-
-
Notifications
You must be signed in to change notification settings - Fork 159
/
calculate.py
1396 lines (1268 loc) · 59.6 KB
/
calculate.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
"""
Tax-Calculator federal tax Calculator class.
"""
# CODING-STYLE CHECKS:
# pep8 --ignore=E402 calculate.py
# pylint --disable=locally-disabled calculate.py
#
# pylint: disable=invalid-name,no-value-for-parameter,too-many-lines
import os
import json
import re
import copy
import six
import numpy as np
import pandas as pd
from taxcalc.functions import (TaxInc, SchXYZTax, GainsTax, AGIsurtax,
NetInvIncTax, AMT, EI_PayrollTax, Adj,
DependentCare, ALD_InvInc_ec_base, CapGains,
SSBenefits, UBI, AGI, ItemDedCap, ItemDed,
StdDed, AdditionalMedicareTax, F2441, EITC,
SchR, ChildTaxCredit, AdditionalCTC, CTC_new,
PersonalTaxCredit,
AmOppCreditParts, EducationTaxCredit,
NonrefundableCredits, C1040, IITAX,
BenefitSurtax, BenefitLimitation,
FairShareTax, LumpSumTax, ExpandIncome,
AfterTaxIncome)
from taxcalc.policy import Policy
from taxcalc.records import Records
from taxcalc.consumption import Consumption
from taxcalc.behavior import Behavior
from taxcalc.growdiff import Growdiff
from taxcalc.growfactors import Growfactors
from taxcalc.utils import (DIST_VARIABLES, create_distribution_table,
DIFF_VARIABLES, create_difference_table,
create_diagnostic_table,
ce_aftertax_expanded_income,
mtr_graph_data, atr_graph_data, xtr_graph_plot,
dec_graph_data, dec_graph_plot)
# import pdb
class Calculator(object):
"""
Constructor for the Calculator class.
Parameters
----------
policy: Policy class object
this argument must be specified and object is copied for internal use
records: Records class object
this argument must be specified and object is copied for internal use
verbose: boolean
specifies whether or not to write to stdout data-loaded and
data-extrapolated progress reports; default value is true.
sync_years: boolean
specifies whether or not to synchronize policy year and records year;
default value is true.
consumption: Consumption class object
specifies consumption response assumptions used to calculate
"effective" marginal tax rates; default is None, which implies
no consumption responses assumed in marginal tax rate calculations;
when argument is an object it is copied for internal use
behavior: Behavior class object
specifies behavioral responses used by Calculator; default is None,
which implies no behavioral responses to policy reform;
when argument is an object it is copied for internal use
Raises
------
ValueError:
if parameters are not the appropriate type.
Returns
-------
class instance: Calculator
Notes
-----
The most efficient way to specify current-law and reform Calculator
objects is as follows:
pol = Policy()
rec = Records()
calc1 = Calculator(policy=pol, records=rec) # current-law
pol.implement_reform(...)
calc2 = Calculator(policy=pol, records=rec) # reform
All calculations are done on the internal copies of the Policy and
Records objects passed to each of the two Calculator constructors.
"""
# pylint: disable=too-many-public-methods
def __init__(self, policy=None, records=None, verbose=True,
sync_years=True, consumption=None, behavior=None):
# pylint: disable=too-many-arguments,too-many-branches
if isinstance(policy, Policy):
self.policy = copy.deepcopy(policy)
else:
raise ValueError('must specify policy as a Policy object')
if isinstance(records, Records):
self.records = copy.deepcopy(records)
else:
raise ValueError('must specify records as a Records object')
if self.policy.current_year < self.records.data_year:
self.policy.set_year(self.records.data_year)
if consumption is None:
self.consumption = Consumption(start_year=policy.start_year)
elif isinstance(consumption, Consumption):
self.consumption = copy.deepcopy(consumption)
while self.consumption.current_year < self.policy.current_year:
next_year = self.consumption.current_year + 1
self.consumption.set_year(next_year)
else:
raise ValueError('consumption must be None or Consumption object')
if behavior is None:
self.behavior = Behavior(start_year=policy.start_year)
elif isinstance(behavior, Behavior):
self.behavior = copy.deepcopy(behavior)
while self.behavior.current_year < self.policy.current_year:
next_year = self.behavior.current_year + 1
self.behavior.set_year(next_year)
else:
raise ValueError('behavior must be None or Behavior object')
if sync_years and self.records.current_year == self.records.data_year:
if verbose:
print('You loaded data for ' +
str(self.records.data_year) + '.')
if self.records.IGNORED_VARS:
print('Your data include the following unused ' +
'variables that will be ignored:')
for var in self.records.IGNORED_VARS:
print(' ' +
var)
while self.records.current_year < self.policy.current_year:
self.records.increment_year()
if verbose:
print('Tax-Calculator startup automatically ' +
'extrapolated your data to ' +
str(self.records.current_year) + '.')
assert self.policy.current_year == self.records.current_year
def increment_year(self):
"""
Advance all embedded objects to next year.
"""
next_year = self.policy.current_year + 1
self.records.increment_year()
self.policy.set_year(next_year)
self.consumption.set_year(next_year)
self.behavior.set_year(next_year)
def advance_to_year(self, year):
"""
The advance_to_year function gives an optional way of implementing
increment year functionality by immediately specifying the year
as input. New year must be at least the current year.
"""
iteration = year - self.current_year
if iteration < 0:
raise ValueError('New current year must be ' +
'greater than current year!')
for _ in range(iteration):
self.increment_year()
assert self.current_year == year
def calc_all(self, zero_out_calc_vars=False):
"""
Call all tax-calculation functions for the current_year.
"""
# conducts static analysis of Calculator object for current_year
assert self.records.current_year == self.policy.current_year
self._calc_one_year(zero_out_calc_vars)
BenefitSurtax(self)
BenefitLimitation(self)
FairShareTax(self.policy, self.records)
LumpSumTax(self.policy, self.records)
ExpandIncome(self.policy, self.records)
AfterTaxIncome(self.policy, self.records)
def weighted_total(self, variable_name):
"""
Return all-filing-unit weighted total of named Records variable.
"""
return (self.array(variable_name) * self.array('s006')).sum()
def total_weight(self):
"""
Return all-filing-unit total of sampling weights.
NOTE: var_weighted_mean = calc.weighted_total(var)/calc.total_weight()
"""
return self.array('s006').sum()
def dataframe(self, variable_list):
"""
Return pandas DataFrame containing the listed Records variables.
"""
arys = [self.array(vname) for vname in variable_list]
return pd.DataFrame(data=np.column_stack(arys), columns=variable_list)
def array(self, variable_name):
"""
Return numpy ndarray containing the named Records variable.
"""
return getattr(self.records, variable_name)
def setarray(self, variable_name, variable_value):
"""
Set named Records variable to specified variable_value.
"""
setattr(self.records, variable_name, variable_value)
def incarray(self, variable_name, variable_add):
"""
Add variable_add to named Records variable.
"""
setattr(self.records, variable_name,
self.array(variable_name) + variable_add)
def zeroarray(self, variable_name):
"""
Set named Records variable to zeros.
"""
setattr(self.records, variable_name, np.zeros(self.array_len))
def diagnostic_table(self, num_years):
"""
Generate multi-year diagnostic table;
this method leaves the Calculator object unchanged.
Parameters
----------
num_years : Integer
number of years to include in diagnostic table starting
with the Calculator object's current_year (must be at least
one and no more than what would exceed Policy end_year
Returns
-------
Pandas DataFrame object containing the multi-year diagnostic table
"""
assert num_years >= 1
max_num_years = self.policy.end_year - self.policy.current_year + 1
assert num_years <= max_num_years
calc = copy.deepcopy(self)
tlist = list()
for iyr in range(1, num_years + 1):
calc.calc_all()
diag = create_diagnostic_table(calc.dataframe(DIST_VARIABLES),
calc.current_year)
tlist.append(diag)
if iyr < num_years:
calc.increment_year()
return pd.concat(tlist, axis=1)
def distribution_tables(self, calc,
groupby='weighted_deciles',
income_measure='expanded_income',
result_type='weighted_sum'):
"""
Get results from self and calc, sort them based on groupby using
income_measure, manipulate grouped statistics based on result_type,
and return tables as a pair of Pandas dataframes.
Note that the returned tables have consistent income groups (based
on the self income_measure) even though the income_measure in self
and the income_measure in calc are different.
Parameters
----------
calc : Calculator object or None
typically represents the reform while self represents the baseline;
if calc is None, the second returned table is None
groupby : String object
options for input: 'weighted_deciles', 'webapp_income_bins',
'large_income_bins', 'small_income_bins';
determines how the columns in returned tables are sorted
NOTE: when groupby is 'weighted_deciles', the returned table has three
extra rows containing top-decile detail consisting of statistics
for the 0.90-0.95 quantile range (bottom half of top decile),
for the 0.95-0.99 quantile range, and
for the 0.99-1.00 quantile range (top one percent).
income_measure : String object
options for input: 'expanded_income' or 'c00100'(AGI)
result_type : String object
options for input: 'weighted_sum' or 'weighted_avg';
determines how whether or not table entries are averages or totals
Typical usage
-------------
dist1, dist2 = calc1.distribution_tables(calc2)
OR
dist1, _ = calc1.distribution_tables(None)
(where calc1 is a baseline Calculator object
and calc2 is a reform Calculator object)
"""
# nested function used only by this method
def have_same_income_measure(calc1, calc2, income_measure):
"""
Return true if calc1 and calc2 contain the same income_measure;
otherwise, return false. (Note that "same" means nobody's
income_measure differs by more than one cent.)
"""
im1 = calc1.array(income_measure)
im2 = calc2.array(income_measure)
return np.allclose(im1, im2, rtol=0.0, atol=0.01)
# main logic of method
assert calc is None or isinstance(calc, Calculator)
assert (groupby == 'weighted_deciles' or
groupby == 'webapp_income_bins' or
groupby == 'large_income_bins' or
groupby == 'small_income_bins')
assert (income_measure == 'expanded_income' or
income_measure == 'c00100')
assert (result_type == 'weighted_sum' or
result_type == 'weighted_avg')
dt1 = create_distribution_table(self.dataframe(DIST_VARIABLES),
groupby=groupby,
income_measure=income_measure,
result_type=result_type)
if calc is None:
dt2 = None
else:
assert calc.current_year == self.current_year
assert calc.array_len == self.array_len
var_dataframe = calc.dataframe(DIST_VARIABLES)
if have_same_income_measure(self, calc, income_measure):
imeasure = income_measure
else:
imeasure = income_measure + '_baseline'
var_dataframe[imeasure] = self.array(income_measure)
dt2 = create_distribution_table(var_dataframe,
groupby=groupby,
income_measure=imeasure,
result_type=result_type)
return dt1, dt2
def difference_table(self, calc,
groupby='weighted_deciles',
income_measure='expanded_income',
tax_to_diff='combined'):
"""
Get results from self and calc, sort them based on groupby using
income_measure, and return tax-difference table as a Pandas dataframe.
Parameters
----------
calc : Calculator object
calc represents the reform while self represents the baseline
groupby : String object
options for input: 'weighted_deciles', 'webapp_income_bins',
'large_income_bins', 'small_income_bins';
determines how the columns in returned tables are sorted
NOTE: when groupby is 'weighted_deciles', the returned table has three
extra rows containing top-decile detail consisting of statistics
for the 0.90-0.95 quantile range (bottom half of top decile),
for the 0.95-0.99 quantile range, and
for the 0.99-1.00 quantile range (top one percent).
income_measure : String object
options for input: 'expanded_income' or 'c00100'(AGI)
tax_to_diff : String object
options for input: 'iitax', 'payrolltax', 'combined'
specifies which tax to difference
Typical usage
-------------
diff = calc1.difference_table(calc2)
(where calc1 is a baseline Calculator object
and calc2 is a reform Calculator object)
"""
assert isinstance(calc, Calculator)
assert calc.current_year == self.current_year
assert calc.array_len == self.array_len
diff = create_difference_table(self.dataframe(DIFF_VARIABLES),
calc.dataframe(DIFF_VARIABLES),
groupby=groupby,
income_measure=income_measure,
tax_to_diff=tax_to_diff)
return diff
@property
def current_year(self):
"""
Calculator class current calendar year property.
"""
return self.policy.current_year
@property
def data_year(self):
"""
Calculator class initial (i.e., first) records data year property.
"""
return self.records.data_year
@property
def array_len(self):
"""
Length of arrays in embedded Records object.
"""
return self.records.array_length
MTR_VALID_VARIABLES = ['e00200p', 'e00200s',
'e00900p', 'e00300',
'e00400', 'e00600',
'e00650', 'e01400',
'e01700', 'e02000',
'e02400', 'p22250',
'p23250', 'e18500',
'e19200', 'e26270',
'e19800', 'e20100']
def mtr(self, variable_str='e00200p',
negative_finite_diff=False,
zero_out_calculated_vars=False,
calc_all_already_called=False,
wrt_full_compensation=True):
"""
Calculates the marginal payroll, individual income, and combined
tax rates for every tax filing unit, leaving the Calculator object
in exactly the same state as it would be in after a calc_all() call.
The marginal tax rates are approximated as the change in tax
liability caused by a small increase (the finite_diff) in the variable
specified by the variable_str divided by that small increase in the
variable, when wrt_full_compensation is false.
If wrt_full_compensation is true, then the marginal tax rates
are computed as the change in tax liability divided by the change
in total compensation caused by the small increase in the variable
(where the change in total compensation is the sum of the small
increase in the variable and any increase in the employer share of
payroll taxes caused by the small increase in the variable).
If using 'e00200s' as variable_str, the marginal tax rate for all
records where MARS != 2 will be missing. If you want to perform a
function such as np.mean() on the returned arrays, you will need to
account for this.
Parameters
----------
variable_str: string
specifies type of income or expense that is increased to compute
the marginal tax rates. See Notes for list of valid variables.
negative_finite_diff: boolean
specifies whether or not marginal tax rates are computed by
subtracting (rather than adding) a small finite_diff amount
to the specified variable.
zero_out_calculated_vars: boolean
specifies value of zero_out_calc_vars parameter used in calls
of Calculator.calc_all() method.
calc_all_already_called: boolean
specifies whether self has already had its Calculor.calc_all()
method called, in which case this method will not do a final
calc_all() call but use the incoming embedded Records object
as the outgoing Records object embedding in self.
wrt_full_compensation: boolean
specifies whether or not marginal tax rates on earned income
are computed with respect to (wrt) changes in total compensation
that includes the employer share of OASDI and HI payroll taxes.
Returns
-------
A tuple of numpy arrays in the following order:
mtr_payrolltax: an array of marginal payroll tax rates.
mtr_incometax: an array of marginal individual income tax rates.
mtr_combined: an array of marginal combined tax rates, which is
the sum of mtr_payrolltax and mtr_incometax.
Notes
-----
The arguments zero_out_calculated_vars and calc_all_already_called
cannot both be true.
Valid variable_str values are:
'e00200p', taxpayer wage/salary earnings (also included in e00200);
'e00200s', spouse wage/salary earnings (also included in e00200);
'e00900p', taxpayer Schedule C self-employment income (also in e00900);
'e00300', taxable interest income;
'e00400', federally-tax-exempt interest income;
'e00600', all dividends included in AGI
'e00650', qualified dividends (also included in e00600)
'e01400', federally-taxable IRA distribution;
'e01700', federally-taxable pension benefits;
'e02000', Schedule E total net income/loss
'e02400', all social security (OASDI) benefits;
'p22250', short-term capital gains;
'p23250', long-term capital gains;
'e18500', Schedule A real-estate-tax paid;
'e19200', Schedule A interest paid;
'e26270', S-corporation/partnership income (also included in e02000);
'e19800', Charity cash contributions;
'e20100', Charity non-cash contributions.
"""
# pylint: disable=too-many-arguments,too-many-statements
# pylint: disable=too-many-locals,too-many-branches
assert not zero_out_calculated_vars or not calc_all_already_called
# check validity of variable_str parameter
if variable_str not in Calculator.MTR_VALID_VARIABLES:
msg = 'mtr variable_str="{}" is not valid'
raise ValueError(msg.format(variable_str))
# specify value for finite_diff parameter
finite_diff = 0.01 # a one-cent difference
if negative_finite_diff:
finite_diff *= -1.0
# save records object in order to restore it after mtr computations
recs0 = copy.deepcopy(self.records)
# extract variable array(s) from embedded records object
variable = self.array(variable_str)
if variable_str == 'e00200p':
earnings_var = self.array('e00200')
elif variable_str == 'e00200s':
earnings_var = self.array('e00200')
elif variable_str == 'e00900p':
seincome_var = self.array('e00900')
elif variable_str == 'e00650':
divincome_var = self.array('e00600')
elif variable_str == 'e26270':
schEincome_var = self.array('e02000')
# calculate level of taxes after a marginal increase in income
self.setarray(variable_str, variable + finite_diff)
if variable_str == 'e00200p':
self.setarray('e00200', earnings_var + finite_diff)
elif variable_str == 'e00200s':
self.setarray('e00200', earnings_var + finite_diff)
elif variable_str == 'e00900p':
self.setarray('e00900', seincome_var + finite_diff)
elif variable_str == 'e00650':
self.setarray('e00600', divincome_var + finite_diff)
elif variable_str == 'e26270':
self.setarray('e02000', schEincome_var + finite_diff)
if self.consumption.has_response():
self.consumption.response(self.records, finite_diff)
self.calc_all(zero_out_calc_vars=zero_out_calculated_vars)
payrolltax_chng = self.array('payrolltax')
incometax_chng = self.array('iitax')
combined_taxes_chng = incometax_chng + payrolltax_chng
# calculate base level of taxes after restoring records object
setattr(self, 'records', recs0)
if not calc_all_already_called or zero_out_calculated_vars:
self.calc_all(zero_out_calc_vars=zero_out_calculated_vars)
payrolltax_base = self.array('payrolltax')
incometax_base = self.array('iitax')
combined_taxes_base = incometax_base + payrolltax_base
# compute marginal changes in combined tax liability
payrolltax_diff = payrolltax_chng - payrolltax_base
incometax_diff = incometax_chng - incometax_base
combined_diff = combined_taxes_chng - combined_taxes_base
# specify optional adjustment for employer (er) OASDI+HI payroll taxes
mtr_on_earnings = (variable_str == 'e00200p' or
variable_str == 'e00200s')
if wrt_full_compensation and mtr_on_earnings:
adj = np.where(variable < self.policy.SS_Earnings_c,
0.5 * (self.policy.FICA_ss_trt +
self.policy.FICA_mc_trt),
0.5 * self.policy.FICA_mc_trt)
else:
adj = 0.0
# compute marginal tax rates
mtr_payrolltax = payrolltax_diff / (finite_diff * (1.0 + adj))
mtr_incometax = incometax_diff / (finite_diff * (1.0 + adj))
mtr_combined = combined_diff / (finite_diff * (1.0 + adj))
# if variable_str is e00200s, set MTR to NaN for units without a spouse
if variable_str == 'e00200s':
mars = self.array('MARS')
mtr_payrolltax = np.where(mars == 2, mtr_payrolltax, np.nan)
mtr_incometax = np.where(mars == 2, mtr_incometax, np.nan)
mtr_combined = np.where(mars == 2, mtr_combined, np.nan)
# return the three marginal tax rate arrays
return (mtr_payrolltax, mtr_incometax, mtr_combined)
def mtr_graph(self, calc,
mars='ALL',
mtr_measure='combined',
mtr_variable='e00200p',
alt_e00200p_text='',
mtr_wrt_full_compen=False,
income_measure='expanded_income',
dollar_weighting=False):
"""
Create marginal tax rate graph that can be written to an HTML
file (using the write_graph_file utility function) or shown on
the screen immediately in an interactive or notebook session
(following the instructions in the documentation of the
xtr_graph_plot utility function).
Parameters
----------
calc : Calculator object
calc represents the reform while self represents the baseline
mars : integer or string
specifies which filing status subgroup to show in the graph
- 'ALL': include all filing units in sample
- 1: include only single filing units
- 2: include only married-filing-jointly filing units
- 3: include only married-filing-separately filing units
- 4: include only head-of-household filing units
mtr_measure : string
specifies which marginal tax rate to show on graph's y axis
- 'itax': marginal individual income tax rate
- 'ptax': marginal payroll tax rate
- 'combined': sum of marginal income and payroll tax rates
mtr_variable : string
any string in the Calculator.VALID_MTR_VARS set
specifies variable to change in order to compute marginal tax rates
alt_e00200p_text : string
text to use in place of mtr_variable
when mtr_variable is 'e00200p';
if empty string then use 'e00200p'
mtr_wrt_full_compen : boolean
see documentation of Calculator.mtr()
argument wrt_full_compensation
(value has an effect only if mtr_variable is 'e00200p')
income_measure : string
specifies which income variable to show on the graph's x axis
- 'wages': wage and salary income (e00200)
- 'agi': adjusted gross income, AGI (c00100)
- 'expanded_income': sum of AGI, non-taxable interest income,
non-taxable social security benefits, and employer share of
FICA taxes.
dollar_weighting : boolean
False implies both income_measure percentiles on x axis
and mtr values for each percentile on the y axis are
computed without using dollar income_measure weights (just
sampling weights); True implies both income_measure
percentiles on x axis and mtr values for each percentile
on the y axis are computed using dollar income_measure
weights (in addition to sampling weights). Specifying
True produces a graph x axis that shows income_measure
(not filing unit) percentiles.
Returns
-------
graph that is a bokeh.plotting figure object
"""
# pylint: disable=too-many-arguments,too-many-locals
# check that two Calculator objects are comparable
assert isinstance(calc, Calculator)
assert calc.current_year == self.current_year
assert calc.array_len == self.array_len
# check validity of mars parameter
assert mars == 'ALL' or (mars >= 1 and mars <= 4)
# check validity of income_measure
assert (income_measure == 'expanded_income' or
income_measure == 'agi' or
income_measure == 'wages')
if income_measure == 'expanded_income':
income_variable = 'expanded_income'
elif income_measure == 'agi':
income_variable = 'c00100'
elif income_measure == 'wages':
income_variable = 'e00200'
# check validity of mtr_measure parameter
assert (mtr_measure == 'combined' or
mtr_measure == 'itax' or
mtr_measure == 'ptax')
# calculate marginal tax rates
(mtr1_ptax, mtr1_itax,
mtr1_combined) = self.mtr(variable_str=mtr_variable,
wrt_full_compensation=mtr_wrt_full_compen)
(mtr2_ptax, mtr2_itax,
mtr2_combined) = calc.mtr(variable_str=mtr_variable,
wrt_full_compensation=mtr_wrt_full_compen)
if mtr_measure == 'combined':
mtr1 = mtr1_combined
mtr2 = mtr2_combined
elif mtr_measure == 'itax':
mtr1 = mtr1_itax
mtr2 = mtr2_itax
elif mtr_measure == 'ptax':
mtr1 = mtr1_ptax
mtr2 = mtr2_ptax
# extract datafames needed by mtr_graph_data utility function
record_variables = ['s006']
if mars != 'ALL':
record_variables.append('MARS')
record_variables.append(income_variable)
vdf = self.dataframe(record_variables)
vdf['mtr1'] = mtr1
vdf['mtr2'] = mtr2
# select filing-status subgroup, if any
if mars != 'ALL':
vdf = vdf[vdf['MARS'] == mars]
# construct data for graph
data = mtr_graph_data(vdf,
year=self.current_year,
mars=mars,
mtr_measure=mtr_measure,
alt_e00200p_text=alt_e00200p_text,
mtr_wrt_full_compen=mtr_wrt_full_compen,
income_measure=income_measure,
dollar_weighting=dollar_weighting)
# construct figure from data
fig = xtr_graph_plot(data,
width=850,
height=500,
xlabel='',
ylabel='',
title='',
legendloc='bottom_right')
return fig
def atr_graph(self, calc,
mars='ALL',
atr_measure='combined',
min_avginc=1000):
"""
Create average tax rate graph that can be written to an HTML
file (using the write_graph_file utility function) or shown on
the screen immediately in an interactive or notebook session
(following the instructions in the documentation of the
xtr_graph_plot utility function). The graph shows the mean
average tax rate for each expanded-income percentile.
Parameters
----------
calc : Calculator object
calc represents the reform while self represents the baseline,
where both self and calc have calculated taxes for this year
before being used by this method
mars : integer or string
specifies which filing status subgroup to show in the graph
- 'ALL': include all filing units in sample
- 1: include only single filing units
- 2: include only married-filing-jointly filing units
- 3: include only married-filing-separately filing units
- 4: include only head-of-household filing units
atr_measure : string
specifies which average tax rate to show on graph's y axis
- 'itax': average individual income tax rate
- 'ptax': average payroll tax rate
- 'combined': sum of average income and payroll tax rates
min_avginc : float
specifies the minimum average expanded income for a percentile to
be included in the graph data; value must be positive
Returns
-------
graph that is a bokeh.plotting figure object
"""
# check that two Calculator objects are comparable
assert isinstance(calc, Calculator)
assert calc.current_year == self.current_year
assert calc.array_len == self.array_len
# check validity of function arguments
assert mars == 'ALL' or (mars >= 1 and mars <= 4)
assert (atr_measure == 'combined' or
atr_measure == 'itax' or
atr_measure == 'ptax')
assert min_avginc > 0
# extract needed output that is assumed unchanged by reform from self
record_variables = ['s006']
if mars != 'ALL':
record_variables.append('MARS')
record_variables.append('expanded_income')
vdf = self.dataframe(record_variables)
# create 'tax1' and 'tax2' columns given specified atr_measure
if atr_measure == 'combined':
vdf['tax1'] = self.array('combined')
vdf['tax2'] = calc.array('combined')
elif atr_measure == 'itax':
vdf['tax1'] = self.array('iitax')
vdf['tax2'] = calc.array('iitax')
elif atr_measure == 'ptax':
vdf['tax1'] = self.array('payrolltax')
vdf['tax2'] = calc.array('payrolltax')
# select filing-status subgroup, if any
if mars != 'ALL':
vdf = vdf[vdf['MARS'] == mars]
# construct data for graph
data = atr_graph_data(vdf,
year=self.current_year,
mars=mars,
atr_measure=atr_measure,
min_avginc=min_avginc)
# construct figure from data
fig = xtr_graph_plot(data,
width=850,
height=500,
xlabel='',
ylabel='',
title='',
legendloc='bottom_right')
return fig
def decile_graph(self, calc):
"""
Create graph that shows percentage change in aftertax expanded
income (from going from policy in self to policy in calc) for
each expanded-income decile and subgroups of the top decile.
The graph can be written to an HTML file (using the
write_graph_file utility function) or shown on the screen
immediately in an interactive or notebook session (following
the instructions in the documentation of the xtr_graph_plot
utility function).
Parameters
----------
calc : Calculator object
calc represents the reform while self represents the baseline,
where both self and calc have calculated taxes for this year
before being used by this method
Returns
-------
graph that is a bokeh.plotting figure object
"""
# check that two Calculator objects are comparable
assert isinstance(calc, Calculator)
assert calc.current_year == self.current_year
assert calc.array_len == self.array_len
diff_table = self.difference_table(calc,
groupby='weighted_deciles',
income_measure='expanded_income',
tax_to_diff='combined')
# construct data for graph
data = dec_graph_data(diff_table, year=self.current_year)
# construct figure from data
fig = dec_graph_plot(data,
width=850,
height=500,
xlabel='',
ylabel='',
title='')
return fig
def current_law_version(self):
"""
Return Calculator object same as self except with current-law policy.
"""
return Calculator(policy=self.policy.current_law_version(),
records=self.records,
sync_years=False,
consumption=self.consumption,
behavior=self.behavior)
@staticmethod
def read_json_param_objects(reform, assump):
"""
Read JSON reform and assump objects and
return a single dictionary containing five key:dict pairs:
'policy':dict, 'consumption':dict, 'behavior':dict,
'growdiff_baseline':dict and 'growdiff_response':dict.
Note that either of the first two parameters may be None.
If reform is None, the dict in the 'policy':dict pair is empty.
If assump is None, the dict in the 'consumption':dict pair,
in the 'behavior':dict pair, in the 'growdiff_baseline':dict pair,
and in the 'growdiff_response':dict pair, are all empty.
Also note that either of the first two parameters can be strings
containing a valid JSON string (rather than a filename),
in which case the file reading is skipped and the appropriate
read_json_*_text method is called.
The reform file contents or JSON string must be like this:
{"policy": {...}}
and the assump file contents or JSON string must be like:
{"consumption": {...},
"behavior": {...},
"growdiff_baseline": {...},
"growdiff_response": {...}
}
The returned dictionary contains parameter lists (not arrays).
"""
# first process second assump parameter
if assump is None:
cons_dict = dict()
behv_dict = dict()
gdiff_base_dict = dict()
gdiff_resp_dict = dict()
elif isinstance(assump, six.string_types):
if os.path.isfile(assump):
txt = open(assump, 'r').read()
else:
txt = assump
(cons_dict,
behv_dict,
gdiff_base_dict,
gdiff_resp_dict) = Calculator._read_json_econ_assump_text(txt)
else:
raise ValueError('assump is neither None nor string')
# next process first reform parameter
if reform is None:
rpol_dict = dict()
elif isinstance(reform, six.string_types):
if os.path.isfile(reform):
txt = open(reform, 'r').read()
else:
txt = reform
rpol_dict = (
Calculator._read_json_policy_reform_text(txt,
gdiff_base_dict,
gdiff_resp_dict)
)
else:
raise ValueError('reform is neither None nor string')
# finally construct and return single composite dictionary
param_dict = dict()
param_dict['policy'] = rpol_dict
param_dict['consumption'] = cons_dict
param_dict['behavior'] = behv_dict
param_dict['growdiff_baseline'] = gdiff_base_dict
param_dict['growdiff_response'] = gdiff_resp_dict
return param_dict
REQUIRED_REFORM_KEYS = set(['policy'])
REQUIRED_ASSUMP_KEYS = set(['consumption', 'behavior',
'growdiff_baseline', 'growdiff_response'])
@staticmethod
def reform_documentation(params):
"""
Generate reform documentation.
Parameters
----------
params: dict
compound dictionary structured as dict returned from
the static Calculator method read_json_param_objects()
Returns
-------
doc: String
the documentation for the policy reform specified in params
"""
# pylint: disable=too-many-statements,too-many-branches
# nested function used only in reform_documentation
def param_doc(years, change, base):
"""
Parameters
----------
years: list of change years
change: dictionary of parameter changes
base: Policy or Growdiff object with baseline values
syear: parameter start calendar year
Returns
-------
doc: String
"""
# nested function used only in param_doc
def lines(text, num_indent_spaces, max_line_length=77):
"""
Return list of text lines, each one of which is no longer
than max_line_length, with the second and subsequent lines
being indented by the number of specified num_indent_spaces;
each line in the list ends with the '\n' character
"""
if len(text) < max_line_length:
# all text fits on one line
line = text + '\n'
return [line]
# all text does not fix on one line
first_line = True
line_list = list()