diff --git a/tests/test_data/test_pipelines/test_loadings/test_load_images_from_multi_views.py b/tests/test_data/test_pipelines/test_loadings/test_load_images_from_multi_views.py new file mode 100644 index 0000000000..9c227160e9 --- /dev/null +++ b/tests/test_data/test_pipelines/test_loadings/test_load_images_from_multi_views.py @@ -0,0 +1,45 @@ +import numpy as np +import torch +from mmcv.parallel import DataContainer + +from mmdet3d.datasets.pipelines import (DefaultFormatBundle, + LoadMultiViewImageFromFiles) + + +def test_load_multi_view_image_from_files(): + multi_view_img_loader = LoadMultiViewImageFromFiles(to_float32=True) + + num_views = 6 + filename = 'tests/data/waymo/kitti_format/training/image_0/0000000.png' + filenames = [filename for _ in range(num_views)] + + input_dict = dict(img_filename=filenames) + results = multi_view_img_loader(input_dict) + img = results['img'] + img0 = img[0] + img_norm_cfg = results['img_norm_cfg'] + + assert isinstance(img, list) + assert len(img) == num_views + assert img0.dtype == np.float32 + assert results['filename'] == filenames + assert results['img_shape'] == results['ori_shape'] == \ + results['pad_shape'] == (1280, 1920, 3, num_views) + assert results['scale_factor'] == 1.0 + assert np.all(img_norm_cfg['mean'] == np.zeros(3, dtype=np.float32)) + assert np.all(img_norm_cfg['std'] == np.ones(3, dtype=np.float32)) + assert not img_norm_cfg['to_rgb'] + + repr_str = repr(multi_view_img_loader) + expected_str = 'LoadMultiViewImageFromFiles(to_float32=True, ' \ + "color_type='unchanged')" + assert repr_str == expected_str + + # test LoadMultiViewImageFromFiles's compatibility with DefaultFormatBundle + # refer to https://github.com/open-mmlab/mmdetection3d/issues/227 + default_format_bundle = DefaultFormatBundle() + results = default_format_bundle(results) + img = results['img'] + + assert isinstance(img, DataContainer) + assert img._data.shape == torch.Size((num_views, 3, 1280, 1920))