS): The APS (3321, TSI Inc.) measured the particle size distribution for aerodynamic diameters between 0.5 μm and ~20 μm by the particle’s time-of-flight and light-scattering intensity (assumptions: particle density 1 g cmˉ³). Scanning Mobility Particle Size Spectrometer (SMPS): Particle number concentrations in a size range between 12 and 460 nm (electrical mobility diameter) were measured at Davos Wolfgang, using a Scanning Mobility Particle Sizer Spectrometer (SMPS 3938, TSI Inc.). The classifier (3082, TSI Inc.) was equipped with a neutralizer (3088, TSI Inc.) and a differential mobility analyzer working with negative polarity (3081, TSI Inc.). The size selected particles were counted by a water-based condensation particle counter (3787 TSI Inc.). The TSI AIM software was used to provide particle size distributions by applying multiple charge and diffusion loss corrections (assumptions: particle density 1 g cmˉ³). Coriolis μ and LINDA: A microbial air sampler (Coriolis μ, bertin Instruments) was used to collect airborne particles for investigating their ice nucleating ability with a droplet freezing device. Particles larger than 0.5 μm were drawn with an air flow rate of up to 300 l min‾¹ into the cone and centrifuged into the wall of the cone due to the forming vortex. The liquid sample was transferred into the LED based Ice Nucleation Detection Apparatus (LINDA, University of Basel) to study heterogeneous ice formation (immersion freezing mode) of ambient airborne particles. not-provided +alnus-glutinosa-orientus-ishidae-flavescence-doree.v1.0 Alnus glutinosa (L.) Gaertn. and Orientus ishidae (Matsumura, 1902) share phytoplasma genotypes linked to the “Flavescence dorée” epidemics ENVIDAT 2021-01-01 2021-01-01 8.4484863, 45.8115721, 9.4372559, 46.4586735 https://cmr.earthdata.nasa.gov/search/concepts/C2789814963-ENVIDAT.json Flavescence dorée (FD) is a grapevine disease caused by associated phytoplasmas (FDp), which are epidemically spread by their main vector Scaphoideus titanus. The possible roles of alternative and secondary FDp plant hosts and vectors have gained interest to better understand the FDp ecology and epidemiology. A survey conducted in the surroundings of a vineyard in the Swiss Southern Alps aimed at studying the possible epidemiological role of the FDp secondary vector Orientus ishidae and the FDp host plant Alnus glutinosa is reported. Data used for the publication. Insects were captured by using a sweeping net (on common alder trees) and yellow sticky traps (Rebell Giallo, Andermatt Biocontrol AG, Switzerland) placed in the vineyard canopy. Insects were later determined and selected for molecular analyses. Grapevines and common alder samples were collected using the standard techniques. The molecular analyses were conducted in order to identify samples infected by the Flavescence dorée phytoplasma (16SrV-p) and the Bois Noir phytoplasma (16SrXII-p). A selection of the infected sampled were further characterized by map genotype and sequenced in order to compare the genotypes in insects, grapevines and common alder trees. not-provided +alpine3d-simulations-of-future-climate-scenarios-for-graubunden.v1.0 Alpine3D simulations of future climate scenarios for Graubunden ENVIDAT 2019-01-01 2019-01-01 8.6737061, 46.2216525, 10.6347656, 47.1075228 https://cmr.earthdata.nasa.gov/search/concepts/C2789814545-ENVIDAT.json "This is the simulation dataset from _""Response of snow cover and runoff to climate change in high Alpine catchments of Eastern Switzerland""_, M. Bavay, T. Grünewald, M. Lehning, Advances in Water Resources __55__, 4-16, 2013 A model study on the impact of climate change on snow cover and runoff has been conducted for the Swiss Canton of Graubünden. The model Alpine3D has been forced with the data from 35 Automatic Weather Stations in order to investigate snow and runoff dynamics for the current climate. The data set has then been modified to reflect climate change as predicted for the 2021-2050 and 2070-2095 periods from an ensemble of regional climate models. The predicted changes in snow cover will be moderate for 2021-2050 and become drastic in the second half of the century. Towards the end of the century the snow cover changes will roughly be equivalent to an elevation shift of 800 m. Seasonal snow water equivalents will decrease by one to two thirds and snow seasons will be shortened by five to nine weeks in 2095. Small, higher elevation catchments will show more winter runoff, earlier spring melt peaks and reduced summer runoff. Where glacierized areas exist, the transitional increase in glacier melt will initially offset losses from snow melt. Larger catchments, which reach lower elevations will show much smaller changes since they are already dominated by summer precipitation." not-provided amprimpacts.v1 Advanced Microwave Precipitation Radiometer (AMPR) IMPACTS GHRC_DAAC 2020-01-18 2023-03-02 -124.153, 26.507, -64.366, 49.31 https://cmr.earthdata.nasa.gov/search/concepts/C2004708841-GHRC_DAAC.json The Advanced Microwave Precipitation Radiometer (AMPR) IMPACTS dataset consists of brightness temperature measurements collected by the Advanced Microwave Precipitation Radiometer (AMPR) onboard the NASA ER-2 high-altitude research aircraft. AMPR provides multi-frequency microwave imagery, with high spatial and temporal resolution for deriving cloud, precipitation, water vapor, and surface properties. These measurements were taken during the Investigation of Microphysics and Precipitation for Atlantic Coast-Threatening Snowstorms (IMPACTS) campaign. Funded by NASA’s Earth Venture program, IMPACTS is the first comprehensive study of East Coast snowstorms in 30 years. Data files are available from January 18, 2020, through March 2, 2023, in netCDF-4 format. not-provided amsua15sp.v1 ADVANCED MICROWAVE SOUNDING UNIT-A (AMSU-A) SWATH FROM NOAA-15 GHRC_DAAC 1998-08-03 -180, -90, 180, 89.756 https://cmr.earthdata.nasa.gov/search/concepts/C1996541017-GHRC_DAAC.json AMSU-A, the Advanced Microwave Sounding Unit, is a 15-channel passive microwave radiometer used to profile atmospheric temperature and moisture from the earth's surface to ~45 km (3 millibars). All orbits beginning in the day (00:00:00 - 23:59:59 UTC) are stored in one daily HDF-EOS file. Each file contains 15 (channel) arrays, as well as corresponding latitude, longitude, and time. AMSU flies on the National Oceanic and Atmospheric Administration (NOAA) polar orbiting spacecraft as part of the National Polar-orbiting Operational Environmental Satellite System (NPOESS). NOAA-15 was the first spacecraft to fly AMSU. Launched on 13 May 1998, NOAA-15 is in a sun synchronous near polar orbit. not-provided amsua16sp.v1 ADVANCED MICROWAVE SOUNDING UNIT-A (AMSU-A) SWATH FROM NOAA-16 GHRC_DAAC 2001-05-27 2009-07-30 -180, -89.91, 180, 89.73 https://cmr.earthdata.nasa.gov/search/concepts/C1979956366-GHRC_DAAC.json AMSU-A, the Advanced Microwave Sounding Unit, is a 15-channel passive microwave radiometer used to profile atmospheric temperature and moisture from the earth's surface to ~45 km (3 millibars). All orbits beginning in the day (00:00:00 - 23:59:59 UTC) are stored in one daily HDF-EOS file. Each file contains 15 (channel) arrays, as well as corresponding latitude, longitude, and time. AMSU flies on the National Oceanic and Atmospheric Administration (NOAA) polar orbiting spacecraft as part of the National Polar-orbiting Operational Environmental Satellite System (NPOESS). Launched on 21 September 2000, NOAA-16 is in a sun synchronous near polar orbit. not-provided @@ -359,11 +374,13 @@ asas Advanced Solid-state Array Spectroradiometer (ASAS) USGS_LTA 1988-06-26 -1 aster_global_dem ASTER Global DEM USGS_LTA 1970-01-01 -180, -90, 180, 90 https://cmr.earthdata.nasa.gov/search/concepts/C1220567908-USGS_LTA.json ASTER is capable of collecting in-track stereo using nadir- and aft-looking near infrared cameras. Since 2001, these stereo pairs have been used to produce single-scene (60- x 60-kilomenter (km)) digital elevation models (DEM) having vertical (root-mean-squared-error) accuracies generally between 10- and 25-meters (m). The methodology used by Japan's Sensor Information Laboratory Corporation (SILC) to produce the ASTER GDEM involves automated processing of the entire ASTER Level-1A archive. Stereo-correlation is used to produce over one million individual scene-based ASTER DEMs, to which cloud masking is applied to remove cloudy pixels. All cloud-screened DEMS are stacked and residual bad values and outliers are removed. Selected data are averaged to create final pixel values, and residual anomalies are corrected before partitioning the data into 1 degree (°) x 1° tiles. The ASTER GDEM covers land surfaces between 83°N and 83°S and is comprised of 22,702 tiles. Tiles that contain at least 0.01% land area are included. The ASTER GDEM is distributed as Geographic Tagged Image File Format (GeoTIFF) files with geographic coordinates (latitude, longitude). The data are posted on a 1 arc-second (approximately 30–m at the equator) grid and referenced to the 1984 World Geodetic System (WGS84)/ 1996 Earth Gravitational Model (EGM96) geoid. not-provided b673f41b-d934-49e4-af6b-44bbdf164367 AVHRR - Land Surface Temperature (LST) - Europe, Daytime FEDEO 1998-02-23 -24, 28, 57, 78 https://cmr.earthdata.nasa.gov/search/concepts/C2207458008-FEDEO.json "The ""Land Surface Temperature derived from NOAA-AVHRR data (LST_AVHRR)"" is a fixed grid map (in stereographic projection ) with a spatial resolution of 1.1 km. The total size covering Europe is 4100 samples by 4300 lines. Within 24 hours of acquiring data from the satellite, day-time and night-time LSTs are calculated. In general, the products utilise data from all six of the passes that the satellite makes over Europe in each 24 hour period. For the daily day-time LST maps, the compositing criterion for the three day-time passes is maximum NDVI value and for daily night-time LST maps, the criterion is the maximum night-time LST value of the three night-time passes. Weekly and monthly day-time or night-time LST composite products are also produced by averaging daily day-time or daily night-time LST values, respectively. The range of LST values is scaled between –39.5°C and +87°C with a radiometric resolution of 0.5°C. A value of –40°C is used for water. Clouds are masked out as bad values. For additional information, please see: https://wdc.dlr.de/sensors/avhrr/" not-provided blue_ice_core_DML2004_AS 101.1 m long horizontal blue ice core collected from Scharffenbergbotnen, DML, Antarctica, in 2003/2004 SCIOPS 1970-01-01 -180, -90, 180, -62.83 https://cmr.earthdata.nasa.gov/search/concepts/C1214614210-SCIOPS.json Horizontal blue ice core collected from the surface of a blue ice area in Scharffenbergbotnen, Heimefrontfjella, DML. Samples were collected in austral summer 2003/2004 and transported to Finland for chemical analyses. The blue ice core is estimated to represent a 1000-year period of climate history 20 - 40 kyr B.P.. The results of the analyses will be available in 2005. not-provided +ch2014.v1 Alpine3D simulations of future climate scenarios CH2014 ENVIDAT 2014-01-01 2014-01-01 8.227, 46.79959, 8.227, 46.79959 https://cmr.earthdata.nasa.gov/search/concepts/C2789814657-ENVIDAT.json # Overview The CH2014-Impacts initiative is a concerted national effort to describe impacts of climate change in Switzerland quantitatively, drawing on the scientific resources available in Switzerland today. The initiative links the recently developed Swiss Climate Change Scenarios CH2011 with an evolving base of quantitative impact models. The use of a common climate data set across disciplines and research groups sets a high standard of consistency and comparability of results. Impact studies explore the wide range of climatic changes in temperature and precipitation projected in CH2011 for the 21st century, which vary with the assumed global level of greenhouse gases, the time horizon, the underlying climate model, and the geographical region within Switzerland. The differences among climate projections are considered using three greenhouse gas scenarios, three future time periods in the 21st century, and three climate uncertainty levels (Figure 1). Impacts are shown with respect to the reference period 1980-2009 of CH2011, and add to any impacts that have already emerged as a result of earlier climate change. # Experimental Setup Future snow cover changes are simulated with the physics-based model Alpine3D (Lehning et al., 2006). It is applied to two regions: The canton of Graubünden and the Aare catchment. These domains are modeled with a Digital Elevation Model (DEM) with a resolution of 200 m × 200 m. This defines the simulation grid that has to be filled with land cover data and downscaled meteorological input data for each cell for the time period of interest at hourly resolution. The reference data set consists of automatic weather station data. All meteorological input parameters are spatially interpolated to the simulation grid. The reference period comprises only thirteen years (1999–2012), because the number of available high elevation weather stations for earlier times is not sufficient to achieve unbiased distribution of the observations with elevation. The model uses projected temperature and precipitation changes for all greenhouse gas scenarios (A1B, A2, and RCP3PD) and CH2011 time periods (2035, 2060, and 2085). # Data Snow cover changes are projected to be relatively small in the near term (2035) (Figure 5.1 top), in particular at higher elevations above 2000 m asl. As shown by Bavay et al. (2013) the spread in projected snow cover for this period is greater between different climate model chains (Chapter 3) than between the reference period and the model chain exhibiting the most moderate change. In the 2085 period much larger changes with the potential to fundamentally transform the snow dominated alpine area become apparent (Figure 5.1 bottom). These changes include a shortening of the snow season by 5–9 weeks for the A1B scenario. This is roughly equivalent to an elevation shift of 400–800 m. The slight increase of winter precipitation and therefore snow fall projected in the CH2011 scenarios (with high associated uncertainty) can no longer compensate for the effect of increasing winter temperatures even at high elevations. In terms of Snow Water Equivalents (SWE), the projected reduction is up to two thirds toward the end of the century (2085). A continuous snow cover will be restricted to a shorter time period and/or to regions at increasingly high elevation. In Bern, for example, the number of days per year with at least 5 cm snow depth will decrease by 90% from now 20 days to only 2 days on average. not-provided chesapeake_val_2013.v0 2013 Chesapeake Bay measurements OB_DAAC 2013-04-11 -180, -90, 180, 90 https://cmr.earthdata.nasa.gov/search/concepts/C1633360188-OB_DAAC.json 2013 Chesapeake Bay measurements. not-provided darling_sst_82-93 1982-1989 and 1993 Seawater Temperatures at the Darling Marine Center SCIOPS 1982-03-01 1993-12-31 -71.31, 42.85, -66.74, 47.67 https://cmr.earthdata.nasa.gov/search/concepts/C1214621676-SCIOPS.json Seawater Surface Temperature Data Collected between the years 1982-1989 and 1993 off the dock at the Darling Marine Center, Walpole, Maine not-provided eMASL1B.v1 Enhanced MODIS Airborne Simulator (eMAS) Calibrated, Geolocated Radiances L1B 50m Data LAADS 2013-08-01 2019-08-22 -180, -35, 180, 80 https://cmr.earthdata.nasa.gov/search/concepts/C2801308027-LAADS.json The Enhanced Moderate Resolution Imaging Spectroradiometer (MODIS) Airborne Simulator (eMAS)instrument is maintained and operated by the Airborne Sensor Facility at NASA Ames Research Center in Mountain View, California, under the oversight of the EOS Project Science Office at NASA Goddard. Prior to 1995, the MAS was deployed on the NASA's ER-2 and C-130 aircraft platforms using a 12-channel, 8-bit data system that somewhat constrained the full benefit of having a 50-channel scanning spectrometer. Beginning in January 1995, a 50-channel, 16-bit digitizer was used on the ER-2 platform, which greatly enhanced the capability of MAS to simulate MODIS data over a wide range of environmental conditions. Recently, it has undergone extensive upgrades to the optics and other components. New detectors have been installed and the spectral bands have been streamlined. The eMAS instrument is now a 38-channel instrument, sensing in the range from 0.445 to 13.844 um. For more information and for a list of MAS campaign flights visit ladsweb at: https://ladsweb.modaps.eosdis.nasa.gov/missions-and-measurements/mas/ or, visit the eMAS Homepage at: https://asapdata.arc.nasa.gov/emas/ not-provided eMASL2CLD.v1 Enhanced MODIS Airborne Simulator (eMAS) L2 Cloud Data LAADS 2013-08-01 2016-09-28 -180, -35, 180, 80 https://cmr.earthdata.nasa.gov/search/concepts/C2801723593-LAADS.json The Enhanced Moderate Resolution Imaging Spectroradiometer (MODIS) Airborne Simulator (eMAS)instrument is maintained and operated by the Airborne Sensor Facility at NASA Ames Research Center in Mountain View, California, under the oversight of the EOS Project Science Office at NASA Goddard. The eMAS instrument is now a 38-channel instrument, sensing in the range from 0.445 to 13.844 um. The Enhanced MODIS Airborne Simulator (eMAS) L2 Cloud Data product (eMASL2CLD) consists of cloud optical and physical parameters. These parameters are derived using remotely sensed infrared and near infrared solar reflected radiances. Multispectral images of the reflectance and brightness temperature at 10 wavelengths between 0.66 and 13.98nm were used to derive the probability of clear sky (or cloud), cloud thermodynamic phase, and the optical thickness and effective radius of liquid water and ice clouds. The eMASL2CLD product files are stored in Hierarchical Data Format (HDF-EOS). All gridded cloud parameters are stored as Scientific Data Sets (SDS) within the file. For more information and for a list of MAS campaign flights visit ladsweb at: https://ladsweb.modaps.eosdis.nasa.gov/missions-and-measurements/mas/ or, visit the eMAS Homepage at: https://asapdata.arc.nasa.gov/emas/ not-provided ef6a9266-a210-4431-a4af-06cec4274726 Cartosat-1 (IRS-P5) - Panchromatic Images (PAN) - Europe, Monographic FEDEO 2015-02-10 -25, 30, 45, 80 https://cmr.earthdata.nasa.gov/search/concepts/C2207457985-FEDEO.json Indian Remote Sensing satellites (IRS) are a series of Earth Observation satellites, built, launched and maintained by Indian Space Research Organisation. The IRS series provides many remote sensing services to India and international ground stations. The satellite has two panchromatic cameras that were especially designed for in flight stereo viewing. However, this collection contains the monoscopic data. not-provided +envidat-lwf-34.v2019-03-06 10-HS Pfynwald ENVIDAT 2019-01-01 2019-01-01 7.61211, 46.30279, 7.61211, 46.30279 https://cmr.earthdata.nasa.gov/search/concepts/C2789815241-ENVIDAT.json Continuous measurement of soil water content at 10 and 80 cm depth (3 replications) with 10-HS soil moisture probes (Decagon Incorporation, Pullman, WA, USA). ### Purpose: ### Monitoring of the soil water matrix potential ### Paper Citation: ### * Dobbertin, M.; Eilmann, B.; Bleuler, P.; Giuggiola, A.; Graf Pannatier, E.; Landolt, W.; Schleppi, P.; Rigling, A., 2010: Effect of irrigation on needle morphology, shoot and stem growth in a drought-exposed Pinus sylvestris forest. Tree Physiology, 30, 3: 346-360. [doi: 10.1093/treephys/tpp123](http://doi.org/10.1093/treephys/tpp123) not-provided fife_hydrology_strm_15m_1.v1 15 Minute Stream Flow Data: USGS (FIFE) ORNL_CLOUD 1984-12-25 1988-03-04 -96.6, 39.1, -96.6, 39.1 https://cmr.earthdata.nasa.gov/search/concepts/C2977827088-ORNL_CLOUD.json USGS 15 minute stream flow data for Kings Creek on the Konza Prairie not-provided fife_sur_met_rain_30m_2.v1 30 Minute Rainfall Data (FIFE) ORNL_CLOUD 1987-05-29 1987-10-26 -96.6, 39.08, -96.55, 39.11 https://cmr.earthdata.nasa.gov/search/concepts/C2977893818-ORNL_CLOUD.json 30 minute rainfall data for the Konza Prairie not-provided gov.noaa.nodc:0000029 1990, 1991, 1992 and 1995 CRETM/LMER Zooplankton Data Sets (NCEI Accession 0000029) NOAA_NCEI 1990-09-26 1995-05-26 -124.041667, 0.766667, -16.25, 46.263167 https://cmr.earthdata.nasa.gov/search/concepts/C2089372282-NOAA_NCEI.json Not provided not-provided @@ -380,6 +397,10 @@ gov.noaa.nodc:GHRSST-OISST_UHR_NRT-GOS-L4-BLK.v2.0 Black Sea Ultra High Resoluti gov.noaa.nodc:GHRSST-REMSS-L2P_GRIDDED_25-TMI.v4.0 GHRSST L2P Gridded Global Subskin Sea Surface Temperature from the Tropical Rainfall Mapping Mission (TRMM) Microwave Imager (TMI) (GDS version 1) GHRSSTCWIC 1998-01-01 2015-04-06 -180, -40, 180, 40 https://cmr.earthdata.nasa.gov/search/concepts/C2213645156-GHRSSTCWIC.json "The Tropical Rainfall Measuring Mission (TRMM) Microwave Imager (TMI) is a well calibrated passive microwave radiometer, similar to SSM/I, that contains lower frequency channels required for sea surface temperature (SST) retrievals. The TRMM is a joint venture between NASA and the Japan Aerospace Exploration Agency (JAXA) to measure precipitation, water vapor, SST and wind in the global tropical regions and was launched in November 1997. The TRMM satellite travels west to east in a 402 km altitude semi-equatorial precessing orbit that results in day-to-day changes in the observation time of any given earth location between 38S and 38N. In contrast to infrared SST observations, microwave retrievals can be measured through most clouds, and are also insensitive to water vapor and aerosols. Remote Sensing Systems is the producer of these gridded TMI SST data for the Group for High Resolution Sea Surface Temperature (GHRSST) Project. Although the product designation is ""L2P_GRIDDED"" it is in actuality a Level 3 Collated (L3C) product as defined in the GHRSST Data Processing Specification (GDS) version 2.0. Its ""L2P_GRIDDED"" name derives from a deprecated specification in the early Pilot Project phase of GHRSST (pre 2008) and has remained for file naming continuity. In this dataset, both ascending (daytime) and descending (daytime) gridded orbital passes on packaged into the same daily file." not-provided gov.noaa.nodc:GHRSST-VIIRS_NPP-NAVO-L2P.v3.0 GHRSST Level 2P 1 m Depth Global Sea Surface Temperature version 3.0 from the Visible Infrared Imaging Radiometer Suite (VIIRS) on the Suomi NPP satellite (GDS version 2) GHRSSTCWIC 2013-06-28 -180, -90, 180, 90 https://cmr.earthdata.nasa.gov/search/concepts/C2213644303-GHRSSTCWIC.json A global Group for High Resolution Sea Surface Temperature (GHRSST) Level 2P dataset based on retrievals from the Visible Infrared Imaging Radiometer Suite (VIIRS). This sensor resides on the Suomi National Polar-orbiting Partnership (Suomi_NPP) satellite launched on 28 October 2011. VIIRS is a whiskbroom scanning radiometer which takes measurements in the cross-track direction within a field of regard of 112.56 degrees using 16 detectors and a double-sided mirror assembly. At a nominal altitude of 829 km, the swath width is 3060 km, providing full daily coverage both on the day and night side of the Earth. The VIIRS instrument is a 22-band, multi-spectral scanning radiometer that builds on the heritage of the MODIS, AVHRR and SeaWiFS sensors for sea surface temperature (SST) and ocean color. For the infrared bands for SST the effective pixel size is 750 meters at nadir and the pixel size variation across the swath is constrained to no more than 1600 meters at the edge of the swath. This L2P SST v3.0 is upgraded from the v2.0 with several significant improvements in processing algorithms, including contamination detection, cloud detection, and data format upgrades. It contains the global near daily-coverage Sea Surface Temperature at 1-meter depth with 750 m (along) x 750 m (cross) spatial resolution in swath coordinates. Each netCDF file has 768 x 3200 pixels in size, in compliance with the GHRSST Data Processing Specification (GDS) version 2 format specifications. not-provided lake_erie_aug_2014.v0 2014 Lake Erie measurements OB_DAAC 2014-08-18 -180, -90, 180, 90 https://cmr.earthdata.nasa.gov/search/concepts/C1633360418-OB_DAAC.json 2014 Lake Erie measurements. not-provided +latent-reserves-in-the-swiss-nfi.v1.0 'Latent reserves' within the Swiss NFI ENVIDAT 2020-01-01 2020-01-01 5.95587, 45.81802, 10.49203, 47.80838 https://cmr.earthdata.nasa.gov/search/concepts/C2789815280-ENVIDAT.json "The files refer to the data used in Portier et al. ""‘Latent reserves’: a hidden treasure in National Forest Inventories"" (2020) *Journal of Ecology*. **'Latent reserves'** are defined as plots in National Forest Inventories (NFI) that have been free of human influence for >40 to >70 years. They can be used to investigate and acquire a deeper understanding of attributes and processes of near-natural forests using existing long-term data. To determine which NFI sample plots could be considered ‘latent reserves’, criteria were defined based on the information available in the Swiss NFI database: * Shrub forests were excluded. * Plots must have been free of any kind of management, including salvage logging or sanitary cuts, for a minimum amount of time. Thresholds of 40, 50, 60 and 70 years without intervention were tested. * To ensure that species composition was not influenced by past management, plots where potential vegetation was classified as deciduous by Ellenberg & Klötzli (1972) had to have an observed proportion of deciduous trees matching the theoretical proportion expected in a natural deciduous forest, as defined by Kienast, Brzeziecki, & Wildi (1994). * Plots had to originate from natural regeneration. * Intensive livestock grazing must never have occurred on the plots. The tables stored here were derived from the first, second and third campaigns of the Swiss NFI. The raw data from the Swiss NFI can be provided free of charge within the scope of a contractual agreement (http://www.lfi.ch/dienstleist/daten-en.php). **** The files 'Data figure 2' to 'Data figure 8' are publicly available and contain the data used to produce the figures published in the paper. The files 'Plot-level data for characterisation of 'latent reserves' and 'Tree-level data for characterisation of 'latent reserves' contain all the data required to reproduce the section of the article concerning the characterisation of 'latent reserves' and the comparison to managed forests. The file 'Data for mortality analyses' contains the data required to reproduce the section of the article concerning tree mortality in 'latent reserves'. The access to these three files is restricted as they contain some raw data from the Swiss NFI, submitted to the Swiss law and only accessible upon contractual agreement. " not-provided law_dome_annual_msa.v1 150 year MSA sea ice proxy record from Law Dome, Antarctica AU_AADC 1841-01-01 1995-12-31 112.806946, -66.76972, 112.806946, -66.76972 https://cmr.earthdata.nasa.gov/search/concepts/C1214313532-AU_AADC.json "This MSA record (1841-1995) is from a Law Dome ice core called ""DSS"" in East Antarctica. It was calibrated against satellite sea ice records and used to reconstruct sea ice extent prior to the satellite era. The following is taken from the abstract of the paper (Curran et al., 2003). The instrumental record of Antarctic sea ice in recent decades does not reveal a clear signature of warming despite observational evidence from coastal Antarctica. This work shows a significant correlation (P less than 0.002) between methanesulphonic acid (MSA) concentrations from a Law Dome ice core and 22 years of satellite-derived sea ice extent (SIE) for the 80 degrees E to 140 degrees E sector. Applying this instrumental calibration to longer term MSA data (1841 to 1995 A.D.) suggests that there has been a 20% decline in SIE since about 1950. The decline is not uniform, showing large cyclical variations, with periods of about 11 years, that confuse trend detection over the relatively short satellite era. This work was completed as part of ASAC project 757 (ASAC_757)." not-provided mbs_wilhelm_msa_hooh.v1 15 year Wilhelm II Land MSA and HOOH shallow ice core record from Mount Brown South (MBS) AU_AADC 1984-01-01 1998-12-31 86.082, -69.13, 86.084, -69.12 https://cmr.earthdata.nasa.gov/search/concepts/C1214313640-AU_AADC.json This work presents results from a short firn core spanning 15 years collected from near Mount Brown, Wilhelm II Land, East Antarctica. Variations of methanesulphonic acid (MSA) at Mount Brown were positively correlated with sea-ice extent from the coastal region surrounding Mount Brown (60-1208 E) and from around the entire Antarctic coast (0-3608 E). Previous results from Law Dome identified this MSA-sea-ice relationship and proposed it as an Antarctic sea-ice proxy (Curran and others, 2003), with the strongest results found for the local Law Dome region. Our data provide supporting evidence for the Law Dome proxy (at another site in East Antarctica), but a deeper Mount Brown ice core is required to confirm the sea-ice decline suggested by Curran and others (2003). Results also indicate that this deeper record may also provide a more circum-Antarctic sea-ice proxy. This work was completed as part of ASAC project 757 (ASAC_757). not-provided +mosaic-cbers4-brazil-3m-1 CBERS-4/WFI Image Mosaic of Brazil - 3 Months INPE 2020-04-01 2020-06-30 -76.6054059, -33.7511817, -27.7877802, 6.3052432 https://cmr.earthdata.nasa.gov/search/concepts/C3108204634-INPE.json CBERS-4/WFI image mosaic of Brazil with 64m of spatial resolution. The mosaic was prepared in order to demonstrate the technological capabilities of the Brazil Data Cube project tools. The false color composition is based on the WFI bands 15, 16 and 13 assigned to RGB channels. The temporal composition encompasses 03-months of images, starting in April 2020 and ending in June 2020, with a best pixel selection approach called Least Cloud Cover First (LCF). More information on LCF can be found at Brazil Data Cube web site (https://brazil-data-cube.github.io/specifications/processing-flow.html#temporal-compositing). This Image Mosaic used more than 1200 CBERS-4 scenes and was generated based on an existing CBERS-4/WFI image collection. not-provided +mosaic-cbers4a-paraiba-3m-1 CBERS-4A/WFI Image Mosaic of Brazil Paraíba State - 3 Months INPE 2020-07-01 2020-09-30 -38.8134896, -8.3976443, -34.7223714, -5.87659 https://cmr.earthdata.nasa.gov/search/concepts/C3108204719-INPE.json CBERS-4A/WFI image mosaic of Brazil Paraíba State with 55m of spatial resolution. The mosaic was prepared in order to demonstrate the technological capabilities of the Brazil Data Cube project tools. The false color composition is based on the WFI bands 16, 15 and 14 assigned to RGB channels. The temporal composition encompasses 03-months of images, starting in July 2020 and ending in September 2020, with a best pixel selection approach called Least Cloud Cover First (LCF). More information on LCF can be found at Brazil Data Cube web site (https://brazil-data-cube.github.io/specifications/processing-flow.html#temporal-compositing). This Image Mosaic used more than 50 CBERS-4A scenes and was generated based on an existing CBERS-4A/WFI image collection. not-provided +pfynwaldgasexchange.v1.0 2013-2020 gas exchange at Pfynwald ENVIDAT 2021-01-01 2021-01-01 7.6105556, 46.3001905, 7.6163921, 46.3047564 https://cmr.earthdata.nasa.gov/search/concepts/C2789816347-ENVIDAT.json Gas exchange was measured on control, irrigated and irrigation-stop trees at the irrigation experiment Pfynwald, during the years 2013, 2014, 2016-2020. The measurement campaigns served different purposes, resulting in a large dataset containing survey data, CO2 response curves of photosynthesis, light response curves of photosynthesis, and fluorescence measurements. Measurements were done with LiCor 6400 and LiCor 6800 instruments. Until 2016, measurements were done on excised branches or branches lower in the canopy. From 2016 onwards, measurements were done in the top of the canopy using fixed installed scaffolds. All metadata can be found in the attached documents. not-provided urn:ogc:def:EOP:VITO:VGT_S10.v1 10 Days Synthesis of SPOT VEGETATION Images (VGT-S10) FEDEO 1998-04-01 2014-05-31 -180, -56, 180, 75 https://cmr.earthdata.nasa.gov/search/concepts/C2207472890-FEDEO.json The VGT-S10 are near-global or continental, 10-daily composite images which are synthesised from the 'best available' observations registered in the course of every 'dekad' by the orbiting earth observation system SPOT-VEGETATION. The products provide data from all spectral bands (SWIR, NIR, RED, BLUE), the NDVI and auxiliary data on image acquisition parameters. The VEGETATION system allows operational and near real-time applications, at global, continental and regional scales, in very broad environmentally and socio-economically critical fields. The VEGETATION instrument is operational since April 1998, first with VGT1, from March 2003 onwards, with VGT2. More information is available on: https://docs.terrascope.be/#/DataProducts/SPOT-VGT/Level3/Level3 not-provided