diff --git a/.chloggen/split-emf-log-when-buckets-larger-than-100.yaml b/.chloggen/split-emf-log-when-buckets-larger-than-100.yaml deleted file mode 100644 index da57f8624ea9..000000000000 --- a/.chloggen/split-emf-log-when-buckets-larger-than-100.yaml +++ /dev/null @@ -1,27 +0,0 @@ -# Use this changelog template to create an entry for release notes. - -# One of 'breaking', 'deprecation', 'new_component', 'enhancement', 'bug_fix' -change_type: enhancement - -# The name of the component, or a single word describing the area of concern, (e.g. filelogreceiver) -component: awsemfexporter - -# A brief description of the change. Surround your text with quotes ("") if it needs to start with a backtick (`). -note: Split EMF log to multiple log splits when buckets larger than 100. - -# Mandatory: One or more tracking issues related to the change. You can use the PR number here if no issue exists. -issues: [242] - -# (Optional) One or more lines of additional information to render under the primary note. -# These lines will be padded with 2 spaces and then inserted directly into the document. -# Use pipe (|) for multiline entries. -subtext: - -# If your change doesn't affect end users or the exported elements of any package, -# you should instead start your pull request title with [chore] or use the "Skip Changelog" label. -# Optional: The change log or logs in which this entry should be included. -# e.g. '[user]' or '[user, api]' -# Include 'user' if the change is relevant to end users. -# Include 'api' if there is a change to a library API. -# Default: '[user]' -change_logs: [] diff --git a/exporter/awsemfexporter/datapoint.go b/exporter/awsemfexporter/datapoint.go index 36d16b62de88..001d83ab2b78 100644 --- a/exporter/awsemfexporter/datapoint.go +++ b/exporter/awsemfexporter/datapoint.go @@ -109,33 +109,6 @@ type summaryMetricEntry struct { count uint64 } -// dataPointSplit is a structure used to manage segments of data points split from a histogram. -// It is not safe for concurrent use. -type dataPointSplit struct { - cWMetricHistogram *cWMetricHistogram - length int - capacity int -} - -func (split *dataPointSplit) isFull() bool { - return split.length >= split.capacity -} - -func (split *dataPointSplit) setMax(maxVal float64) { - split.cWMetricHistogram.Max = maxVal -} - -func (split *dataPointSplit) setMin(minVal float64) { - split.cWMetricHistogram.Min = minVal -} - -func (split *dataPointSplit) appendMetricData(metricVal float64, count uint64) { - split.cWMetricHistogram.Values = append(split.cWMetricHistogram.Values, metricVal) - split.cWMetricHistogram.Counts = append(split.cWMetricHistogram.Counts, float64(count)) - split.length++ - split.cWMetricHistogram.Count += count -} - // CalculateDeltaDatapoints retrieves the NumberDataPoint at the given index and performs rate/delta calculation if necessary. func (dps numberDataPointSlice) CalculateDeltaDatapoints(i int, instrumentationScopeName string, _ bool, calculators *emfCalculators) ([]dataPoint, bool) { metric := dps.NumberDataPointSlice.At(i) @@ -220,171 +193,58 @@ func (dps histogramDataPointSlice) IsStaleNaNInf(i int) (bool, pcommon.Map) { } // CalculateDeltaDatapoints retrieves the ExponentialHistogramDataPoint at the given index. -// As CloudWatch EMF logs allows in maximum of 100 target members, the exponential histogram metric are split into multiple data points as needed, -// each containing a maximum of 100 buckets, to comply with CloudWatch EMF log constraints. -// Note that the number of values and counts in each split may not be less than splitThreshold as we are only adding non-zero bucket counts. -// -// For each split data point: -// - Min and Max values are recalculated based on the bucket boundary within that specific split. -// - Sum is only assigned to the first split to ensure the total sum of the datapoints after aggregation is correct. -// - Count is accumulated based on the bucket counts within each split. func (dps exponentialHistogramDataPointSlice) CalculateDeltaDatapoints(idx int, instrumentationScopeName string, _ bool, _ *emfCalculators) ([]dataPoint, bool) { metric := dps.ExponentialHistogramDataPointSlice.At(idx) - const splitThreshold = 100 - currentBucketIndex := 0 - currentPositiveIndex := metric.Positive().BucketCounts().Len() - 1 - currentZeroIndex := 0 - currentNegativeIndex := 0 - var datapoints []dataPoint - totalBucketLen := metric.Positive().BucketCounts().Len() + metric.Negative().BucketCounts().Len() - if metric.ZeroCount() > 0 { - totalBucketLen++ - } - - for currentBucketIndex < totalBucketLen { - // Create a new dataPointSplit with a capacity of up to splitThreshold buckets - capacity := min(splitThreshold, totalBucketLen-currentBucketIndex) - - sum := 0.0 - // Only assign `Sum` if this is the first split to make sure the total sum of the datapoints after aggregation is correct. - if currentBucketIndex == 0 { - sum = metric.Sum() - } - - split := dataPointSplit{ - cWMetricHistogram: &cWMetricHistogram{ - Values: []float64{}, - Counts: []float64{}, - Max: metric.Max(), - Min: metric.Min(), - Count: 0, - Sum: sum, - }, - length: 0, - capacity: capacity, - } - - // Set collect values from positive buckets and save into split. - currentBucketIndex, currentPositiveIndex = collectDatapointsWithPositiveBuckets(&split, metric, currentBucketIndex, currentPositiveIndex) - // Set collect values from zero buckets and save into split. - currentBucketIndex, currentZeroIndex = collectDatapointsWithZeroBucket(&split, metric, currentBucketIndex, currentZeroIndex) - // Set collect values from negative buckets and save into split. - currentBucketIndex, currentNegativeIndex = collectDatapointsWithNegativeBuckets(&split, metric, currentBucketIndex, currentNegativeIndex) - - if split.length > 0 { - // Add the current split to the datapoints list - datapoints = append(datapoints, dataPoint{ - name: dps.metricName, - value: split.cWMetricHistogram, - labels: createLabels(metric.Attributes(), instrumentationScopeName), - timestampMs: unixNanoToMilliseconds(metric.Timestamp()), - }) - } - } - - if len(datapoints) == 0 { - return []dataPoint{{ - name: dps.metricName, - value: &cWMetricHistogram{ - Values: []float64{}, - Counts: []float64{}, - Count: metric.Count(), - Sum: metric.Sum(), - Max: metric.Max(), - Min: metric.Min(), - }, - labels: createLabels(metric.Attributes(), instrumentationScopeName), - timestampMs: unixNanoToMilliseconds(metric.Timestamp()), - }}, true - } - - // Override the min and max values of the first and last splits with the raw data of the metric. - datapoints[0].value.(*cWMetricHistogram).Max = metric.Max() - datapoints[len(datapoints)-1].value.(*cWMetricHistogram).Min = metric.Min() - - return datapoints, true -} - -func collectDatapointsWithPositiveBuckets(split *dataPointSplit, metric pmetric.ExponentialHistogramDataPoint, currentBucketIndex int, currentPositiveIndex int) (int, int) { - if split.isFull() || currentPositiveIndex < 0 { - return currentBucketIndex, currentPositiveIndex - } - scale := metric.Scale() base := math.Pow(2, math.Pow(2, float64(-scale))) + arrayValues := []float64{} + arrayCounts := []float64{} + var bucketBegin float64 + var bucketEnd float64 + + // Set mid-point of positive buckets in values/counts array. positiveBuckets := metric.Positive() positiveOffset := positiveBuckets.Offset() positiveBucketCounts := positiveBuckets.BucketCounts() - bucketBegin := 0.0 - bucketEnd := 0.0 - - for !split.isFull() && currentPositiveIndex >= 0 { - index := currentPositiveIndex + int(positiveOffset) - if bucketEnd == 0 { - bucketEnd = math.Pow(base, float64(index+1)) + bucketBegin = 0 + bucketEnd = 0 + for i := 0; i < positiveBucketCounts.Len(); i++ { + index := i + int(positiveOffset) + if bucketBegin == 0 { + bucketBegin = math.Pow(base, float64(index)) } else { - bucketEnd = bucketBegin + bucketBegin = bucketEnd } - bucketBegin = math.Pow(base, float64(index)) + bucketEnd = math.Pow(base, float64(index+1)) metricVal := (bucketBegin + bucketEnd) / 2 - count := positiveBucketCounts.At(currentPositiveIndex) + count := positiveBucketCounts.At(i) if count > 0 { - split.appendMetricData(metricVal, count) - - // The value are append from high to low, set Max from the first bucket (highest value) and Min from the last bucket (lowest value) - if split.length == 1 { - split.setMax(bucketEnd) - } - if split.isFull() { - split.setMin(bucketBegin) - } + arrayValues = append(arrayValues, metricVal) + arrayCounts = append(arrayCounts, float64(count)) } - currentBucketIndex++ - currentPositiveIndex-- } - return currentBucketIndex, currentPositiveIndex -} - -func collectDatapointsWithZeroBucket(split *dataPointSplit, metric pmetric.ExponentialHistogramDataPoint, currentBucketIndex int, currentZeroIndex int) (int, int) { - if metric.ZeroCount() > 0 && !split.isFull() && currentZeroIndex == 0 { - split.appendMetricData(0, metric.ZeroCount()) - - // The value are append from high to low, set Max from the first bucket (highest value) and Min from the last bucket (lowest value) - if split.length == 1 { - split.setMax(0) - } - if split.isFull() { - split.setMin(0) - } - currentZeroIndex++ - currentBucketIndex++ + // Set count of zero bucket in values/counts array. + if metric.ZeroCount() > 0 { + arrayValues = append(arrayValues, 0) + arrayCounts = append(arrayCounts, float64(metric.ZeroCount())) } - return currentBucketIndex, currentZeroIndex -} - -func collectDatapointsWithNegativeBuckets(split *dataPointSplit, metric pmetric.ExponentialHistogramDataPoint, currentBucketIndex int, currentNegativeIndex int) (int, int) { + // Set mid-point of negative buckets in values/counts array. // According to metrics spec, the value in histogram is expected to be non-negative. // https://opentelemetry.io/docs/specs/otel/metrics/api/#histogram // However, the negative support is defined in metrics data model. // https://opentelemetry.io/docs/specs/otel/metrics/data-model/#exponentialhistogram // The negative is also supported but only verified with unit test. - if split.isFull() || currentNegativeIndex >= metric.Negative().BucketCounts().Len() { - return currentBucketIndex, currentNegativeIndex - } - scale := metric.Scale() - base := math.Pow(2, math.Pow(2, float64(-scale))) negativeBuckets := metric.Negative() negativeOffset := negativeBuckets.Offset() negativeBucketCounts := negativeBuckets.BucketCounts() - bucketBegin := 0.0 - bucketEnd := 0.0 - - for !split.isFull() && currentNegativeIndex < metric.Negative().BucketCounts().Len() { - index := currentNegativeIndex + int(negativeOffset) + bucketBegin = 0 + bucketEnd = 0 + for i := 0; i < negativeBucketCounts.Len(); i++ { + index := i + int(negativeOffset) if bucketEnd == 0 { bucketEnd = -math.Pow(base, float64(index)) } else { @@ -392,23 +252,26 @@ func collectDatapointsWithNegativeBuckets(split *dataPointSplit, metric pmetric. } bucketBegin = -math.Pow(base, float64(index+1)) metricVal := (bucketBegin + bucketEnd) / 2 - count := negativeBucketCounts.At(currentNegativeIndex) + count := negativeBucketCounts.At(i) if count > 0 { - split.appendMetricData(metricVal, count) - - // The value are append from high to low, set Max from the first bucket (highest value) and Min from the last bucket (lowest value) - if split.length == 1 { - split.setMax(bucketEnd) - } - if split.isFull() { - split.setMin(bucketBegin) - } + arrayValues = append(arrayValues, metricVal) + arrayCounts = append(arrayCounts, float64(count)) } - currentBucketIndex++ - currentNegativeIndex++ } - return currentBucketIndex, currentNegativeIndex + return []dataPoint{{ + name: dps.metricName, + value: &cWMetricHistogram{ + Values: arrayValues, + Counts: arrayCounts, + Count: metric.Count(), + Sum: metric.Sum(), + Max: metric.Max(), + Min: metric.Min(), + }, + labels: createLabels(metric.Attributes(), instrumentationScopeName), + timestampMs: unixNanoToMilliseconds(metric.Timestamp()), + }}, true } func (dps exponentialHistogramDataPointSlice) IsStaleNaNInf(i int) (bool, pcommon.Map) { diff --git a/exporter/awsemfexporter/datapoint_test.go b/exporter/awsemfexporter/datapoint_test.go index fb02857c6fb0..911ecc48e24e 100644 --- a/exporter/awsemfexporter/datapoint_test.go +++ b/exporter/awsemfexporter/datapoint_test.go @@ -7,7 +7,6 @@ import ( "fmt" "math" "reflect" - "strconv" "testing" "time" @@ -245,65 +244,6 @@ func generateTestExponentialHistogramMetricWithInfs(name string) pmetric.Metrics return otelMetrics } -func generateTestExponentialHistogramMetricWithLongBuckets(name string) pmetric.Metrics { - otelMetrics := pmetric.NewMetrics() - rs := otelMetrics.ResourceMetrics().AppendEmpty() - metrics := rs.ScopeMetrics().AppendEmpty().Metrics() - metric := metrics.AppendEmpty() - metric.SetName(name) - metric.SetUnit("Seconds") - exponentialHistogramMetric := metric.SetEmptyExponentialHistogram() - - exponentialHistogramDatapoint := exponentialHistogramMetric.DataPoints().AppendEmpty() - exponentialHistogramDatapoint.SetCount(3662) - exponentialHistogramDatapoint.SetSum(1000) - exponentialHistogramDatapoint.SetMin(-9e+17) - exponentialHistogramDatapoint.SetMax(9e+17) - exponentialHistogramDatapoint.SetZeroCount(2) - posBucketCounts := make([]uint64, 60) - for i := range posBucketCounts { - posBucketCounts[i] = uint64(i + 1) - } - exponentialHistogramDatapoint.Positive().BucketCounts().FromRaw(posBucketCounts) - negBucketCounts := make([]uint64, 60) - for i := range negBucketCounts { - negBucketCounts[i] = uint64(i + 1) - } - exponentialHistogramDatapoint.Negative().BucketCounts().FromRaw(negBucketCounts) - exponentialHistogramDatapoint.Attributes().PutStr("label1", "value1") - return otelMetrics -} - -func generateTestExponentialHistogramMetricWithSpecifiedNumberOfBuckets(name string, bucketLength int) pmetric.Metrics { - halfBucketLength := bucketLength / 2 - otelMetrics := pmetric.NewMetrics() - rs := otelMetrics.ResourceMetrics().AppendEmpty() - metrics := rs.ScopeMetrics().AppendEmpty().Metrics() - metric := metrics.AppendEmpty() - metric.SetName(name) - metric.SetUnit("Seconds") - exponentialHistogramMetric := metric.SetEmptyExponentialHistogram() - - exponentialHistogramDatapoint := exponentialHistogramMetric.DataPoints().AppendEmpty() - exponentialHistogramDatapoint.SetCount(250550) - exponentialHistogramDatapoint.SetSum(10000) - exponentialHistogramDatapoint.SetMin(-9e+20) - exponentialHistogramDatapoint.SetMax(9e+20) - exponentialHistogramDatapoint.SetZeroCount(50) - posBucketCounts := make([]uint64, halfBucketLength) - for i := range posBucketCounts { - posBucketCounts[i] = uint64(i + 1) - } - exponentialHistogramDatapoint.Positive().BucketCounts().FromRaw(posBucketCounts) - negBucketCounts := make([]uint64, halfBucketLength) - for i := range negBucketCounts { - negBucketCounts[i] = uint64(i + 1) - } - exponentialHistogramDatapoint.Negative().BucketCounts().FromRaw(negBucketCounts) - exponentialHistogramDatapoint.Attributes().PutStr("label1", "value1") - return otelMetrics -} - func generateTestSummaryMetric(name string) pmetric.Metrics { otelMetrics := pmetric.NewMetrics() rs := otelMetrics.ResourceMetrics().AppendEmpty() @@ -901,7 +841,7 @@ func TestCalculateDeltaDatapoints_ExponentialHistogramDataPointSlice(t *testing. }(), expectedDatapoint: dataPoint{ name: "foo", - value: &cWMetricHistogram{Values: []float64{6, 3, 1.5, 0, -1.5, -3, -6}, Counts: []float64{3, 2, 1, 4, 1, 2, 3}, Count: 16}, + value: &cWMetricHistogram{Values: []float64{1.5, 3, 6, 0, -1.5, -3, -6}, Counts: []float64{1, 2, 3, 4, 1, 2, 3}}, labels: map[string]string{oTellibDimensionKey: instrLibName, "label1": "value1"}, }, }, @@ -922,7 +862,7 @@ func TestCalculateDeltaDatapoints_ExponentialHistogramDataPointSlice(t *testing. }(), expectedDatapoint: dataPoint{ name: "foo", - value: &cWMetricHistogram{Values: []float64{10, 2.5, 0.625, 0, -0.625, -2.5, -10}, Counts: []float64{3, 2, 1, 4, 1, 2, 3}, Count: 16}, + value: &cWMetricHistogram{Values: []float64{0.625, 2.5, 10, 0, -0.625, -2.5, -10}, Counts: []float64{1, 2, 3, 4, 1, 2, 3}}, labels: map[string]string{oTellibDimensionKey: instrLibName, "label1": "value1", "label2": "value2"}, }, }, @@ -945,543 +885,6 @@ func TestCalculateDeltaDatapoints_ExponentialHistogramDataPointSlice(t *testing. } } -func TestCalculateDeltaDatapoints_ExponentialHistogramDataPointSliceWithSplitDataPoints(t *testing.T) { - dmd := generateDeltaMetricMetadata(false, "foo", false) - - testCases := []struct { - name string - histogramDPS pmetric.ExponentialHistogramDataPointSlice - expectedDatapoints []dataPoint - }{ - { - name: "Exponential histogram with more than 100 buckets, including positive, negative and zero buckets", - histogramDPS: func() pmetric.ExponentialHistogramDataPointSlice { - histogramDPS := pmetric.NewExponentialHistogramDataPointSlice() - histogramDP := histogramDPS.AppendEmpty() - posBucketCounts := make([]uint64, 60) - for i := range posBucketCounts { - posBucketCounts[i] = uint64(i + 1) - } - histogramDP.Positive().BucketCounts().FromRaw(posBucketCounts) - histogramDP.SetZeroCount(2) - negBucketCounts := make([]uint64, 60) - for i := range negBucketCounts { - negBucketCounts[i] = uint64(i + 1) - } - histogramDP.Negative().BucketCounts().FromRaw(negBucketCounts) - histogramDP.SetSum(1000) - histogramDP.SetMin(-9e+17) - histogramDP.SetMax(9e+17) - histogramDP.SetCount(uint64(3662)) - histogramDP.Attributes().PutStr("label1", "value1") - return histogramDPS - }(), - expectedDatapoints: []dataPoint{ - { - name: "foo", - value: &cWMetricHistogram{ - Values: []float64{ - 8.646911284551352e+17, 4.323455642275676e+17, 2.161727821137838e+17, 1.080863910568919e+17, 5.404319552844595e+16, 2.7021597764222976e+16, - 1.3510798882111488e+16, 6.755399441055744e+15, 3.377699720527872e+15, 1.688849860263936e+15, 8.44424930131968e+14, 4.22212465065984e+14, - 2.11106232532992e+14, 1.05553116266496e+14, 5.2776558133248e+13, 2.6388279066624e+13, 1.3194139533312e+13, 6.597069766656e+12, 3.298534883328e+12, - 1.649267441664e+12, 8.24633720832e+11, 4.12316860416e+11, 2.06158430208e+11, 1.03079215104e+11, 5.1539607552e+10, 2.5769803776e+10, - 1.2884901888e+10, 6.442450944e+09, 3.221225472e+09, 1.610612736e+09, 8.05306368e+08, 4.02653184e+08, 2.01326592e+08, 1.00663296e+08, - 5.0331648e+07, 2.5165824e+07, 1.2582912e+07, 6.291456e+06, 3.145728e+06, 1.572864e+06, 786432, 393216, 196608, 98304, 49152, 24576, - 12288, 6144, 3072, 1536, 768, 384, 192, 96, 48, 24, 12, 6, 3, 1.5, 0, -1.5, -3, -6, -12, -24, -48, -96, -192, -384, -768, -1536, -3072, - -6144, -12288, -24576, -49152, -98304, -196608, -393216, -786432, -1.572864e+06, -3.145728e+06, -6.291456e+06, -1.2582912e+07, -2.5165824e+07, - -5.0331648e+07, -1.00663296e+08, -2.01326592e+08, -4.02653184e+08, -8.05306368e+08, -1.610612736e+09, -3.221225472e+09, -6.442450944e+09, - -1.2884901888e+10, -2.5769803776e+10, -5.1539607552e+10, -1.03079215104e+11, -2.06158430208e+11, -4.12316860416e+11, - }, - Counts: []float64{ - 60, 59, 58, 57, 56, 55, 54, 53, 52, 51, 50, 49, 48, 47, 46, 45, 44, 43, 42, 41, 40, 39, 38, 37, 36, 35, 34, 33, 32, 31, 30, 29, 28, 27, 26, 25, 24, 23, 22, 21, 20, 19, 18, 17, 16, 15, 14, 13, 12, 11, 10, 9, 8, 7, - 6, 5, 4, 3, 2, 1, 2, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, - 34, 35, 36, 37, 38, 39, - }, - Sum: 1000, Count: 2612, Min: -5.49755813888e+11, Max: 9e+17, - }, - labels: map[string]string{oTellibDimensionKey: instrLibName, "label1": "value1"}, - }, - { - name: "foo", - value: &cWMetricHistogram{ - Values: []float64{ - -8.24633720832e+11, -1.649267441664e+12, -3.298534883328e+12, -6.597069766656e+12, -1.3194139533312e+13, -2.6388279066624e+13, -5.2776558133248e+13, - -1.05553116266496e+14, -2.11106232532992e+14, -4.22212465065984e+14, -8.44424930131968e+14, -1.688849860263936e+15, -3.377699720527872e+15, - -6.755399441055744e+15, -1.3510798882111488e+16, -2.7021597764222976e+16, -5.404319552844595e+16, -1.080863910568919e+17, -2.161727821137838e+17, - -4.323455642275676e+17, -8.646911284551352e+17, - }, - Counts: []float64{40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60}, - Sum: 0, Count: 1050, Min: -9e+17, Max: -5.49755813888e+11, - }, - labels: map[string]string{oTellibDimensionKey: instrLibName, "label1": "value1"}, - }, - }, - }, - { - name: "Exponential histogram with more than 100 buckets, including positive and zero buckets", - histogramDPS: func() pmetric.ExponentialHistogramDataPointSlice { - histogramDPS := pmetric.NewExponentialHistogramDataPointSlice() - histogramDP := histogramDPS.AppendEmpty() - posBucketCounts := make([]uint64, 120) - for i := range posBucketCounts { - posBucketCounts[i] = uint64(i + 1) - } - histogramDP.Positive().BucketCounts().FromRaw(posBucketCounts) - histogramDP.SetZeroCount(2) - histogramDP.SetSum(10000) - histogramDP.SetMin(0) - histogramDP.SetMax(9e+36) - histogramDP.SetCount(uint64(7262)) - histogramDP.Attributes().PutStr("label1", "value1") - return histogramDPS - }(), - expectedDatapoints: []dataPoint{ - { - name: "foo", - value: &cWMetricHistogram{ - Values: []float64{ - 9.969209968386869e+35, 4.9846049841934345e+35, 2.4923024920967173e+35, 1.2461512460483586e+35, 6.230756230241793e+34, - 3.1153781151208966e+34, 1.5576890575604483e+34, 7.788445287802241e+33, 3.894222643901121e+33, 1.9471113219505604e+33, - 9.735556609752802e+32, 4.867778304876401e+32, 2.4338891524382005e+32, 1.2169445762191002e+32, 6.084722881095501e+31, - 3.0423614405477506e+31, 1.5211807202738753e+31, 7.605903601369376e+30, 3.802951800684688e+30, 1.901475900342344e+30, - 9.50737950171172e+29, 4.75368975085586e+29, 2.37684487542793e+29, 1.188422437713965e+29, 5.942112188569825e+28, - 2.9710560942849127e+28, 1.4855280471424563e+28, 7.427640235712282e+27, 3.713820117856141e+27, 1.8569100589280704e+27, - 9.284550294640352e+26, 4.642275147320176e+26, 2.321137573660088e+26, 1.160568786830044e+26, 5.80284393415022e+25, - 2.90142196707511e+25, 1.450710983537555e+25, 7.253554917687775e+24, 3.6267774588438875e+24, 1.8133887294219438e+24, - 9.066943647109719e+23, 4.5334718235548594e+23, 2.2667359117774297e+23, 1.1333679558887149e+23, 5.666839779443574e+22, - 2.833419889721787e+22, 1.4167099448608936e+22, 7.083549724304468e+21, 3.541774862152234e+21, 1.770887431076117e+21, - 8.854437155380585e+20, 4.4272185776902924e+20, 2.2136092888451462e+20, 1.1068046444225731e+20, 5.5340232221128655e+19, - 2.7670116110564327e+19, 1.3835058055282164e+19, 6.917529027641082e+18, 3.458764513820541e+18, 1.7293822569102705e+18, - 8.646911284551352e+17, 4.323455642275676e+17, 2.161727821137838e+17, 1.080863910568919e+17, 5.404319552844595e+16, - 2.7021597764222976e+16, 1.3510798882111488e+16, 6.755399441055744e+15, 3.377699720527872e+15, 1.688849860263936e+15, - 8.44424930131968e+14, 4.22212465065984e+14, 2.11106232532992e+14, 1.05553116266496e+14, 5.2776558133248e+13, - 2.6388279066624e+13, 1.3194139533312e+13, 6.597069766656e+12, 3.298534883328e+12, 1.649267441664e+12, 8.24633720832e+11, - 4.12316860416e+11, 2.06158430208e+11, 1.03079215104e+11, 5.1539607552e+10, 2.5769803776e+10, 1.2884901888e+10, - 6.442450944e+09, 3.221225472e+09, 1.610612736e+09, 8.05306368e+08, 4.02653184e+08, 2.01326592e+08, 1.00663296e+08, - 5.0331648e+07, 2.5165824e+07, 1.2582912e+07, 6.291456e+06, 3.145728e+06, 1.572864e+06, - }, - Counts: []float64{ - 120, 119, 118, 117, 116, 115, 114, 113, 112, 111, 110, 109, 108, 107, 106, 105, 104, 103, 102, 101, 100, 99, - 98, 97, 96, 95, 94, 93, 92, 91, 90, 89, 88, 87, 86, 85, 84, 83, 82, 81, 80, 79, 78, 77, 76, 75, 74, 73, 72, 71, 70, 69, 68, - 67, 66, 65, 64, 63, 62, 61, 60, 59, 58, 57, 56, 55, 54, 53, 52, 51, 50, 49, 48, 47, 46, 45, 44, 43, 42, 41, 40, 39, 38, 37, - 36, 35, 34, 33, 32, 31, 30, 29, 28, 27, 26, 25, 24, 23, 22, 21, - }, - Sum: 10000, Count: 7050, Min: 1.048576e+06, Max: 9e+36, - }, - labels: map[string]string{oTellibDimensionKey: instrLibName, "label1": "value1"}, - }, - { - name: "foo", - value: &cWMetricHistogram{ - Values: []float64{786432, 393216, 196608, 98304, 49152, 24576, 12288, 6144, 3072, 1536, 768, 384, 192, 96, 48, 24, 12, 6, 3, 1.5, 0}, - Counts: []float64{20, 19, 18, 17, 16, 15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 2}, - Sum: 0, Count: 212, Min: 0, Max: 1.048576e+06, - }, - labels: map[string]string{oTellibDimensionKey: instrLibName, "label1": "value1"}, - }, - }, - }, - { - name: "Exponential histogram with more than 100 buckets, including negative and zero buckets", - histogramDPS: func() pmetric.ExponentialHistogramDataPointSlice { - histogramDPS := pmetric.NewExponentialHistogramDataPointSlice() - histogramDP := histogramDPS.AppendEmpty() - negBucketCounts := make([]uint64, 120) - for i := range negBucketCounts { - negBucketCounts[i] = uint64(i + 1) - } - histogramDP.Negative().BucketCounts().FromRaw(negBucketCounts) - histogramDP.SetZeroCount(2) - histogramDP.SetSum(10000) - histogramDP.SetMin(-9e+36) - histogramDP.SetMax(0) - histogramDP.SetCount(uint64(7262)) - histogramDP.Attributes().PutStr("label1", "value1") - return histogramDPS - }(), - expectedDatapoints: []dataPoint{ - { - name: "foo", - value: &cWMetricHistogram{ - Values: []float64{ - 0, -1.5, -3, -6, -12, -24, -48, -96, -192, -384, -768, -1536, -3072, -6144, -12288, -24576, - -49152, -98304, -196608, -393216, -786432, -1.572864e+06, -3.145728e+06, -6.291456e+06, -1.2582912e+07, - -2.5165824e+07, -5.0331648e+07, -1.00663296e+08, -2.01326592e+08, -4.02653184e+08, -8.05306368e+08, - -1.610612736e+09, -3.221225472e+09, -6.442450944e+09, -1.2884901888e+10, -2.5769803776e+10, - -5.1539607552e+10, -1.03079215104e+11, -2.06158430208e+11, -4.12316860416e+11, -8.24633720832e+11, - -1.649267441664e+12, -3.298534883328e+12, -6.597069766656e+12, -1.3194139533312e+13, -2.6388279066624e+13, - -5.2776558133248e+13, -1.05553116266496e+14, -2.11106232532992e+14, -4.22212465065984e+14, -8.44424930131968e+14, - -1.688849860263936e+15, -3.377699720527872e+15, -6.755399441055744e+15, -1.3510798882111488e+16, - -2.7021597764222976e+16, -5.404319552844595e+16, -1.080863910568919e+17, -2.161727821137838e+17, - -4.323455642275676e+17, -8.646911284551352e+17, -1.7293822569102705e+18, -3.458764513820541e+18, - -6.917529027641082e+18, -1.3835058055282164e+19, -2.7670116110564327e+19, -5.5340232221128655e+19, - -1.1068046444225731e+20, -2.2136092888451462e+20, -4.4272185776902924e+20, -8.854437155380585e+20, - -1.770887431076117e+21, -3.541774862152234e+21, -7.083549724304468e+21, -1.4167099448608936e+22, - -2.833419889721787e+22, -5.666839779443574e+22, -1.1333679558887149e+23, -2.2667359117774297e+23, - -4.5334718235548594e+23, -9.066943647109719e+23, -1.8133887294219438e+24, -3.6267774588438875e+24, - -7.253554917687775e+24, -1.450710983537555e+25, -2.90142196707511e+25, -5.80284393415022e+25, - -1.160568786830044e+26, -2.321137573660088e+26, -4.642275147320176e+26, -9.284550294640352e+26, - -1.8569100589280704e+27, -3.713820117856141e+27, -7.427640235712282e+27, -1.4855280471424563e+28, - -2.9710560942849127e+28, -5.942112188569825e+28, -1.188422437713965e+29, -2.37684487542793e+29, -4.75368975085586e+29, - }, - Counts: []float64{ - 2, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, - 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, - 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, - 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, - }, - Sum: 10000, Count: 4952, Min: -6.338253001141147e+29, Max: 0, - }, - labels: map[string]string{oTellibDimensionKey: instrLibName, "label1": "value1"}, - }, - { - name: "foo", - value: &cWMetricHistogram{ - Values: []float64{ - -9.50737950171172e+29, -1.901475900342344e+30, -3.802951800684688e+30, -7.605903601369376e+30, - -1.5211807202738753e+31, -3.0423614405477506e+31, -6.084722881095501e+31, -1.2169445762191002e+32, - -2.4338891524382005e+32, -4.867778304876401e+32, -9.735556609752802e+32, -1.9471113219505604e+33, -3.894222643901121e+33, - -7.788445287802241e+33, -1.5576890575604483e+34, -3.1153781151208966e+34, -6.230756230241793e+34, -1.2461512460483586e+35, - -2.4923024920967173e+35, -4.9846049841934345e+35, -9.969209968386869e+35, - }, - Counts: []float64{100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120}, - Sum: 0, Count: 2310, Min: -9e+36, Max: -6.338253001141147e+29, - }, - labels: map[string]string{oTellibDimensionKey: instrLibName, "label1": "value1"}, - }, - }, - }, - { - name: "Exponential histogram with more than 100 buckets, including positive and negative buckets", - histogramDPS: func() pmetric.ExponentialHistogramDataPointSlice { - histogramDPS := pmetric.NewExponentialHistogramDataPointSlice() - histogramDP := histogramDPS.AppendEmpty() - posBucketCounts := make([]uint64, 60) - for i := range posBucketCounts { - posBucketCounts[i] = uint64(i + 1) - } - histogramDP.Positive().BucketCounts().FromRaw(posBucketCounts) - negBucketCounts := make([]uint64, 60) - for i := range negBucketCounts { - negBucketCounts[i] = uint64(i + 1) - } - histogramDP.Negative().BucketCounts().FromRaw(negBucketCounts) - histogramDP.SetSum(1000) - histogramDP.SetMin(-9e+17) - histogramDP.SetMax(9e+17) - histogramDP.SetCount(uint64(3660)) - histogramDP.Attributes().PutStr("label1", "value1") - return histogramDPS - }(), - expectedDatapoints: []dataPoint{ - { - name: "foo", - value: &cWMetricHistogram{ - Values: []float64{ - 8.646911284551352e+17, 4.323455642275676e+17, 2.161727821137838e+17, 1.080863910568919e+17, 5.404319552844595e+16, 2.7021597764222976e+16, - 1.3510798882111488e+16, 6.755399441055744e+15, 3.377699720527872e+15, 1.688849860263936e+15, 8.44424930131968e+14, 4.22212465065984e+14, - 2.11106232532992e+14, 1.05553116266496e+14, 5.2776558133248e+13, 2.6388279066624e+13, 1.3194139533312e+13, 6.597069766656e+12, 3.298534883328e+12, - 1.649267441664e+12, 8.24633720832e+11, 4.12316860416e+11, 2.06158430208e+11, 1.03079215104e+11, 5.1539607552e+10, 2.5769803776e+10, - 1.2884901888e+10, 6.442450944e+09, 3.221225472e+09, 1.610612736e+09, 8.05306368e+08, 4.02653184e+08, 2.01326592e+08, 1.00663296e+08, - 5.0331648e+07, 2.5165824e+07, 1.2582912e+07, 6.291456e+06, 3.145728e+06, 1.572864e+06, 786432, 393216, 196608, 98304, 49152, 24576, - 12288, 6144, 3072, 1536, 768, 384, 192, 96, 48, 24, 12, 6, 3, 1.5, -1.5, -3, -6, -12, -24, -48, -96, -192, -384, -768, -1536, -3072, - -6144, -12288, -24576, -49152, -98304, -196608, -393216, -786432, -1.572864e+06, -3.145728e+06, -6.291456e+06, -1.2582912e+07, -2.5165824e+07, - -5.0331648e+07, -1.00663296e+08, -2.01326592e+08, -4.02653184e+08, -8.05306368e+08, -1.610612736e+09, -3.221225472e+09, -6.442450944e+09, - -1.2884901888e+10, -2.5769803776e+10, -5.1539607552e+10, -1.03079215104e+11, -2.06158430208e+11, -4.12316860416e+11, -8.24633720832e+11, - }, - Counts: []float64{ - 60, 59, 58, 57, 56, 55, 54, 53, 52, 51, 50, 49, 48, 47, 46, 45, 44, 43, 42, 41, 40, 39, 38, 37, 36, 35, 34, 33, 32, 31, 30, 29, 28, 27, 26, 25, 24, 23, 22, 21, 20, 19, 18, 17, 16, 15, 14, 13, 12, 11, 10, 9, 8, 7, - 6, 5, 4, 3, 2, 1, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, - 34, 35, 36, 37, 38, 39, 40, - }, - Sum: 1000, Count: 2650, Min: -1.099511627776e+12, Max: 9e+17, - }, - labels: map[string]string{oTellibDimensionKey: instrLibName, "label1": "value1"}, - }, - { - name: "foo", - value: &cWMetricHistogram{ - Values: []float64{ - -1.649267441664e+12, -3.298534883328e+12, -6.597069766656e+12, -1.3194139533312e+13, -2.6388279066624e+13, -5.2776558133248e+13, - -1.05553116266496e+14, -2.11106232532992e+14, -4.22212465065984e+14, -8.44424930131968e+14, -1.688849860263936e+15, -3.377699720527872e+15, - -6.755399441055744e+15, -1.3510798882111488e+16, -2.7021597764222976e+16, -5.404319552844595e+16, -1.080863910568919e+17, -2.161727821137838e+17, - -4.323455642275676e+17, -8.646911284551352e+17, - }, - Counts: []float64{41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60}, - Sum: 0, Count: 1010, Min: -9e+17, Max: -1.099511627776e+12, - }, - labels: map[string]string{oTellibDimensionKey: instrLibName, "label1": "value1"}, - }, - }, - }, - { - name: "Exponential histogram with exact 200 buckets, including positive, negative buckets", - histogramDPS: func() pmetric.ExponentialHistogramDataPointSlice { - histogramDPS := pmetric.NewExponentialHistogramDataPointSlice() - histogramDP := histogramDPS.AppendEmpty() - posBucketCounts := make([]uint64, 100) - for i := range posBucketCounts { - posBucketCounts[i] = uint64(i + 1) - } - histogramDP.Positive().BucketCounts().FromRaw(posBucketCounts) - negBucketCounts := make([]uint64, 100) - for i := range negBucketCounts { - negBucketCounts[i] = uint64(i + 1) - } - histogramDP.Negative().BucketCounts().FromRaw(negBucketCounts) - histogramDP.SetSum(100000) - histogramDP.SetMin(-9e+36) - histogramDP.SetMax(9e+36) - histogramDP.SetCount(uint64(3662)) - histogramDP.Attributes().PutStr("label1", "value1") - return histogramDPS - }(), - expectedDatapoints: []dataPoint{ - { - name: "foo", - value: &cWMetricHistogram{ - Values: []float64{ - 9.50737950171172e+29, 4.75368975085586e+29, 2.37684487542793e+29, 1.188422437713965e+29, 5.942112188569825e+28, - 2.9710560942849127e+28, 1.4855280471424563e+28, 7.427640235712282e+27, 3.713820117856141e+27, 1.8569100589280704e+27, - 9.284550294640352e+26, 4.642275147320176e+26, 2.321137573660088e+26, 1.160568786830044e+26, 5.80284393415022e+25, - 2.90142196707511e+25, 1.450710983537555e+25, 7.253554917687775e+24, 3.6267774588438875e+24, 1.8133887294219438e+24, - 9.066943647109719e+23, 4.5334718235548594e+23, 2.2667359117774297e+23, 1.1333679558887149e+23, 5.666839779443574e+22, - 2.833419889721787e+22, 1.4167099448608936e+22, 7.083549724304468e+21, 3.541774862152234e+21, 1.770887431076117e+21, - 8.854437155380585e+20, 4.4272185776902924e+20, 2.2136092888451462e+20, 1.1068046444225731e+20, 5.5340232221128655e+19, - 2.7670116110564327e+19, 1.3835058055282164e+19, 6.917529027641082e+18, 3.458764513820541e+18, 1.7293822569102705e+18, - 8.646911284551352e+17, 4.323455642275676e+17, 2.161727821137838e+17, 1.080863910568919e+17, 5.404319552844595e+16, - 2.7021597764222976e+16, 1.3510798882111488e+16, 6.755399441055744e+15, 3.377699720527872e+15, 1.688849860263936e+15, - 8.44424930131968e+14, 4.22212465065984e+14, 2.11106232532992e+14, 1.05553116266496e+14, 5.2776558133248e+13, - 2.6388279066624e+13, 1.3194139533312e+13, 6.597069766656e+12, 3.298534883328e+12, 1.649267441664e+12, 8.24633720832e+11, - 4.12316860416e+11, 2.06158430208e+11, 1.03079215104e+11, 5.1539607552e+10, 2.5769803776e+10, 1.2884901888e+10, 6.442450944e+09, - 3.221225472e+09, 1.610612736e+09, 8.05306368e+08, 4.02653184e+08, 2.01326592e+08, 1.00663296e+08, 5.0331648e+07, - 2.5165824e+07, 1.2582912e+07, 6.291456e+06, 3.145728e+06, 1.572864e+06, 786432, 393216, 196608, 98304, 49152, 24576, 12288, - 6144, 3072, 1536, 768, 384, 192, 96, 48, 24, 12, 6, 3, 1.5, - }, - Counts: []float64{ - 100, 99, 98, 97, 96, 95, 94, - 93, 92, 91, 90, 89, 88, 87, 86, 85, 84, 83, 82, 81, 80, 79, 78, 77, 76, 75, 74, 73, 72, 71, 70, 69, 68, 67, 66, 65, 64, 63, 62, 61, - 60, 59, 58, 57, 56, 55, 54, 53, 52, 51, 50, 49, 48, 47, 46, 45, 44, 43, 42, 41, 40, 39, 38, 37, 36, 35, 34, 33, 32, 31, 30, 29, 28, - 27, 26, 25, 24, 23, 22, 21, 20, 19, 18, 17, 16, 15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1, - }, - Sum: 100000, Count: 5050, Min: 1, Max: 9e+36, - }, - labels: map[string]string{oTellibDimensionKey: instrLibName, "label1": "value1"}, - }, - { - name: "foo", - value: &cWMetricHistogram{ - Values: []float64{ - -1.5, -3, -6, -12, -24, -48, -96, -192, -384, -768, -1536, -3072, -6144, -12288, -24576, -49152, -98304, -196608, -393216, - -786432, -1.572864e+06, -3.145728e+06, -6.291456e+06, -1.2582912e+07, -2.5165824e+07, -5.0331648e+07, -1.00663296e+08, - -2.01326592e+08, -4.02653184e+08, -8.05306368e+08, -1.610612736e+09, -3.221225472e+09, -6.442450944e+09, -1.2884901888e+10, - -2.5769803776e+10, -5.1539607552e+10, -1.03079215104e+11, -2.06158430208e+11, -4.12316860416e+11, -8.24633720832e+11, - -1.649267441664e+12, -3.298534883328e+12, -6.597069766656e+12, -1.3194139533312e+13, -2.6388279066624e+13, -5.2776558133248e+13, - -1.05553116266496e+14, -2.11106232532992e+14, -4.22212465065984e+14, -8.44424930131968e+14, -1.688849860263936e+15, - -3.377699720527872e+15, -6.755399441055744e+15, -1.3510798882111488e+16, -2.7021597764222976e+16, - -5.404319552844595e+16, -1.080863910568919e+17, -2.161727821137838e+17, -4.323455642275676e+17, -8.646911284551352e+17, - -1.7293822569102705e+18, -3.458764513820541e+18, -6.917529027641082e+18, -1.3835058055282164e+19, -2.7670116110564327e+19, - -5.5340232221128655e+19, -1.1068046444225731e+20, -2.2136092888451462e+20, -4.4272185776902924e+20, -8.854437155380585e+20, - -1.770887431076117e+21, -3.541774862152234e+21, -7.083549724304468e+21, -1.4167099448608936e+22, -2.833419889721787e+22, - -5.666839779443574e+22, -1.1333679558887149e+23, -2.2667359117774297e+23, -4.5334718235548594e+23, -9.066943647109719e+23, - -1.8133887294219438e+24, -3.6267774588438875e+24, -7.253554917687775e+24, -1.450710983537555e+25, -2.90142196707511e+25, - -5.80284393415022e+25, -1.160568786830044e+26, -2.321137573660088e+26, -4.642275147320176e+26, -9.284550294640352e+26, - -1.8569100589280704e+27, -3.713820117856141e+27, -7.427640235712282e+27, -1.4855280471424563e+28, -2.9710560942849127e+28, - -5.942112188569825e+28, -1.188422437713965e+29, -2.37684487542793e+29, -4.75368975085586e+29, -9.50737950171172e+29, - }, - Counts: []float64{ - 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, - 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, - 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, - }, - Sum: 0, Count: 5050, Min: -9e+36, Max: -1, - }, - labels: map[string]string{oTellibDimensionKey: instrLibName, "label1": "value1"}, - }, - }, - }, - { - name: "Exponential histogram with more than 200 buckets, including positive, negative and zero buckets", - histogramDPS: func() pmetric.ExponentialHistogramDataPointSlice { - histogramDPS := pmetric.NewExponentialHistogramDataPointSlice() - histogramDP := histogramDPS.AppendEmpty() - posBucketCounts := make([]uint64, 120) - for i := range posBucketCounts { - posBucketCounts[i] = uint64(i + 1) - } - histogramDP.Positive().BucketCounts().FromRaw(posBucketCounts) - histogramDP.SetZeroCount(2) - negBucketCounts := make([]uint64, 120) - for i := range negBucketCounts { - negBucketCounts[i] = uint64(i + 1) - } - histogramDP.Negative().BucketCounts().FromRaw(negBucketCounts) - histogramDP.SetSum(100000) - histogramDP.SetMin(-9e+36) - histogramDP.SetMax(9e+36) - histogramDP.SetCount(uint64(3662)) - histogramDP.Attributes().PutStr("label1", "value1") - return histogramDPS - }(), - expectedDatapoints: []dataPoint{ - { - name: "foo", - value: &cWMetricHistogram{ - Values: []float64{ - 9.969209968386869e+35, 4.9846049841934345e+35, 2.4923024920967173e+35, 1.2461512460483586e+35, 6.230756230241793e+34, - 3.1153781151208966e+34, 1.5576890575604483e+34, 7.788445287802241e+33, 3.894222643901121e+33, 1.9471113219505604e+33, - 9.735556609752802e+32, 4.867778304876401e+32, 2.4338891524382005e+32, 1.2169445762191002e+32, 6.084722881095501e+31, - 3.0423614405477506e+31, 1.5211807202738753e+31, 7.605903601369376e+30, 3.802951800684688e+30, 1.901475900342344e+30, - 9.50737950171172e+29, 4.75368975085586e+29, 2.37684487542793e+29, 1.188422437713965e+29, 5.942112188569825e+28, - 2.9710560942849127e+28, 1.4855280471424563e+28, 7.427640235712282e+27, 3.713820117856141e+27, 1.8569100589280704e+27, - 9.284550294640352e+26, 4.642275147320176e+26, 2.321137573660088e+26, 1.160568786830044e+26, 5.80284393415022e+25, - 2.90142196707511e+25, 1.450710983537555e+25, 7.253554917687775e+24, 3.6267774588438875e+24, 1.8133887294219438e+24, - 9.066943647109719e+23, 4.5334718235548594e+23, 2.2667359117774297e+23, 1.1333679558887149e+23, 5.666839779443574e+22, - 2.833419889721787e+22, 1.4167099448608936e+22, 7.083549724304468e+21, 3.541774862152234e+21, 1.770887431076117e+21, - 8.854437155380585e+20, 4.4272185776902924e+20, 2.2136092888451462e+20, 1.1068046444225731e+20, 5.5340232221128655e+19, - 2.7670116110564327e+19, 1.3835058055282164e+19, 6.917529027641082e+18, 3.458764513820541e+18, 1.7293822569102705e+18, - 8.646911284551352e+17, 4.323455642275676e+17, 2.161727821137838e+17, 1.080863910568919e+17, 5.404319552844595e+16, - 2.7021597764222976e+16, 1.3510798882111488e+16, 6.755399441055744e+15, 3.377699720527872e+15, 1.688849860263936e+15, - 8.44424930131968e+14, 4.22212465065984e+14, 2.11106232532992e+14, 1.05553116266496e+14, 5.2776558133248e+13, - 2.6388279066624e+13, 1.3194139533312e+13, 6.597069766656e+12, 3.298534883328e+12, 1.649267441664e+12, 8.24633720832e+11, - 4.12316860416e+11, 2.06158430208e+11, 1.03079215104e+11, 5.1539607552e+10, 2.5769803776e+10, 1.2884901888e+10, - 6.442450944e+09, 3.221225472e+09, 1.610612736e+09, 8.05306368e+08, 4.02653184e+08, 2.01326592e+08, 1.00663296e+08, 5.0331648e+07, - 2.5165824e+07, 1.2582912e+07, 6.291456e+06, 3.145728e+06, 1.572864e+06, - }, - Counts: []float64{ - 120, 119, 118, 117, 116, 115, 114, 113, 112, 111, 110, 109, 108, 107, 106, 105, 104, 103, 102, 101, 100, 99, 98, 97, 96, 95, 94, - 93, 92, 91, 90, 89, 88, 87, 86, 85, 84, 83, 82, 81, 80, 79, 78, 77, 76, 75, 74, 73, 72, 71, 70, 69, 68, 67, 66, 65, 64, 63, 62, 61, - 60, 59, 58, 57, 56, 55, 54, 53, 52, 51, 50, 49, 48, 47, 46, 45, 44, 43, 42, 41, 40, 39, 38, 37, 36, 35, 34, 33, 32, 31, 30, 29, 28, - 27, 26, 25, 24, 23, 22, 21, - }, - Sum: 100000, Count: 7050, Min: 1048576, Max: 9e+36, - }, - labels: map[string]string{oTellibDimensionKey: instrLibName, "label1": "value1"}, - }, - { - name: "foo", - value: &cWMetricHistogram{ - Values: []float64{ - 786432, 393216, 196608, 98304, 49152, 24576, 12288, 6144, 3072, 1536, 768, 384, 192, 96, 48, 24, - 12, 6, 3, 1.5, 0, -1.5, -3, -6, -12, -24, -48, -96, -192, -384, -768, -1536, - -3072, -6144, -12288, -24576, -49152, -98304, -196608, -393216, -786432, -1.572864e+06, -3.145728e+06, -6.291456e+06, - -1.2582912e+07, -2.5165824e+07, -5.0331648e+07, -1.00663296e+08, -2.01326592e+08, -4.02653184e+08, -8.05306368e+08, - -1.610612736e+09, -3.221225472e+09, -6.442450944e+09, -1.2884901888e+10, -2.5769803776e+10, -5.1539607552e+10, - -1.03079215104e+11, -2.06158430208e+11, -4.12316860416e+11, -8.24633720832e+11, -1.649267441664e+12, - -3.298534883328e+12, -6.597069766656e+12, -1.3194139533312e+13, -2.6388279066624e+13, -5.2776558133248e+13, - -1.05553116266496e+14, -2.11106232532992e+14, -4.22212465065984e+14, -8.44424930131968e+14, - -1.688849860263936e+15, -3.377699720527872e+15, -6.755399441055744e+15, -1.3510798882111488e+16, - -2.7021597764222976e+16, -5.404319552844595e+16, -1.080863910568919e+17, -2.161727821137838e+17, - -4.323455642275676e+17, -8.646911284551352e+17, -1.7293822569102705e+18, -3.458764513820541e+18, - -6.917529027641082e+18, -1.3835058055282164e+19, -2.7670116110564327e+19, -5.5340232221128655e+19, - -1.1068046444225731e+20, -2.2136092888451462e+20, -4.4272185776902924e+20, -8.854437155380585e+20, - -1.770887431076117e+21, -3.541774862152234e+21, -7.083549724304468e+21, -1.4167099448608936e+22, - -2.833419889721787e+22, -5.666839779443574e+22, -1.1333679558887149e+23, -2.2667359117774297e+23, - -4.5334718235548594e+23, - }, - Counts: []float64{ - 20, 19, 18, 17, 16, 15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 2, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, - 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, - 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, - 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, - }, - Sum: 0, Count: 3372, Min: -6.044629098073146e+23, Max: 1048576, - }, - labels: map[string]string{oTellibDimensionKey: instrLibName, "label1": "value1"}, - }, - { - name: "foo", - value: &cWMetricHistogram{ - Values: []float64{ - -9.066943647109719e+23, -1.8133887294219438e+24, -3.6267774588438875e+24, -7.253554917687775e+24, -1.450710983537555e+25, - -2.90142196707511e+25, -5.80284393415022e+25, -1.160568786830044e+26, -2.321137573660088e+26, -4.642275147320176e+26, - -9.284550294640352e+26, -1.8569100589280704e+27, -3.713820117856141e+27, -7.427640235712282e+27, -1.4855280471424563e+28, - -2.9710560942849127e+28, -5.942112188569825e+28, -1.188422437713965e+29, -2.37684487542793e+29, -4.75368975085586e+29, - -9.50737950171172e+29, -1.901475900342344e+30, -3.802951800684688e+30, -7.605903601369376e+30, -1.5211807202738753e+31, - -3.0423614405477506e+31, -6.084722881095501e+31, -1.2169445762191002e+32, -2.4338891524382005e+32, -4.867778304876401e+32, - -9.735556609752802e+32, -1.9471113219505604e+33, -3.894222643901121e+33, -7.788445287802241e+33, -1.5576890575604483e+34, - -3.1153781151208966e+34, -6.230756230241793e+34, -1.2461512460483586e+35, -2.4923024920967173e+35, -4.9846049841934345e+35, - -9.969209968386869e+35, - }, - Counts: []float64{ - 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, - 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, - }, - Sum: 0, Count: 4100, Min: -9e+36, Max: -6.044629098073146e+23, - }, - labels: map[string]string{oTellibDimensionKey: instrLibName, "label1": "value1"}, - }, - }, - }, - { - name: "Exponential histogram with more than 100 buckets, including positive, negative and zero buckets with zero counts", - histogramDPS: func() pmetric.ExponentialHistogramDataPointSlice { - histogramDPS := pmetric.NewExponentialHistogramDataPointSlice() - histogramDP := histogramDPS.AppendEmpty() - posBucketCounts := make([]uint64, 60) - for i := range posBucketCounts { - posBucketCounts[i] = uint64(i % 5) - } - histogramDP.Positive().BucketCounts().FromRaw(posBucketCounts) - histogramDP.SetZeroCount(2) - negBucketCounts := make([]uint64, 60) - for i := range negBucketCounts { - negBucketCounts[i] = uint64(i % 5) - } - histogramDP.Negative().BucketCounts().FromRaw(negBucketCounts) - histogramDP.SetSum(1000) - histogramDP.SetMin(-9e+17) - histogramDP.SetMax(9e+17) - histogramDP.SetCount(uint64(3662)) - histogramDP.Attributes().PutStr("label1", "value1") - return histogramDPS - }(), - expectedDatapoints: []dataPoint{ - { - name: "foo", - value: &cWMetricHistogram{ - Values: []float64{ - 8.646911284551352e+17, 4.323455642275676e+17, 2.161727821137838e+17, 1.080863910568919e+17, 2.7021597764222976e+16, - 1.3510798882111488e+16, 6.755399441055744e+15, 3.377699720527872e+15, 8.44424930131968e+14, 4.22212465065984e+14, 2.11106232532992e+14, - 1.05553116266496e+14, 2.6388279066624e+13, 1.3194139533312e+13, 6.597069766656e+12, 3.298534883328e+12, 8.24633720832e+11, 4.12316860416e+11, - 2.06158430208e+11, 1.03079215104e+11, 2.5769803776e+10, 1.2884901888e+10, 6.442450944e+09, 3.221225472e+09, 8.05306368e+08, 4.02653184e+08, - 2.01326592e+08, 1.00663296e+08, 2.5165824e+07, 1.2582912e+07, 6.291456e+06, 3.145728e+06, 786432, 393216, 196608, 98304, 24576, 12288, 6144, 3072, - 768, 384, 192, 96, 24, 12, 6, 3, 0, -3, -6, -12, -24, -96, -192, -384, -768, -3072, -6144, -12288, -24576, -98304, -196608, -393216, -786432, - -3.145728e+06, -6.291456e+06, -1.2582912e+07, -2.5165824e+07, -1.00663296e+08, -2.01326592e+08, -4.02653184e+08, -8.05306368e+08, -3.221225472e+09, - -6.442450944e+09, -1.2884901888e+10, -2.5769803776e+10, -1.03079215104e+11, -2.06158430208e+11, -4.12316860416e+11, -8.24633720832e+11, -3.298534883328e+12, - -6.597069766656e+12, -1.3194139533312e+13, -2.6388279066624e+13, -1.05553116266496e+14, -2.11106232532992e+14, -4.22212465065984e+14, -8.44424930131968e+14, - -3.377699720527872e+15, -6.755399441055744e+15, -1.3510798882111488e+16, -2.7021597764222976e+16, -1.080863910568919e+17, -2.161727821137838e+17, - -4.323455642275676e+17, -8.646911284551352e+17, - }, - Counts: []float64{ - 4, 3, 2, 1, 4, 3, 2, 1, 4, 3, 2, 1, 4, 3, 2, 1, 4, 3, 2, 1, 4, 3, 2, 1, 4, 3, 2, 1, 4, 3, 2, 1, 4, 3, 2, 1, 4, 3, 2, 1, 4, 3, 2, 1, 4, 3, - 2, 1, 2, 1, 2, 3, 4, 1, 2, 3, 4, 1, 2, 3, 4, 1, 2, 3, 4, 1, 2, 3, 4, 1, 2, 3, 4, 1, 2, 3, 4, 1, 2, 3, 4, 1, 2, 3, 4, 1, 2, 3, 4, 1, 2, 3, 4, 1, 2, 3, 4, - }, - Sum: 1000, Count: 242, Min: -9e+17, Max: 9e+17, - }, - labels: map[string]string{oTellibDimensionKey: instrLibName, "label1": "value1"}, - }, - }, - }, - } - - for _, tc := range testCases { - t.Run(tc.name, func(_ *testing.T) { - exponentialHistogramDatapointSlice := exponentialHistogramDataPointSlice{dmd, tc.histogramDPS} - emfCalcs := setupEmfCalculators() - defer require.NoError(t, shutdownEmfCalculators(emfCalcs)) - dps, retained := exponentialHistogramDatapointSlice.CalculateDeltaDatapoints(0, instrLibName, false, emfCalcs) - - assert.True(t, retained) - assert.Equal(t, 1, exponentialHistogramDatapointSlice.Len()) - assert.Equal(t, len(tc.expectedDatapoints), len(dps)) - for i, expectedDP := range tc.expectedDatapoints { - assert.Equal(t, expectedDP, dps[i], "datapoint mismatch at index %d", i) - } - }) - } -} - func TestIsStaleNaNInf_ExponentialHistogramDataPointSlice(t *testing.T) { testCases := []struct { name string @@ -2118,14 +1521,12 @@ func TestGetDataPoints(t *testing.T) { }) } -func benchmarkGetAndCalculateDeltaDataPoints(b *testing.B, bucketLength int) { +func BenchmarkGetAndCalculateDeltaDataPoints(b *testing.B) { generateMetrics := []pmetric.Metrics{ generateTestGaugeMetric("int-gauge", intValueType), generateTestGaugeMetric("int-gauge", doubleValueType), generateTestHistogramMetric("histogram"), generateTestExponentialHistogramMetric("exponential-histogram"), - generateTestExponentialHistogramMetricWithSpecifiedNumberOfBuckets( - "exponential-histogram-buckets-"+strconv.Itoa(bucketLength), bucketLength), generateTestSumMetric("int-sum", intValueType), generateTestSumMetric("double-sum", doubleValueType), generateTestSummaryMetric("summary"), @@ -2148,19 +1549,3 @@ func benchmarkGetAndCalculateDeltaDataPoints(b *testing.B, bucketLength int) { } } } - -func BenchmarkGetAndCalculateDeltaDataPointsInclude100Buckets(b *testing.B) { - benchmarkGetAndCalculateDeltaDataPoints(b, 100) -} - -func BenchmarkGetAndCalculateDeltaDataPointsInclude200Buckets(b *testing.B) { - benchmarkGetAndCalculateDeltaDataPoints(b, 200) -} - -func BenchmarkGetAndCalculateDeltaDataPointsInclude300Buckets(b *testing.B) { - benchmarkGetAndCalculateDeltaDataPoints(b, 300) -} - -func BenchmarkGetAndCalculateDeltaDataPointsInclude500Buckets(b *testing.B) { - benchmarkGetAndCalculateDeltaDataPoints(b, 500) -} diff --git a/exporter/awsemfexporter/grouped_metric.go b/exporter/awsemfexporter/grouped_metric.go index 8d4f8a57aa05..5ba39b93f787 100644 --- a/exporter/awsemfexporter/grouped_metric.go +++ b/exporter/awsemfexporter/grouped_metric.go @@ -56,7 +56,7 @@ func addToGroupedMetric( continue } - for i, dp := range dps { + for _, dp := range dps { labels := dp.labels if metricType, ok := labels["Type"]; ok { @@ -86,7 +86,6 @@ func addToGroupedMetric( } // Extra params to use when grouping metrics - metadata.groupedMetricMetadata.batchIndex = i groupKey := aws.NewKey(metadata.groupedMetricMetadata, labels) if _, ok := groupedMetrics[groupKey]; ok { // if MetricName already exists in metrics map, print warning log diff --git a/exporter/awsemfexporter/grouped_metric_test.go b/exporter/awsemfexporter/grouped_metric_test.go index 3300faf1e9a4..8688cfaaca03 100644 --- a/exporter/awsemfexporter/grouped_metric_test.go +++ b/exporter/awsemfexporter/grouped_metric_test.go @@ -405,43 +405,6 @@ func TestAddToGroupedMetric(t *testing.T) { assert.Equal(t, 1, logs.Len()) assert.Equal(t, expectedLogs, logs.AllUntimed()) }) - - t.Run("Duplicate metric names with different metricIndex", func(t *testing.T) { - emfCalcs := setupEmfCalculators() - defer require.NoError(t, shutdownEmfCalculators(emfCalcs)) - groupedMetrics := make(map[any]*groupedMetric) - generateMetrics := []pmetric.Metrics{ - generateTestExponentialHistogramMetricWithLongBuckets("test_multiBucket_metric"), - } - finalOtelMetrics := generateOtelTestMetrics(generateMetrics...) - - rms := finalOtelMetrics.ResourceMetrics() - ilms := rms.At(0).ScopeMetrics() - metrics := ilms.At(0).Metrics() - assert.Equal(t, 1, metrics.Len()) - - for i := 0; i < metrics.Len(); i++ { - err := addToGroupedMetric(metrics.At(i), - groupedMetrics, - generateTestMetricMetadata(namespace, timestamp, logGroup, logStreamName, instrumentationLibName, metrics.At(i).Type()), - true, - nil, - testCfg, - emfCalcs, - ) - assert.NoError(t, err) - } - assert.Len(t, groupedMetrics, 2) - expectedLabels := map[string]string{oTellibDimensionKey: instrumentationLibName, "label1": "value1"} - idx := 0 - for _, v := range groupedMetrics { - assert.Len(t, v.metrics, 1) - assert.Len(t, v.labels, 2) - assert.Equal(t, generateTestMetricMetadata(namespace, timestamp, logGroup, logStreamName, instrumentationLibName, metrics.At(0).Type(), idx), v.metadata) - assert.Equal(t, expectedLabels, v.labels) - idx++ - } - }) } func TestAddKubernetesWrapper(t *testing.T) { @@ -546,11 +509,7 @@ func TestTranslateUnit(t *testing.T) { assert.Equal(t, "Count", v) } -func generateTestMetricMetadata(namespace string, timestamp int64, logGroup, logStreamName, instrumentationScopeName string, metricType pmetric.MetricType, batchIndex ...int) cWMetricMetadata { - mIndex := 0 - if len(batchIndex) > 0 { - mIndex = batchIndex[0] - } +func generateTestMetricMetadata(namespace string, timestamp int64, logGroup, logStreamName, instrumentationScopeName string, metricType pmetric.MetricType) cWMetricMetadata { return cWMetricMetadata{ receiver: prometheusReceiver, groupedMetricMetadata: groupedMetricMetadata{ @@ -559,7 +518,6 @@ func generateTestMetricMetadata(namespace string, timestamp int64, logGroup, log logGroup: logGroup, logStream: logStreamName, metricDataType: metricType, - batchIndex: mIndex, }, instrumentationScopeName: instrumentationScopeName, } diff --git a/exporter/awsemfexporter/metric_translator.go b/exporter/awsemfexporter/metric_translator.go index 09844e132c7e..b5d9330503ce 100644 --- a/exporter/awsemfexporter/metric_translator.go +++ b/exporter/awsemfexporter/metric_translator.go @@ -85,7 +85,6 @@ type groupedMetricMetadata struct { logGroup string logStream string metricDataType pmetric.MetricType - batchIndex int retainInitialValueForDelta bool } @@ -151,7 +150,6 @@ func (mt metricTranslator) translateOTelToGroupedMetric(rm pmetric.ResourceMetri logGroup: logGroup, logStream: logStream, metricDataType: metric.Type(), - batchIndex: 0, retainInitialValueForDelta: deltaInitialValue, }, instrumentationScopeName: instrumentationScopeName,