-
Notifications
You must be signed in to change notification settings - Fork 380
/
dqfd.py
273 lines (259 loc) · 13.4 KB
/
dqfd.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
from typing import List, Dict, Any, Tuple
from collections import namedtuple
import copy
import torch
from torch.optim import AdamW
from ding.torch_utils import Adam, to_device
from ding.rl_utils import q_nstep_td_data, q_nstep_td_error, get_nstep_return_data, get_train_sample, \
dqfd_nstep_td_error, dqfd_nstep_td_data
from ding.model import model_wrap
from ding.utils import POLICY_REGISTRY
from ding.utils.data import default_collate, default_decollate
from .dqn import DQNPolicy
from .common_utils import default_preprocess_learn
from copy import deepcopy
@POLICY_REGISTRY.register('dqfd')
class DQFDPolicy(DQNPolicy):
r"""
Overview:
Policy class of DQFD algorithm, extended by Double DQN/Dueling DQN/PER/multi-step TD.
Config:
== ==================== ======== ============== ======================================== =======================
ID Symbol Type Default Value Description Other(Shape)
== ==================== ======== ============== ======================================== =======================
1 ``type`` str dqn | RL policy register name, refer to | This arg is optional,
| registry ``POLICY_REGISTRY`` | a placeholder
2 ``cuda`` bool False | Whether to use cuda for network | This arg can be diff-
| erent from modes
3 ``on_policy`` bool False | Whether the RL algorithm is on-policy
| or off-policy
4 ``priority`` bool True | Whether use priority(PER) | Priority sample,
| update priority
5 | ``priority_IS`` bool True | Whether use Importance Sampling Weight
| ``_weight`` | to correct biased update. If True,
| priority must be True.
6 | ``discount_`` float 0.97, | Reward's future discount factor, aka. | May be 1 when sparse
| ``factor`` [0.95, 0.999] | gamma | reward env
7 ``nstep`` int 10, | N-step reward discount sum for target
[3, 5] | q_value estimation
8 | ``lambda1`` float 1 | multiplicative factor for n-step
9 | ``lambda2`` float 1 | multiplicative factor for the
| supervised margin loss
10 | ``lambda3`` float 1e-5 | L2 loss
11 | ``margin_fn`` float 0.8 | margin function in JE, here we set
| this as a constant
12 | ``per_train_`` int 10 | number of pertraining iterations
| ``iter_k``
13 | ``learn.update`` int 3 | How many updates(iterations) to train | This args can be vary
| ``per_collect`` | after collector's one collection. Only | from envs. Bigger val
| valid in serial training | means more off-policy
14 | ``learn.batch_`` int 64 | The number of samples of an iteration
| ``size``
15 | ``learn.learning`` float 0.001 | Gradient step length of an iteration.
| ``_rate``
16 | ``learn.target_`` int 100 | Frequency of target network update. | Hard(assign) update
| ``update_freq``
17 | ``learn.ignore_`` bool False | Whether ignore done for target value | Enable it for some
| ``done`` | calculation. | fake termination env
18 ``collect.n_sample`` int [8, 128] | The number of training samples of a | It varies from
| call of collector. | different envs
19 | ``collect.unroll`` int 1 | unroll length of an iteration | In RNN, unroll_len>1
| ``_len``
== ==================== ======== ============== ======================================== =======================
"""
config = dict(
type='dqfd',
cuda=False,
on_policy=False,
priority=True,
# (bool) Whether use Importance Sampling Weight to correct biased update. If True, priority must be True.
priority_IS_weight=True,
discount_factor=0.99,
nstep=10,
learn=dict(
# multiplicative factor for each loss
lambda1=1.0, # n-step return
lambda2=1.0, # supervised loss
lambda3=1e-5, # L2
# margin function in JE, here we implement this as a constant
margin_function=0.8,
# number of pertraining iterations
per_train_iter_k=10,
# How many updates(iterations) to train after collector's one collection.
# Bigger "update_per_collect" means bigger off-policy.
# collect data -> update policy-> collect data -> ...
update_per_collect=3,
batch_size=64,
learning_rate=0.001,
# ==============================================================
# The following configs are algorithm-specific
# ==============================================================
# (int) Frequence of target network update.
target_update_freq=100,
# (bool) Whether ignore done(usually for max step termination env)
ignore_done=False,
),
# collect_mode config
collect=dict(
# (int) Only one of [n_sample, n_episode] should be set
# n_sample=8,
# (int) Cut trajectories into pieces with length "unroll_len".
unroll_len=1,
# The hyperparameter pho, the demo ratio, control the propotion of data\
# coming from expert demonstrations versus from the agent's own experience.
pho=0.5,
),
eval=dict(),
# other config
other=dict(
# Epsilon greedy with decay.
eps=dict(
# (str) Decay type. Support ['exp', 'linear'].
type='exp',
start=0.95,
end=0.1,
# (int) Decay length(env step)
decay=10000,
),
replay_buffer=dict(replay_buffer_size=10000, ),
),
)
def _init_learn(self) -> None:
"""
Overview:
Learn mode init method. Called by ``self.__init__``, initialize the optimizer, algorithm arguments, main \
and target model.
"""
self.lambda1 = self._cfg.learn.lambda1 # n-step return
self.lambda2 = self._cfg.learn.lambda2 # supervised loss
self.lambda3 = self._cfg.learn.lambda3 # L2
# margin function in JE, here we implement this as a constant
self.margin_function = self._cfg.learn.margin_function
self._priority = self._cfg.priority
self._priority_IS_weight = self._cfg.priority_IS_weight
# Optimizer
# two optimizers: the performance of adamW is better than adam, so we recommend using the adamW.
self._optimizer = AdamW(self._model.parameters(), lr=self._cfg.learn.learning_rate, weight_decay=self.lambda3)
# self._optimizer = Adam(self._model.parameters(), lr=self._cfg.learn.learning_rate, weight_decay=self.lambda3)
self._gamma = self._cfg.discount_factor
self._nstep = self._cfg.nstep
# use model_wrapper for specialized demands of different modes
self._target_model = copy.deepcopy(self._model)
self._target_model = model_wrap(
self._target_model,
wrapper_name='target',
update_type='assign',
update_kwargs={'freq': self._cfg.learn.target_update_freq}
)
self._learn_model = model_wrap(self._model, wrapper_name='argmax_sample')
self._learn_model.reset()
self._target_model.reset()
def _forward_learn(self, data: Dict[str, Any]) -> Dict[str, Any]:
"""
Overview:
Forward computation graph of learn mode(updating policy).
Arguments:
- data (:obj:`Dict[str, Any]`): Dict type data, a batch of data for training, values are torch.Tensor or \
np.ndarray or dict/list combinations.
Returns:
- info_dict (:obj:`Dict[str, Any]`): Dict type data, a info dict indicated training result, which will be \
recorded in text log and tensorboard, values are python scalar or a list of scalars.
ArgumentsKeys:
- necessary: ``obs``, ``action``, ``reward``, ``next_obs``, ``done``
- optional: ``value_gamma``, ``IS``
ReturnsKeys:
- necessary: ``cur_lr``, ``total_loss``, ``priority``
- optional: ``action_distribution``
"""
data = default_preprocess_learn(
data,
use_priority=self._priority,
use_priority_IS_weight=self._cfg.priority_IS_weight,
ignore_done=self._cfg.learn.ignore_done,
use_nstep=True
)
data['done_1'] = data['done_1'].float()
if self._cuda:
data = to_device(data, self._device)
# ====================
# Q-learning forward
# ====================
self._learn_model.train()
self._target_model.train()
# Current q value (main model)
q_value = self._learn_model.forward(data['obs'])['logit']
# Target q value
with torch.no_grad():
target_q_value = self._target_model.forward(data['next_obs'])['logit']
target_q_value_one_step = self._target_model.forward(data['next_obs_1'])['logit']
# Max q value action (main model)
target_q_action = self._learn_model.forward(data['next_obs'])['action']
target_q_action_one_step = self._learn_model.forward(data['next_obs_1'])['action']
# modify the tensor type to match the JE computation in dqfd_nstep_td_error
is_expert = data['is_expert'].float()
data_n = dqfd_nstep_td_data(
q_value,
target_q_value,
data['action'],
target_q_action,
data['reward'],
data['done'],
data['done_1'],
data['weight'],
target_q_value_one_step,
target_q_action_one_step,
is_expert # set is_expert flag(expert 1, agent 0)
)
value_gamma = data.get('value_gamma')
loss, td_error_per_sample, loss_statistics = dqfd_nstep_td_error(
data_n,
self._gamma,
self.lambda1,
self.lambda2,
self.margin_function,
nstep=self._nstep,
value_gamma=value_gamma
)
# ====================
# Q-learning update
# ====================
self._optimizer.zero_grad()
loss.backward()
if self._cfg.multi_gpu:
self.sync_gradients(self._learn_model)
self._optimizer.step()
# =============
# after update
# =============
self._target_model.update(self._learn_model.state_dict())
return {
'cur_lr': self._optimizer.defaults['lr'],
'total_loss': loss.item(),
'priority': td_error_per_sample.abs().tolist(),
# Only discrete action satisfying len(data['action'])==1 can return this and draw histogram on tensorboard.
# '[histogram]action_distribution': data['action'],
}
def _get_train_sample(self, data: List[Dict[str, Any]]) -> List[Dict[str, Any]]:
"""
Overview:
For a given trajectory(transitions, a list of transition) data, process it into a list of sample that \
can be used for training directly. A train sample can be a processed transition(DQN with nstep TD) \
or some continuous transitions(DRQN).
Arguments:
- data (:obj:`List[Dict[str, Any]`): The trajectory data(a list of transition), each element is the same \
format as the return value of ``self._process_transition`` method.
Returns:
- samples (:obj:`dict`): The list of training samples.
.. note::
We will vectorize ``process_transition`` and ``get_train_sample`` method in the following release version. \
And the user can customize the this data processing procecure by overriding this two methods and collector \
itself.
"""
data_1 = deepcopy(get_nstep_return_data(data, 1, gamma=self._gamma))
data = get_nstep_return_data(
data, self._nstep, gamma=self._gamma
) # here we want to include one-step next observation
for i in range(len(data)):
data[i]['next_obs_1'] = data_1[i]['next_obs'] # concat the one-step next observation
data[i]['done_1'] = data_1[i]['done']
return get_train_sample(data, self._unroll_len)